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Identification of genetic structure within wildlife populations have implications in their conservation and management. Accurately
inferring population genetic structure requires whole-genome data across the geographical range of the species, which can be
resource-intensive. A cheaper strategy is to employ a subset of markers that can efficiently recapitulate the population genetic
structure inferred by the whole genome data. Such ancestry informative markers (AIMs), have rarely been developed for
endangered species such as tigers utilizing single nucleotide polymorphisms (SNPs). Here, we first identify the population structure
of the Indian tiger using whole-genome sequences and then develop an AIMs panel with a minimum number of SNPs that can
recapitulate this structure. We identified four population clusters of Indian tigers with North-East, North-West, and South Indian
tigers forming three separate groups, and Terai and Central Indian tigers forming a single cluster. To evaluate the robustness of our
AIMs, we applied it to a separate dataset of tigers from across India. Out of 92 SNPs present in our AIMs panel, 49 were present in
the new dataset. These 49 SNPs were sufficient to recapitulate the population genetic structure obtained from the whole genome
data. To the best of our knowledge, this is the first-ever SNP-based AIMs panel for big cats, which can be used as a cost-effective
alternative to whole-genome sequencing for detecting the biogeographical origin of Indian tigers. Our study can be used as a
guideline for developing an AIMs panel for the management of other endangered species where obtaining whole genome
sequences are difficult.
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INTRODUCTION
Assessing the population genetic structure of wild species is
important for their management (Wultsch et al. 2016). The
application includes population assignment (Das and Upadhyai
2019; Kunde et al. 2020), tracking illegal wildlife trade (Frantz et al.
2006), captive breeding programs, planning reintroductions, and
informed management (Wasser et al. 2015; Miller et al. 2011; Friar
et al. 2001; Laikre et al. 2005; Ballou 1992; Ivy and Lacy 2010; Putnam
and Ivy 2014; Jiménez‐Mena et al. 2016; Jangtarwan et al. 2019; Lott
et al. 2020). Unravelling population structure involves the use of
multiple markers from across the genome (Pritchard et al. 2000).
Traditionally, upon the advent of Polymerase Chain Reaction (PCR)
technology, genetic variation within wild populations used to be
determined either employing a handful of neutral microsatellite
markers or assessing mitochondrial DNA sequences (Chapman et al.
2009; Kirk and Freeland 2011). However, both aforementioned
approaches had several challenges and inaccuracies predominantly
due to the scarcity of the markers employed (Chapman et al. 2009).
With the advancement in next-generation sequencing (NGS)
techniques several thousand to millions of markers across the
genome have become available for population genetic analysis,
even for non-model organisms (Khan and Tyagi 2021). This has been
greatly beneficial in enhancing the power and confidence in the

determination of population genetic structure within wild popula-
tions (Fuentes‐Pardo and Ruzzante 2017; Supple and Shapiro 2018).
Sequencing of Restriction site-associated DNA (RAD) markers
(RADseq) has made it increasingly possible to perform NGS without
having a reference genome in hand (Catchen et al. 2013), however
Feng et al. (2020) have analyzed whole-genome sequencing data of
birds for studying the genomic features across a phylogeny without
reference genomes albeit they had to use reference genomes from
phylogenetically related species. Out of 13,505 non-model species,
currently recognized as ‘threatened’ by the International Union for
Conservation of Nature (IUCN), only around 1% have their genomes
sequenced (Brandies et al. 2019). Consequently, resolving the
population structure of most wild and endangered fauna with
genome-wide SNP markers has been challenging. This is even more
challenging for wide-ranging species like tigers, with populations
distributed across countries.
Tigers (Panthera tigris) are endangered carnivores. About 60% of

the world’s wild tigers reside in India (Goodrich et al. 2015).
However, it has been an arduous task to identify population genetic
structure within the Indian tiger populations, predominantly due to
incomplete sampling and the unavailability of genome-wide data.
Three distinct genetic clusters of Indian tigers have been identified
based on ~10,000 Single Nucleotide Polymorphism (SNPs) (Natesh
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et al. 2017) and 11 microsatellite markers (Kolipakam et al. 2019).
Based on microsatellite analysis, Kolipakam et al. (2019) reported
clustering of North-West Indian tigers and Terai tigers. This clustering
is consistent with findings of Mondol et al. (2013) based on eight
microsatellite markers, who surmised that Terai and North-West
Indian tigers shared a common gene pool in the past. Further,
Kolipakam et al. (2019) revealed a separate cluster for tigers from the
North-East, which is supported by Armstrong et al. (2021), based on
genome-wide data. Kolipakam et al. (2019) also observed clustering
of tigers from the vicinities of the Western Ghats with the North-
West and Terai tigers. However, this has not been supported by any
other study. In contrast, Natesh et al. (2017), based on >10,000 SNP
markers, unraveled a solitary cluster of Terai and Central Indian
tigers, and two distinct, independent clusters of North-Western and
South-Indian tigers. This grouping of Indian tigers is supported by
Armstrong et al. (2021). Further, Natesh et al. (2017) observed that at
high complexity values (K values), North-East Indian tigers form a
separate cluster but failed to attain statistical support putatively due
to the scarcity of genetic markers. Overall, the employment of only a
handful of genetic markers in both SNP and microsatellite-based
studies have occluded the identification of true genetic structure
within tiger populations across India.
While whole-genome sequencing (WGS) can help to resolve the

structure within Indian tiger populations by making a large number
of loci available for analysis, it involves sequencing of multiple tiger
genomes across its range, which can be both expensive, and time
and labor-intensive (Fuentes‐Pardo and Ruzzante 2017). A cost-
effective approach can be genotyping individual tigers at specific
SNP markers that show discernible population-specific allele
frequency variation and thus can be more informative about
population structure compared to other loci (Rosenberg et al. 2003;
Shriver et al. 2003; Nassir et al. 2009; Das et al. 2019). Once such a
panel is developed using the WGS of a few individuals from across
the range, it would allow researchers to determine the ancestral
and biogeographical affiliation of additional individuals without the
need for their WGS making it cheaper and cost-effective. Such
highly informative SNP markers called Ancestry Informative Markers
(AIMs) can significantly aid in genetics-based conservation and
management of wildlife populations. Previously, AIMs panels have
been developed for species with well-characterized population
genetic structure such as humans (Rosenberg et al. 2003;
Vongpaisarnsin et al. 2015; Das and Upadhyai 2018; Esposito
et al. 2018), honey bees (Muñoz et al. 2015), rhesus monkeys
(Kanthaswamy et al. 2014), gorillas (Das et al. 2019), chimpanzees
(Anjana et al. 2020) and domestic animals like cattle (Wilkinson et al.
2011), sheep (Somenzi et al. 2020) and pigs (Liang et al. 2019).
Development of AIMs panel can be challenging for non-model
organisms such as tigers that are largely devoid of the large-scale
range-wide whole-genome dataset needed for accurately recapitu-
lating the population structure.
In this study, we investigated the population genetic structure

of Indian tigers with WGS based data and then developed the first
SNP-based AIMs panel for tigers, also the first among the big cats.
We aimed to minimize the number of loci needed to recapitulate
the population structure of Indian tigers. Our AIMs panel can be
used as a cost-effective alternative to WGS, for detecting
population structure within Indian tigers. Such technologies can
facilitate conservation and management of endangered species
by tracking illegal wildlife trade, studying dispersal patterns, and
estimating connectivity among others.

METHODS
Sampling
Tiger blood and tissue samples were collected and sequenced opportu-
nistically, as described in Khan et al. (2021), from the major tiger
landscapes in central India, Western ghats, Terai, north-east India, and
north-west India. We also sampled a wild-caught individual from

Nandankanan zoo in Odisha, India. Thus, our dataset is comprised of 35
wild tigers (Fig. 1).
We divided the samples into two datasets of 17 and 18 individuals as

described further for developing and testing AIMs panel respectively.

SNP identification
We trimmed the raw sequencing reads using TRIMMOMATIC (Bolger et al.
2014) to have a mean PHRED-scaled quality of 30 in a sliding window of
15 bp, and any read that was shorter than 36 bp after trimming was
removed from further analysis. We aligned these reads to a Bengal tiger
reference genome assembly (NCBI accession: JAHFZI000000000) using
BOWTIE2 (Langmead and Salzberg 2012). The alignments were then saved
in a binary format (BAM) using SAMTOOLS v1.9 (Li et al. 2009). We marked
duplicate reads with the Picard Tools ‘MarkDuplicates‘ command (http://
broadinstitute.github.io/picard). We called variants from the BAM files
using Strelka with default options (Saunders et al. 2012). The variants were
filtered with VCFtools v0.1.13 (Danecek et al. 2011) to retain biallelic sites
with a minimum quality of 30, a genotype quality of 30, and a minimum
depth of 10. We removed all indels and SNPs that are out of Hardy-
Weinberg equilibrium (Chi-square test, p-value < 0.001) and required a
minimum minor allele count of 3. We further, filtered out the SNPs with
frequency <5% and missing genotype rate >30% employing –maf 0.05 and
–geno 0.3 flags in PLINK v1.9 (Purcell et al. 2007).

Population genetic structure
For estimating population structure we sampled 17 individuals from
central, south, north-west India, north-east India, and Terai regions such
that each area had similar sample sizes. This was done to prevent potential
bias in the results from poorly sampled areas in our dataset and to increase
uniformity in our data. Samples from north-west India are overrepresented
in our analysis while those from north-east India are underrepresented. We
randomly chose 2–4 individuals from each location to avoid any statistical
bias. To re-iterate, we employed genomic data of 17 wild tigers, comprising
of 2–4 individuals from each geographic landscape (Armstrong et al. 2021)
(Fig. 1) assessing 2,828,619 SNP markers.
Principal Component Analysis (PCA) was performed with the SNPs using

–pca function in PLINK v1.9. Plots were generated with principal
components (PCs) 1 and 2 taken as x and y coordinates respectively. We
applied the model-based unsupervised clustering methods implemented
in ADMIXTURE v1.3 (Alexander et al. 2009) to determine the ancestry
proportions of the tiger genomes, exploring from K= 2 to K= 7. We
plotted the ancestral fractions from the Q file of ADMIXTURE. We estimated
genome-wide genetic distance using FST function as implemented in the
program VCFtools v0.1.13.

AIMs determination
To identify ancestry-specific SNP markers for the tiger populations under
study, we employed four AIMs determining approaches (1) Infocalc: The
algorithm finds the informativeness of multiallelic SNPs in determining the
ancestry of an individual based on the allele frequencies in the populations
(Rosenberg et al. 2003). Files compatible with Infocalc v1.1 were created
using –recode-structure function implemented in PLINK v1.9. The output
file was sorted based on the informativeness defining column (I_n) and the
top 10,000 ranking SNPs were selected (N= 24, 898). (2) Admixture: The
SNP allele frequencies of the ancestral population as obtained from P file
output of ADMIXTURE v1.3 was used to determine the AIMs panels
(Alexander et al. 2009). We identified the top 10,000 ranking SNPs with the
highest column to column variance depicted by the P file (N= 10,000). (3)
Wright’s FST: This algorithm measures the degree of differentiation among
populations based on the genetic structure of the populations (Wright
1969). Employing –fst function in PLINK v1.9, with family ID as the indicator
of the population group, FST scores were calculated for all 28,28,619 SNPs.
Top 10,000 ranking SNPs with highest FST value were selected (N= 10,043).
(4) SmartPCA: SmartPCA finds the weighting of all SNPs for each principal
component (PC). SmartPCA algorithm is implemented in EIGENSOFT v7.2.1
(Patterson et al. 2006; Price et al. 2006). The output file depicting the
weightage of each SNP is obtained as a snpwt file. Top 10,000 ranking SNPs
with the highest weight for PC1 were selected (N= 10,011).
Among the aforementioned four approaches, the optimal AIMs

determining strategy was assessed by comparing the 10,000 SNPs datasets
qualitatively and quantitatively to the Complete SNP Set (CSS). The
qualitative comparison was performed employing ADMIXTURE and PCA.
For quantitative comparisons, we calculated the Euclidean distance (ED)
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between the four putative ancestral components (North-East (NE), Central
(CI), North-West (NW) and South (SI)) of all data subsets and the CSS
following the formula mentioned below:

ED ¼ NECSS � NEsubsetð Þ2 þ CICSS � CIsubsetð Þ2
þ NWCSS � NWsubsetð Þ2 þ SICSS � SIsubsetð Þ2

 !0:5

The approach(es) that generated the minimum Euclidean distance
(ED→ 0) between the ancestry fractions of CSS and the subsets, was/were
considered to be the best AIMs determining strategy.

Consensus AIMs
To find a consensus between the four AIMs determining approaches, a
Venn diagram was plotted (http://bioinformatics.psb.ugent.be/webtools/
Venn/) between the four datasets generated by Infocalc, ADMIXTURE, FST
and SmartPCA, and common loci were selected based on the most
accurate approaches.

Testing AIMs
To assess whether our AIMs panel performs statistically significantly
better than any equal-sized randomly generated SNP sets, we developed
100 SNP panels, each comprising of equinumerous randomly generated
SNPs (N= 92) from the CSS and clustered individuals using ADMIXTURE.
Subsequently, the coefficients of determination (r2), as implemented in
GraphPad Prism v9, was calculated between the four ancestry fractions,
namely South India, North West Indian, North East Indian, and Central of
the CSS, and the AIMs panels and the random panels. We further
evaluated the efficiency of the ancestry assignments obtained using our
AIMs panel (N= 92) considering the null hypothesis that similar ancestry
fractions can be obtained using any equal-sized SNP sets, chosen at
random (p < 0.05). To note, for the random sets, the mean ancestry
fraction of the 100 random panels were employed for each individual.
To assess the efficiency, versatility, and replicability of our AIMs panel,

we used SNPs from a dataset of 18 individuals from various geographic
locations across India (Fig. 1) that for not involved in the panel
development. Subsequently, we estimated the structure within the test

Fig. 1 Sample locations of tiger from across India. The numbers in the map represent the geographical location of the sample:
1= Ranthambore Tiger Reserve, 2= Sariska Tiger Reserve, 3= Kanha Tiger Reserve, 4= Bor Tiger Reserve, 5= Chandrapur, 6=Nandankanan,
7= Sunderban Tiger Reserve, 8= Lalgarh Forest Range, 9= Kaziranga Tiger Reserve, 10= Bandipur Tiger Reserve, 11=Wayanad Wildlife
Sanctuary, 12= Corbett Tiger Reserve.
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populations employing the complete set of SNPs and also our AIMs panel.
All PCA and ADMIXTURE plots were generated as before using R v3.5.1.

RESULTS
Population genetic structure of Indian tigers
PCA. The first two principal components explained 25% of the
variance between them. Along PC1 the populations depicted an

east to west cline. The Central Indian tigers from Kanha Tiger
Reserve and Chandrapur formed a cluster at the centre with the
tigers from Terai (Corbett Tiger Reserve), Lalgarh, and Nandanka-
nan Zoo. Tigers from the vicinities of Western Ghats (Wayanad
Wildlife Santuary), North-East Indian tigers (Kaziranga Tiger
Reserve), and North-West Indian tigers (Ranthambore Tiger
Reserve) formed separate and distinct clusters (Fig. 2).

Admixture. We aimed at discerning the optimum number of
ancestral components (K) by minimizing the cross-validation error
(CVE; Alexander et al. 2009) implemented in ADMIXTURE v1.3 using
the –cv flag in the ADMIXTURE command line. However, we were
unable to find a single K when the genomes exhibited homo-
geneous admixture patterns. For instance, admixture analysis
revealed that at complexity (K) values of 2 and 3, while the North-
West Indian and Western Ghats tigers formed separate clusters, no
distinct cluster was formed for the North-East tigers, which grouped
with the Central tigers. The most robust population structure was
found for the K value of 4, where the North-East tigers form a
separate cluster from the rest of the Indian tigers (Fig. 3). We note
here that K values more than 4 do not yield biologically meaningful
results. Overall, our PCA and admixture analysis with tiger WGS data
across India indicated four population clusters for Indian tigers.

FST. We obtained the lowest FST between the Terai and Central
Indian tigers, and the highest between the Terai and North-West
Indian tigers (Balloux and Lugon‐Moulin 2002) (Fig. 4). It is noteworthy
that North-West tigers in general have higher FST with tigers from
other populations.

AIMs Panel
We employed both qualitative (Admixture and PCA plots,
Supplemental Fig. 1a, b respectively) and quantitative (Fig. 5)
measures to assess whether the putative AIMs panels identified by
INFOCALC, ADMIXTURE, SmartPCA, and FST are able to recapitulate

Fig. 2 PCA plot of Indian tigers based on complete SNP set (CSS).
The percentage value on each axis is the amount of variance
explained by that axis.

Fig. 3 Comparison of Admixture plots K= 2–7. Plot for K= 4, putatively optimum K, is highlighted with a box.

A. Khan et al.

91

Heredity (2022) 128:88 – 96



the population genetic structure of Indian tigers depicted by the
Complete SNP set (CSS).
While the SmartPCA and FST based approaches largely failed to

recapitulate the population genetic structure depicted by CSS, both
qualitatively and quantitatively, ADMIXTURE and INFOCALC based
strategies performed the best, replicating the population genetic
structure depicted by the CSS with the highest resolution
(Supplemental Figs. 1 and 5). All four datasets depicted a high
number of private alleles with Infocalc, Admixture, FST and
SmartPCA having 24,668, 6573, 6541, and 8663 private SNPs,
respectively. Seven SNPs were found to be common among the

four methods and only 678 were common to at least three of the
four approaches. Because of the failure of FST and SmartPCA based
approaches, we ignored the SNPs identified by these two
approaches and developed our AIMs panel using the SNPs that
were detected by both Infocalc and Admixture-based approaches
(N= 92).
We subsequently compared our AIMs panel (N= 92) qualita-

tively using Admixture (Fig. 6), PCA (Supplemental Fig. 2), and
quantitatively (Fig. 5) to the CSS. The AIMs panel could
recapitulate the population genetic structure depicted by the
CSS with a high resolution both qualitatively and quantitatively
and was found to be statistically similar to the 10,000 Infocalc and
Admixture datasets (Tukey’s post hoc analysis, P= 0.99).
We compared our AIMs panel with 100 panels of randomly

sampled 92 SNPs. As envisioned, all 100 SNP panels failed to
recapitulate the population genetic structure depicted by the CSS
with any precision (20 panels are shown in Supplemental Figure
1). The only population genetic structure that could be identified
by most random panels was North-West.
We further calculated the assignment proportion for each

individual in the random sets to investigate the proportion of times
(%) they were correctly assigned to the four major assignment zones
(Central, South, Northeast, or North-West) defined by the CSS.
Consistent with the admixture plots (Supplemental Fig. 3), randomly
generated SNPs could successfully assign tigers from North-West and
North-East to their actual zones of origin >85 and >55% times
respectively, but completely failed to do so for Central and Southern
tigers (Fig. 7).
The coefficient of determination (r2) computed between the

ancestry fractions of the CSS and both AIMs panels indicated a
strong association between the CSS and both AIMs panels for
all ancestry assignments (r2 = 0.95–1, P < 0.0001) (Table 1). As
predicated, while r2 was significantly high for the North West
ancestry assignment between CSS and the random panels
(r2 = 0.97, P < 0.0001), the same for the Central Indian assign-
ment was discernibly low (r2= 0.03, P= 0.49) (Table 1). The null
hypothesis that similar ancestry fractions can be obtained
using equal-sized SNP panels, was rejected since the AIMs

Fig. 4 Population differentiation. Pairwise FST between tigers from various geographic regions.
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panel performed significantly better than the random panels
(P < 0.0001).
To assess the robustness of our AIMs panel in recapitulating the

ancestry information of Indian tigers, we applied our AIMs panel to
a separate whole-genome dataset of 18 tigers assessing 1,538,042
SNPs. Out of 92 SNPs present in our AIMs panel, 49 were present
in the new dataset. Interestingly these 49 SNPs could efficiently
recapitulate the population genetic structure within the Indian
tiger populations assessed indicating these 49 SNPs might be
sufficient to identify the biogeographical affinity of an individual
tiger (Fig. 8).

We further performed power analyses for both AIMs panels
(N= 92 and N= 49). Power analyses was performed using
G*Power v3.1. The power (1−β) was calculated from the
Coefficient of determination (r2) given α= 0.01 and sample sizes
of 17 and 18 respectively for the two AIMs panels. The average r2

for the larger AIMs panel (N= 92) was 0.99 (Table 1) and as a
consequence the effect size (|r | ) was estimated to be 0.995. The
average r2 for the smaller AIMs panel (N= 49) was 0.96 (Table 1)
and as a consequence the effect size (|r | ) was estimated to be
0.979. for both AIMs panels we obtained absolute statistical
powers (1− β)= 1, indicating the statistical efficiency of both

Fig. 6 Structure from whole genome vs AIMs. Qualitative comparison of the admixture plots generated by CSS and the AIMs panel.

Fig. 7 Assignment proportions of individual tigers to their respective zones based on 92 random SNPs. The bars indicate the proportion
of times an individual tiger was assigned to one the four major assignment zones (Central, South, North-east or North-West).

Table 1. Coefficient of determination (r2) computed for various ancestry assignments.

Ancestry Assignment CSS vs. AIMs panel
(N= 92)

CSS vs. AIMs panel
(N= 49)

CSS vs. Random panels
(N= 92)

AIMs panel (N= 92) vs. Random
panels (N= 92)

Central India 0.9999 0.9473 0.0319 0.0322

South India 0.9992 0.926 0.5371 0.5378

North West India 0.9979 0.9856 0.9745 0.9719

North East India 1 NA 0.4426 0.4429

A. Khan et al.

93

Heredity (2022) 128:88 – 96



AIMs panels in replicating the ancestry information of the CSS.
The statistical power of the random panels varied greatly among
the four ancestry assignments according to r2 (Table 1). While the
power was only 0.03 for the Central Indian tigers (effect size (|r |=
0.179)), it was discernibly high for the tigers from the North East
(effect size (|r |= 0.665), power= 0.75) and the South (effect size (|
r |= 0.733), power= 0.91), and found to be absolute (effect size (|
r |= 0.987), power= 1) for the North-West tigers.

DISCUSSION
Population genetic structure of Indian tigers
Tiger whole-genome data employed in this study depicted four
distinct population groups of Indian tigers. Both clustering
algorithms (PCA and ADMIXTURE) and the measurements of FST
did not show any support for considering Terai and Central Indian
tigers as separate clusters. Our analysis of cross-validation error
(CVE) for ADMIXTURE remains inconclusive. Recently, biologically
meaningful complexity values have been favoured over ones
suggested by CVE (for example vervet monkeys (Svardal et al.
2017) and humans (Esposito et al. 2018)). We note here that our
results are consistent with the previous SNP-based study by
Natesh et al. (2017) and the patterns observed in Armstrong et al.
(2021) with less extensive sampling of Indian tigers. Further, our
results are partially consistent with Kolipakam et al. (2019) such
that both found a separate cluster for North-East Indian tigers.
However, unlike Kolipakam et al. (2019), we did not find any
evidence of Terai and Central Indian tigers being separate clusters,
and Western-Ghats, Terai and North-West tigers share the same
gene pool (Kolipakam et al. 2019; Mondol et al. 2013). It is
noteworthy that even at higher K values, ADMIXTURE plots could
not identify separate clusters for the Terai tigers, and they were
found to be virtually indistinguishable from the Central Indian
tigers throughout the analysis. Both PCA and ADMIXTURE analysis
extended support for four cluster model of Indian tigers, depicting
separate clusters for the South, North-West, North-East tigers, and
a combined Terai and Central Indian cluster.

Ancestry Informative Markers
We developed a set of 92 AIMs that can optimally replicate the
population genetic structure of Indian tigers. However, individuals
belonging to small and isolated populations such as those from
North-West India (Alcala et al. 2019; Natesh et al. 2017; Khan et al.
2021), can mostly get correctly assigned using any random subset

of loci (Fig. 7, Supplemental Fig. 3). Such populations can be
presumed to have multiple loci with fixed alleles as a consequence
of genetic drift and inbreeding across multiple generations
(Dudash and Fenster 2000; Schlaepfer et al. 2018). Therefore, we
suggest that these populations can be easily identified as separate
clusters due to high differentiation from other populations. In
contrast, individuals belonging to recently isolated populations
with fairly high population sizes or incomplete lineage sorting can
be very difficult to identify as separate clusters due to low
differentiation among each other, for example, individuals from
Sunderban Tiger Reserve (Fig. 8). We surmise here that while the
AIMs panel might not be robust enough to detect fine and subtle
population structure among tigers belonging to the same
geographical landscape (i.e. individual-level variation) due to the
presence of only a handful of markers, it can detect the major
ancestral components in each individual, significantly similar to
the CSS. Thus, the AIMs panel can be successfully utilized to detect
inter-population variation based on the variation in these
ancestral components. For example, the presence of South Indian
and Central Indian ancestry components in the lone Sundarban
tiger, employed in this study, made it unique and genetically
distinguishable from other tigers (Fig. 8). Similarly, we could detect
discernible variation among individuals of Central Indian genetic
cluster albeit from different geographical locations (Figs. 6 and 8).
To summarize, similar to the CSS, our AIMs panel can detect
structure among populations.
We have obtained tiger samples from several geographical

locations across India and identify the broad population genetic
structure of Indian tigers. Bengal tigers residing outside India
remain under-sampled in literature for genomics scale studies.
These populations need to be sampled and sequenced for their
conservation. It might be useful to assign individuals to the
specific protected area or landscape they belong to for effective
conservation measures. However, detection of these subtle
genetic structure depends on extensive sampling of individuals
from each of these protected areas and building a whole-genome
dataset to discover fine-scale structures. This whole-genome data
can subsequently be used to develop AIMs panels. It might be
expected that the minimum number of ancestry informative SNPs
required for the identification of fine-scale population genetic
structure within a landscape consisting of several protected areas
might be much higher. Conversely, if there are certain mutations
that are fixed in a landscape due to drift or selection, they can be
used effectively to assign individuals. Examples could include

Fig. 8 Testing structure from developed AIMs panel. CSS vs. AIMs panel comparison for an independent dataset.
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locally high-frequency alleles like that for the pseudo-melanism in
Similipal Tiger Reserve (Sagar et al. 2021).
Out of the 92 SNPs present in our AIMs panel, we could apply 49

SNPs in the test dataset due to high missingness in the other loci
post quality filtering. These 49 AIMs sufficed to accurately model
the population genetic structure of the test set. However, our test
dataset did not have individuals from North-Eastern India due to a
deficiency in sampling. Whether these 49 AIMs will suffice to
model the population genetic structure of Indian tigers with
North-East Indian tigers remains to be evaluated. Additional
testing could be conducted using large sample sizes and better
geographically distributed non-invasive DNA samples. Further, as
Northeast individuals do show signatures of possible admixture
with individuals outside India (Armstrong et al. 2021), testing our
AIMs on global tiger datasets will be important.
The AIMs panel for Indian tigers that we developed in this study

can be added to the set of 126 SNPs panel, currently in use for
tigers (Natesh et al. 2019). These AIMs will increase the accuracy
with which Indian tigers can be assigned to a geographical area
while keeping the costs low. This will aid tremendously in
forensics, keeping strict tabs on wildlife trade, studying individual
dispersals from one genetic cluster to another, and management
of populations.
Big cats are charismatic and are of global conservation concern.

They are also trafficked for various illegal activities. Such traffic can
be monitored using genetic tools, such as population assignment
(as done for elephants for example (Wasser et al. 2015)).
Discerning population genetic structure may be difficult in species
with large geographic distributions, but our AIMs panel can be
used effectively in such cases to identify the origin of a sample
down to their most likely protected areas. Such information can
facilitate the protection and management of trade. Further, zoo-
bred individuals have often been found to have admixed
ancestries (Luo et al. 2008). Our AIMs panel can aid in discerning
the various ancestry proportions of the zoo individuals. Discerning
ancestry for captive tigers through AIMs can help to avoid
breeding between individuals with the similar genetic tapestry.
Such planned breeding programs can be monumental in both
preserving the genetic integrity of the captive animals and
increase in their genetic variation through a planned admixture of
animals of different ancestral make-up.
We suggest that a denser sampling of individuals from various

protected areas across India will allow us to develop a more
versatile AIMs panel that will be able to assign individuals even
closer to its true biogeographical origin. Studies such as the one
presented here are needed for all big cats across their range for
providing viable genetics-based management solutions.

Data archiving
Sequencing data can be accessed from BioProject accession numbers
PRJNA728665, PRJNA693788, PRJNA559670, PRJNA749163 in NCBI.
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