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Additive genetic variation in Pinus radiata bark chemistry and
the chemical traits associated with variation in mammalian bark
stripping
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Secondary metabolites are suggested as a major mechanism explaining genetic variation in herbivory levels in Pinus radiata. The
potential to incorporate these chemical traits into breeding/deployment programmes partly depends on the presence of additive
genetic variation for the relevant chemical traits. In this study, near-infrared spectroscopy was used to quantify the constitutive and
induced levels of 54 compounds in the bark of trees from 74 P. radiata full-sib families. The trees sampled for chemistry were
protected from browsing and induced levels were obtained by subjecting half of the trees to artificial bark stripping. The treatment
effect on bark chemistry was assessed along with narrow-sense heritability, the significance of non-additive genetic effects and the
additive genetic correlations of compounds with bark stripping by mammalian herbivores that was observed in unprotected
replicates of the field trial. The results indicated: (i) significant additive genetic variation, with low-moderate narrow-sense
heritability estimates for most compounds; (ii) while significant induced effects were detected for some chemicals, no significant
genetic variation in inducibility was detected; and (iii) sugars, fatty acids and a diterpenoid positively genetically correlated while a
sesquiterpenoid negatively genetically correlated with bark stripping by the mammalian herbivore, the Bennett’s wallaby (Macropus
rufogriseus). At the onset of browsing, a trade-off with height was detected for selecting higher amounts of this sesquiterpenoid.
However, overall, results showed potential to incorporate chemical traits into breeding/deployment programmes. The quantitative
genetic analyses of the near infrared predicted chemical traits produced associations with mammalian bark stripping that mostly
conform with those obtained using standard wet chemistry.
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INTRODUCTION
Herbivory by mammalian herbivores can have significant
deleterious impacts on plants and their protection against such
damage can enhance productivity in both natural and managed
systems (Endress et al. 2016; O’Reilly-Wapstra et al. 2012). In
managed forest systems, naturally occurring plant defences offer
a durable and less costly means of tree protection against
mammalian herbivores in comparison to other management
strategies such as fencing and animal control (Iason et al. 2011;
Vourc’h et al. 2002). Natural defence against herbivory is achieved
by constitutive and inducible physical and chemical traits that act
directly or indirectly on herbivore feeding (Franceschi et al. 2005;
Hudgins et al. 2004) and understanding their genetic architecture
is of interest to the field of evolutionary ecology as well as plant
breeding (Johnson 2011). In Pinus species and other conifers, such
physical traits include bark thickness and texture, constitutive and
traumatic resin ducts and specialized phloem parenchyma cells
(Franceschi et al. 2005; Hudgins et al. 2004; Nantongo et al. 2020).
The chemical traits include secondary metabolites mainly
terpenoids and phenolics, where higher amounts are linked to
increased resistance of the needles and the bark to mammalian
and insect herbivores (Chiu et al. 2017; Iason et al. 2011; Zhang

and States 1991). A few studies have also directly or indirectly
associated primary compounds (metabolites involved in basic life
functions) with herbivory responses (Gershenzon 1994; Tauzin
and Giardina 2014; Tiffin 2000). These chemical and physical
traits, which are often present in basal levels in plants, can
increase or reduce following actual or artificial herbivory (Miller
et al. 2005; Nantongo et al. 2021b; Raffa and Smalley 1995;
Sampedro et al. 2011). In Pinus species, both constitutive and
induced traits are under genetic control (Baradat and Yazdani
1988; Iason et al. 2011; Ott et al. 2011; Westbrook et al. 2015;
Zhang et al. 2016) and are potentially amenable to natural and
artificial selection. However, for different traits, there is variation
in the extent to which phenotypic selection on parents will have
an impact on their progeny. Assuming no genetic constraints, this
impact will depend on the amount of additive genetic variation in
the trait under selection, as determined by the phenotypic
variance and narrow-sense heritability of the trait. Other factors
being constant, traits with low heritability will genetically respond
to selection more slowly than traits with higher heritability
(Falconer and Mackay 1996).
While the presence of additive genetic variation is an important

requirement for a genetic response in traits under selection,
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current theories on the evolution of plant resistance predict the
existence of evolutionary trade-offs (negative genetic correlations)
between resistance and fitness traits in the absence of herbivory,
or between individual traits that can constrain selection in
breeding programmes (Huot et al. 2014). Terpenes and phenolics
are carbon-based and their production requires carbon resources,
resulting in potential conflicts among the compounds or with
other plant functions such as growth (Deslauriers et al. 2015;
Sampedro et al. 2011; Villari et al. 2014). When there is a genetic
basis to these trade-offs, improving resistance through selection
and breeding could negatively impact growth or other defence
traits, and vice versa. Mixed evidence for the existence of trade-
offs in Pinus species has been documented (Sampedro et al. 2010;
Villari et al. 2014) but generally trade-offs are not expected in
environments that are resource‐rich as predicted by the resource
availability hypothesis (Coley et al. 1985; Sampedro et al. 2011)
and growth–differentiation balance hypothesis (Lorio 1986).
Similarly, where multiple traits are required for effective defence,
limited trade-offs may occur among such traits (Carmona and
Fornoni 2013).
Pinus radiata (radiata pine) is a tree native to California and is

the main plantation softwood in both Australia and New Zealand
where it has been subject to breeding to improve productivity and
wood quality (Burdon et al. 2008; Burdon and Brown 2018).
However, in many plantations in Australia, trees are subject to bark
stripping by mammalian (mainly marsupial) herbivores, which can
markedly reduce the genetic gain achieved in breeding pro-
grammes (Page et al. 2013). In Tasmania, bark stripping on young
trees (1–6 yrs), especially by the Bennett’s wallaby (Macropus
rufogriseus) is the most important pest problem, affecting up to
40% of the Tasmanian plantations (Miller et al. 2014). Genetic
variation in herbivory by both mammals and insect herbivores has
been documented in Pinus radiata (Moreira et al. 2013b; Nantongo
et al. 2020). However, the associated defence mechanisms are
not well established. A few studies have documented the
involvement of physical structures such as thick bark, rough bark
and obstructive branches on the stem in deterring herbivores
(Miller et al. 2014; Nantongo et al. 2020). Other studies have
focussed on chemical defences and have found some relation-
ships between the chemical defences and insect herbivory on
P. radiata (Moreira et al. 2013a; Moreira et al. 2013b; Sampedro
et al. 2011) but narrow-sense heritabilities have been estimated
for only a few compound groups (Moreira et al. 2012; Moreira et al.
2013b). In the case of mammalian bark stripping, it has been
suggested that increased sugar levels in the bark of P. radiata may
contribute to susceptibility (Page et al. 2013). Studies also indicate
induced responses of P. radiata to both actual and artificial
herbivory as well as stress elicitors, mostly by increasing terpenes
and phenolics and decreasing sugars (Moreira et al. 2013a;
Reglinski et al. 2019). However, there is still limited support for the
role of induced chemistry in deterring herbivores or its variation
between families (Moreira et al. 2013a). The presence of trade-offs
between growth and chemistry, and between different chemical
traits has been demonstrated in P. radiata mainly at the
phenotypic level (Gould et al. 2008; Reglinski et al. 2019).
However, the existence of a genetic basis for the trade-offs for
individual compounds has not been investigated.
The present study focuses on genetic variation in primary and

secondary metabolites in the bark of Pinus radiata using a field
trial of full-sib families, parts of which were protected from
browsing whereas the remainder was open to uncontrolled
mammalian browsing. Using this system we aimed to: (1)
determine the extent to which variation in P. radiata bark
chemistry is under additive and non-additive genetic control, (2)
test whether there are genetic differences in the inducibility of
bark chemicals following artificial bark stripping; (3) identify
compounds that genetically correlate with uncontrolled mamma-
lian bark stripping; and (4) identify potential trade-offs by

determining the genetic correlations among key chemical
compounds and their correlations with growth.

MATERIALS AND METHODS
P. radiata progeny trial
The genetic field trial used for this study was established at Wilmot in
northern Tasmania (−41.454271°N, 146. 106801°E, 580m ASL), Australia in
2015 using genetic material sourced from the New Zealand Radiata Pine
Breeding Company (RPBC) and is described by Nantongo et al. (2020). The
genetic material comprised 74 full-sib (cross-pollinated; CP) families
generated from 55 unique parents and 54 grandparents which were
planted in the field in a randomised incomplete block design of 26
replicates, and three incomplete blocks per replicate. Each family was
represented as a single-tree plot within each replicate. The field trial was
fenced to prevent bark stripping by native mammals. The dominant native
herbivore on site was the Bennett’s wallaby (Macropus rufogriseus
subspecies rufogriseus). The density of the Bennett’s wallaby within the
general area was estimated at 32 animals/km2 (DPIPWE 2018). In 2017
(when plants were 25 months of age), the gates of the trial were opened
during winter (autumn and winter are peak bark stripping periods) for
about two months to allow animal access and bark stripping. Six of the 26
replicates had been further protected using internal fencing to totally
exclude the herbivores and allow chemistry to be assayed in the absence
of uncontrolled browsing (see chemistry experiment described below). The
6 protected replicates were disconnected and randomly spread through
the trial and thus were individually fenced. The remaining 20 replicates
were freely accessible to browsing and were used to assess the genetic
variation in susceptibility to bark stripping.

Experiment 1: assessment of bark stripping
The details of the bark stripping assessment were described in earlier
studies (Nantongo et al. 2020). In brief, at 2 years of age, after ~2 months of
exposure to mammalian bark stripping, the amount of bark removed from
each tree was scored in the 20 unprotected replicates (n= 1372 plants due
to some losses) on a 0–5 scale (0= no damage, 1= <25%, 2= 25–50%,
3= 50–75%, 4= >75%, 5= 100% damage [completely ring barked]). At
the same time the height of trees from all 26 replicates was measured. By
this time, bark stripping had not differentially influenced the height of the
different families as depicted from the non-significant tree*protection
interaction term (described later in the methods). However, bark stripping
possibly caused a reduction in the overall height of the browsed trees
given that the average height of the trees at the time of bark stripping
assessment in the 20 unprotected replicates was 147.4 ± 0.90 cm
compared to 163.7 ± 1.54 cm for trees in the 6 protected replicates.
Browse scores were converted to class mid-point values for data analyses,
except for scores 0 and 100, following Nantongo et al. (2020).

Experiment 2: chemistry experimental design and chemical
analysis
Three weeks after the bark stripping assessment was conducted, an
experiment was initiated to assess the constitutive and induced chemical
differences among all 74 families using trees in the 6 protected replicates
(n= 390 plants due to some losses). Half of the plants were subject to
artificial bark stripping (treated trees; n= 195) at time zero (T0) and half
were untreated (n= 195) and used as controls (more details of the
sampling are presented in Nantongo et al. (2021b). Each family was
represented by a maximum of 3 treated and 3 untreated seedlings
(maximum n= 6). The treatment was applied to alternate trees in each row
and thus was randomised with respect to pedigree. It involved removing a
vertical strip of 15 cm of bark from the north side of the stem, starting 2 cm
above the ground, and covering 30% of the stem circumference (Fig. 1a).
The dimensions were selected based on the most common browsing level
observed in Experiment 1. Figure 1b shows seedlings in the field that have
been damaged by the mammals. Three weeks after the treatment was
applied, bark samples were collected from both the control and the
treated trees. This bark sample was collected from all the trees ~1 cm
above the stripped part on the treated trees as illustrated in Fig. 1a. On the
control trees, a bark sample of similar size was collected from a similar
height as the one from the treated plants (Fig. 1a). Samples were kept in a
cool box until transportation to the laboratory for near-infrared spectro-
scopy (NIRS) scanning of fresh samples. After scanning, each sample was
divided into 2 parts; one part was stored in a −20 °C freezer until wet
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chemical extraction (Maier et al. 2010) and the other was freeze-dried and
ground using a Cyclotec 1093 sample mill (FOSS, Denmark) and stored in
glass vials for NIRS scanning of dried-ground samples.

Near infrared reflectance spectroscopy models and wet
chemical analysis
Assessment of chemistry is conventionally performed using wet chemistry.
However, the need for large sample sizes for genetic analysis puts a
constraint on the use of wet chemistry given the associated cost and
labour (Siesler and Ozaki 2002). The ability of near infrared reflectance
spectroscopy (NIRS) to accurately predict the amount of many primary and
secondary compounds in P. radiata bark has been shown (Nantongo et al.
2021a). This approach enables fast, low cost and large-scale chemotyping
and was adopted in the present genetic study.
To predict the chemistry of P. radiata using NIRS, bark samples from all

trees in the 6 protected replicates (n= 390) were scanned when fresh and
when freeze-dried and ground using a Bruker MPA Fourier-transform NIR
spectrometer (Bruker, Optics, Ettlingen, Germany) in the diffuse reflec-
tance mode (12,000–3800 cm−1) according to the methods in Nantongo
et al. (2021a). The fresh bark samples were divided into two; the part
closer to the original strip (proximal) and one further from the strip
(distal). At similar positions, spectra were also taken on the bark collected
from control trees. For both the proximal and distal samples, spectra were
collected from the inner and outer sides of the bark sample. In brief, at
each position the fresh bark samples were scanned using an optic fibre
reflective probe at five different points and the spectra averaged. The
dried-ground samples were scanned through the bottom of the glass
vials. Each absorbance spectrum was collected at 8 cm−1 using the OPUS
(ver. 7.2; Bruker Optik GmbH, Germany) software and reflectance (R) data
was stored as log (1/R). All quantitative analyses were performed using
the Unscrambler® X software (CAMO software version 10.2, CAMO AS,
Trondheim, Norway).
Principal component analysis (PCA) was carried out on the spectra of

all fresh bark samples, to enable selection of a subset (a third of the total
number of samples) of samples for wet chemical analysis (see below) for
model calibration purposes. 150 samples representative of the spectral

variation present in the entire sample set were selected and these were
used to develop the prediction models using partial least squares
regression (PLSR). The aim of the PLSR analysis method is to create
models for an accurate prediction of the attributes of unknown samples.
PLSR models were based on either cross- or external validation and these
were developed for each compound using each of the 5 bark NIRS scans
(outer distal, outer proximal, inner distal, inner proximal and dried-
ground). For leave-out-one cross-validation models, all the 150 samples
were used. For external validation models, 100 samples were used as the
training data set for model construction and the 50 extra samples as a
validation data set against which the model was tested before predicting
the unknown samples (n= 240). The factors that were automatically
selected by the models were retained. In most cases, spectral data were
transformed by pre-treatments before the calibration process (Nantongo
et al. 2021a; Rinnan et al. 2009). Spectral pretreatment was applied to
reduce the spectral noise and to remove or minimize the influence of
irrelevant information in order to develop more simple and robust
models (Nantongo et al. 2021a; Rinnan et al. 2009). The performance of
the PLS models was evaluated according to the root mean square error
(see below) and the coefficient of determination (R2) of the plot between
the predicted values and the reference values. The better model of either
the cross-validated or the externally validated model was used to predict
the chemistry of the unknown samples. The metrics for the final
predictive models for each compound or group of compounds can be
found in Supplementary Table 1.
Wet chemical extractions that targeted terpenes, phenolics and sugars

were performed separately for the bark from each tree using three
extraction solvents: dichloromethane (DCM; for the volatile terpenes and
phenolics), acetone (for the diterpenoids and fatty acids) and hot water
(for the sugars), according to the methods documented in Nantongo
et al. (2021c). The DCM extracts were analysed by gas chromatography-
mass spectrometry (GC-MS) whereas the acetone extracts and the hot-
water extracted sugars were analysed by ultra-high-performance liquid
chromatography-mass spectrometry (UHPLC-MS). The preliminary iden-
tification of the compounds was based on the comparison of the
retention time and mass spectra with the National Institute of Standards
and Technology mass spectra library (NIST 2014). However, to verify the
retention times for final identification of diterpenoid resin acids by UPLC-
MS, standards of abietic acid, neoabietic acid, dehydroabietic acid,
palustric acid, levopimaric acid, pimaric acid and isopimaric acid were
purchased from Santa Cruz Biotechnology and analysed by UPLC-MS.
The internal standards n-heptadecane, nonadecanoic acid and specific
sugars were used respectively for DCM, acetone and sugar extracts. The
components were expressed as equivalents to the respective internal
standard, except for the sugars that were measured in absolute amounts.
Some compound peaks that could not be resolved on chromatograms
were reported as groups of compounds as shown in Supplementary
Table 1. Some terpenes and sugars could not be identified as this was a
huge undertaking that was out of the scope of this work. A unique
number was given to each compound for ease of identification in the
tables. Some samples were extracted in triplicate for estimation of lab-
error to enable calculation of the NIRS predictive error relative to the lab
error (PRL). The compounds that were included in the final data analysis
were selected based on 2 criteria. First, was the ratio of the range of the
original data to the RMSE (ratio error range - RER). A minimum RER of
6.00 has been suggested as sufficient for detecting differences between
classes of samples and for initial screening (Malley et al. 2004). Second,
among those that did not meet this criteria, further selection was based
on PRL and in this case, a PRL < 3.00 was selected based on suggestions
that prediction errors within approximately twice the standard wet
chemistry precision are sufficient for application (Yang et al. 2017).
Graphical plots and linear regression between NIRS model metrics (RER,
PRL and R2) and genetic parameters (e.g. h2, see below) were used to
explore any bias caused by the NIRS predictive method.

Estimation of additive genetic variation in chemical traits
For all chemical traits successfully modelled with NIRS, the presence of
additive genetic variation was tested based on variance components
generated by fitting univariate linear mixed models in ASReml v4.1
(Gilmour et al. 2015). The general linear mixed model was fitted

y ¼ Xβþ Zuþ e; (1)

where, y is a vector of the amounts of individual compounds, β is a vector
of fixed effects (i.e. treatment-inducibility), u is the vector of random

Fig. 1 Artificial and natural bark stripping on young Pinus radiata
trees. a Fifteen month-old P. radiata trees showing the bark
stripping treatment (lower left) and how bark was sampled for
chemical analysis (upper strip removed) from treated (left) and
untreated control (right) plants. After 3 weeks a strip of bark for
chemical analysis was collected 1 cm above the treated area of the
treatment tree and at similar height for the control tree (see text for
details), b two seedlings that have been bark stripped by marsupials
in the field.
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effects (see below), X and Z are design matrices associated with the fixed
and random effects, and e is a vector of random residuals. The random
effects included replicates, blocks within replicates, tree (additive genetic
effect—estimated using the relationship matrix derived from the
recorded three-generation pedigree file for trial trees and their
ancestors), specific combining ability (fitted by including the full-sib
family identity in the model) and the tree × treatment interaction
(differential inducibility).
The significance of the fixed treatment effect (inducibility) was tested

using the Wald-F statistics (Gilmour et al. 2015). The significance of the
random terms was sequentially tested in univariate models using
likelihood ratio tests (LRT) starting with family (specific combining
ability-SCA), differential inducibility (tree × treatment) and then the
additive genetic variation. This testing involved comparing full models
with respective reduced models using one-sided likelihood ratio tests
with one degree of freedom (Gilmour et al. 2015). Bonferroni’s correction
was applied to the p-values associated with SCA, inducibility, differential
inducibility and additive genetic variation to reduce the chances of
obtaining false-positive results (type I errors) when multiple tests are
performed (McDonald 2009). The Bonferroni correction was applied
within each compound group (monoterpenoids, diterpenoids, sesquiter-
penoids, volatile phenolics, sugars, fatty acids or unknowns). With this
adjustment, P-values were considered significant at 0.05/n, where n is the
number of statistical tests (McDonald 2009) (Table 1).
From univariate analyses, individual narrow-sense heritability (h2) was

estimated as the additive genetic variance (σ2a) divided by the sum of the
additive genetic variance and the error variance (σ2e ) as below:

h2 ¼ σ2a
σ2a þ σ2e

(2)

The associated standard errors were estimated through the “delta
method” using ASReml (Gilmour et al. 2015) based on Taylor expansion
(Lynch and Walsh 1998). The variance components used for this
heritability calculation were derived from re-fitting the above model
(Eq. 1) excluding the family and the interaction terms since they
were not significant for any compound after Bonferroni correction
(see ‘Results’).

Genetic correlations between chemistry and bark stripping
To determine the relationship between genetic variation in specific
chemical compounds and amount of mammalian bark stripping, genetic
correlations were estimated in trivariate models. The trees where bark
stripping and chemistry was assessed were not the same individuals but
belong to the same set of families in different parts of the trial (protected
and unprotected, respectively). Therefore, the chemical data from trees
that were scored for bark stripping data were treated as missing values
in the models and vice versa. Height was the only trait that was assessed
in all 26 replicates and therefore acted as the bridging trait between the
20 unprotected replicates where bark stripping was scored and the 6
protected replicates where chemistry was assessed. In each model, year
2 height, spatially adjusted year 2 bark stripping (Nantongo et al. 2020)
and one chemical compound were fitted as response variables. The
family and the tree × treatment interaction random terms were not fitted
at this stage, just the additive tree term. The terms “protected” and
“treatment” were fitted as fixed effects in the model. The fixed term
“protected” was fitted for height to distinguish the 20 plots that were not
protected (from which bark stripping was estimated) from the 6
protected plots (from which chemistry was estimated). This term was
not fitted for the chemical traits as they were only assessed from the
protected treatment nor for bark stripping which was only assessed in
the unprotected replicates. The treatment term was fitted only for the
chemical compound in the model as the height was assessed prior the
treatment being imposed. The design terms (replicates and blocks) and
additive genetic term were retained as random terms in the trivariate
models. The spatial variation within incomplete blocks was particularly
noticeable for mammalian bark stripping, where more damage occurred
on the edge of blocks (Nantongo et al. 2020). Accordingly, spatially
adjusted bark stripping scores from Nantongo et al. (2020) were used in
the present study, which were derived after fitting design terms and an
AR1 model to the residuals. In the case of the chemical traits and height
spatial effects were accounted for within the model by fitting replicate
and incomplete block terms. The unstructured variance-covariance
matrix was fitted for the tree term and a diagonal matrix for the
replicates and blocks within replicates.

The genetic correlation rg between two traits measured was
estimated as:

rg ¼ covaðx; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2ax �σ2ay
q ; (3)

where cova(x, y) is the additive genetic covariance between traits × and
y, σ2ax is the additive genetic variance components for trait x, and σ2ay is
the additive genetic variance components for trait y. The associated
standard errors were estimated through the “delta method” (Gilmour
et al. 2015). To test if the additive genetic correlation was different from
zero, the likelihood from the full trivariate mixed model which allowed
for additive genetic covariance among the three traits was compared to
that from the model in which the covariance between bark stripping
and the chemical compound was fixed to zero. This was done using a
two-tailed LRT with one degree of freedom. No adjustment was applied
to the p-values of the genetic correlations for compounds that were
associated with bark stripping in Nantongo et al. (2021b) as there were
clear a priori reasons for specifically testing these compounds. However,
for interpreting significance of any new correlations, Bonferroni’s
correction was applied within compound groups as indicated above.
A network diagram for the genetic correlations was generated in R
using igraph.

Genetic correlations among chemical compounds and height
For the chemical compounds that had significant additive genetic
correlations with bark stripping, the genetic correlation between chemical
traits and height were estimated to test for genetic-based trade-offs with
growth. This was done using the trivariate models described above. Before
this model was fitted and genetic correlation tests undertaken, a random
tree*protected interaction term was fitted in the univariate model (model 1)
and its significance tested using a one-tailed LRT. This aimed to test if
additive genetic effects on the height differentially responded to protection
by the time of assessment. However, there was no evidence for a significant
tree*protected interaction effect on height (results not shown) at the time
of measurement (Nantongo et al. 2021b). Therefore, the models fitted for
the LRT for the genetic correlations were undertaken without this term and
compared the full trivariate model estimating all additive covariances to
that from the model where the covariation between height and the
chemical compound was fixed to zero.
Bivariate models were used to test the genetic correlations among all

compounds that had a significant genetic correlation with bark stripping.
Bivariate models included the treatment as a fixed term which was fitted
for both compounds. The tree and design terms were included as random
terms. The unstructured variance-covariance structure was fitted for all the
random terms, including the error. Bonferroni’s correction to the
correlations was not applied at this stage. Pearson’s phenotypic correla-
tions among these chemical traits were also estimated in ASReml from
bivariate models above (Gilmour et al. 2015) and the test that the
phenotypic correlations were different from zero was done using the cor.
test function of R v 3.6.1.

RESULTS
Predictions of chemical traits
Near infrared spectroscopy models were developed for all 65
compounds quantified in the bark by wet chemical analysis (Table
1; Supplementary Table 1). Better calibration models with higher
R2 were mostly developed with the spectra collected from the
dried-ground bark compared to the rest of the scan positions with
few exceptions (Supplementary Table 1). Therefore, the chemical
predictions presented were derived using NIRS models developed
with spectra collected from the dried-ground bark.
Based on dried-ground samples, the predictive accuracy of NIRS

models, determined by the RER, PRL and R2 varied considerably
between compounds (Fig. 2, Supplementary Table 1). Of the
primary compounds, the models developed for sugars, glucose [55]

(RER= 11.12, PRL= 1.76, R2= 0.79) and fructose [54] (RER= 10.55,
PRL= 1.63, R2= 0.77) showed the highest predictive power
(Supplementary Table 1, superscripts in the text follow compound
numbers in this Table and are identifiers for quick identification of
the compound in the various tables). Of the secondary
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compounds, the highest prediction was achieved for unknown
diterpenoids; unknown C20H32O3A

[35] (RER= 12.52, PRL= 4.50,
R2= 0.83), unknown C20H30O3

[34] (RER= 14.79, PRL= 3.72, R2=
0.83), unknown m/z 316[33] (RER= 11.87, PRL= 2.97, R2= 0.72)
and unknown C20H30O5

[38] (RER= 12.24, PRL= 4.59, R2= 0.71) as
well as monoterpenoids; α-pinene[1] (RER= 7.63, PRL= 0.81, R2=
0.73) and β-pinene[4] (RER= 10.30, PRL= 1.01, R2= 0.73) (Fig. 2).
Additionally, there are several other compounds that had R2 > 0.50
and these included one sugar (inositol[56]), two fatty acids (linoleic
acid[59] and linolenic acid[60]) and secondary compounds that
included two monoterpenes (camphene[5], citronellal[6]), and ten
diterpenoids (agathadiol[20], agatholal[21], copalol[22], levopi-
maral[23], dehydroabietic acid[30] and several unknown diterpe-
noids[26] [37] [38] [39] [40]) as well as other unknown compounds[63]
[64] (Supplementary Table 1). The following results focussed on the
54 compounds that were retained from the 65 listed in
Supplementary Table 1 after applying the selection criteria
defined by the PRL and RER (see ‘Materials and methods’) and
these 54 are listed in Table 1.

Inducibility of chemical traits
Twenty-seven out of the 54 compounds responded to the bark
stripping treatment by significantly increasing or reducing their
amounts, with 21 (39%) retaining their significance after
Bonferroni adjustment (Table 1). The strongest increment in
the amount of compounds was detected for the phenolic
compound trans-ferulic acid[52], which increased by 39.6% (p <
0.001). In contrast, the bark sugars reduced following treatment,
where inositol[56], fructose[54] and glucose[55] reduced by 23.6,
22.2, and 18.5%, respectively (Table 1). Only 6 out of 54 (11%)
compounds, comprising three monoterpenoids[1,5,7], a sesqui-
terpenoid[18] and two diterpenoids[22, 35], showed significant (p <
0.05) genetic differences in inducibility as indicated by the
unadjusted p-values of the additive by treatment interaction
term (Table 1). However, these interactions were not significant
after Bonferroni correction. There is thus little evidence to
suggest the presence of genetic variation in chemical inducibility
and this term was not included in the genetic models used to
estimate heritabilities.

Family (SCA) variation
Based on unadjusted probabilities, 30% of the compounds
showed significant (P < 0.05) non-additive genetic variation (i.e.
SCA variation), including several monoterpenoids[1,3,4,5,7,9,10],
a sesquiterpenoid[17], diterpenoids[24,25,30,38,39], a phenolic com-
pound[48], a fatty acid[60] and an unknown compound[62].
However, after Bonferroni adjustment, the SCA variation was not
significant for any of the compounds (Table 1), so the SCA term
was also excluded from the models used to estimate heritability.

Genetic variation in P. radiata chemistry
Using univariate models minus the SCA term and the random
tree × treatment interaction, significant (adjusted) levels of addi-
tive genetic variation were evident for most of the selected
chemical compounds, with narrow-sense heritability estimates
ranging between 0.01 and 0.51(Fig. 3, Table 1), with standard
errors between 0.05 and 0.13 (Supplementary Fig. 3). Only 12
compounds including two monoterpenoids[2,16], a sesquiterpe-
noid[17], four diterpenoids[20,28,30,31], three phenolic com-
pounds[44,48,51], a sugar[56] and an unknown compound[64] did
not show significant additive genetic variation.
Of the secondary compound groups, considering only com-

pounds with significant additive genetic variation, the average
heritability of monoterpenoids (h2= 0.29 ± 0.10), diterpenoids (h2=
0.28 ± 0.11) and sesquiterpenoids (h2= 0.24 ± 0.10) appeared to be
consistently higher than the phenolics (h2= 0.22 ± 0.10). The
heritability for the terpenoids was similar to that of sugars
(h2= 0.29 ± 0.11) but lower than fatty acids. The fatty acids had

the highest average heritability (h2= 0.44 ± 0.13). There was no
relationship between the univariate narrow-sense heritability
estimate and the NIRS predictive accuracy for the 54 selected
compounds as indicated by (i) the ratio of NIRS root mean square
error (RMSE) relative to the laboratory error—PRL, (iii) the range
error ratio—RER, and (iii) the NIRS coefficient of determination (R2)
(Supplementary Fig. 1). In addition, there was no significant
relationship between heritability and mean amount of the
compounds (Supplementary Fig. 2)

Traits genetically associated with bark stripping
A greater number of positive than negative genetic correlations
between compounds and bark stripping were detected suggest-
ing that preference may be a stronger driver of genetic variation
in bark stripping than defence (Table 1; Fig. 4). Significant
unadjusted positive genetic correlations were detected between
bark stripping and the sugars - glucose[55] (rg= 0.80 ± 0.20, p <
0.01) and fructose[54] (rg= 0.55 ± 0.23, p < 0.05); fatty acids -
linoleic acid[59] (rg= 0.68 ± 0.16, p < 0.01) and linolenic acid[60]

(rg= 0.65 ± 0.19, p < 0.01), as well as two diterpenoids - unknown
m/z 109 B[27] (rg= 0.52 ± 0.24, p < 0.01) and unknown C20H30O6

D[41] (rg= 0.61 ± 0.19, p < 0.01). One compound of unknown
group, unknown m/z 104[62] also positively correlated with bark
stripping (rg= 0.42 ± 0.22, p < 0.01). The only significant negative
genetic correlation observed was between bark stripping
and an unknown sesquiterpenoid alcohol[19] (rg=−0.69, p <
0.05; Table 2). No adjustment was made on the p-values for these
genetic correlations as they were based on an a priori hypothesis
(see ‘Materials and methods’).

Genetic correlations among compounds and with height
The genetic correlation between bark stripping and height was
positive, but non-significant (rg= 0.40 ± 0.29, p= 0.11). However,
several of the chemical compounds correlated with bark stripping
were genetically correlated with height (Table 2; Fig. 4). A
significant negative genetic correlation was detected between
the unknown sesquiterpene alcohol[19] and height (rg=−0.85 ±
0.22, p < 0.01), suggesting that selecting for higher amounts of this
compound will reduce growth in the absence of herbivores.
Similarly, a positive correlation of the sugars[55] and fatty
acids[59,60] with height (Table 2) indicates that selecting for
reduced sugar levels may result in reduced early growth. The
strong positive genetic correlation between sugars and height
suggests that fast-growing trees possibly have more sugar in the

Fig. 2 Dot plot of the distribution of the coefficient of
determination (R2) for the NIRS PLS models for the 65 chemical
compounds identified in the bark. Each dot represents one R2

estimate for a specific compound and these have been grouped by
major compound groups. The figure also shows the compound that
exhibited the highest R2 estimate in each major compound group.
Unknown indicates a compound that could not be identified.
Numbers in parentheses refer to the location of the compound in
Supplementary Table 1.
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bark sample than slow growing trees and conversely slow growing
trees have less sugar and more sesquiterpenes.
Among the compounds that significantly correlated with bark

stripping, genetic correlations indicated that selecting for higher
amounts of the unknown sesquiterpenoid alcohol[19] to reduce
bark stripping will slightly reduce the amount of the fatty acid -
linoleic acid[59] (Table 2), which could contribute to its positive
association with bark stripping noted above. There was no
evidence for a genetic correlation between the unknown
sesquiterpenoid alcohol[19] and the rest of the compounds,
including the sugars. The positive genetic correlations also
indicate that selecting for low sugars to reduce bark stripping
will shift the fatty acids and the unknown diterpenoids in the
same direction, offering possibilities for multi-trait selection. The
highest positive correlations were detected between the unknown
compound[62] and the sugars; glucose (rg= 0.96, p < 0.001)[55] and
fructose (rg= 0.90, p < 0.001)[54].
Phenotypic correlations between compounds showed similar

trends as the genetic correlations (Table 2). However, some
significant correlations were detected at the phenotypic level that
were not detected at the genetic level. Where genetic correlations
were significant, the corresponding phenotypic correlations were
smaller, except for the phenotypic correlations of the unknown
sesquiterpenoid alcohol with glucose, fructose and the unknown
diterpenoid (unknown C20H30O6D

[41]), which were higher than
genetic correlations.

DISCUSSION
The results of this study showed that: (i) most of the primary and
secondary chemical compounds of Pinus radiata bark are under
additive genetic control, with non-additive effects of little
significance; (ii) there are at most only weak additive genetic
based differences for inducibility; (iii) sugars (glucose and fructose)
and fatty acids (linoleic and linolenic acids) genetically, positively
correlate with bark stripping while an unknown sesquiterpenoid
alcohol negatively correlated with bark stripping; and (iv) the
unknown sesquiterpenoid alcohol negatively correlated with
height while the remainder of the compounds positively or did
not correlate with height. Genetic differences in the constitutive
and induced variation in secondary and primary metabolites have
been noted in earlier studies in P. radiata and other pine species
using quantitative (Sampedro et al. 2010; Zhang et al. 2016) and
molecular (Lamara et al. 2018; Vázquez-González et al. 2019)

genetic studies. Of the secondary compounds, terpenes and
phenolics (including condensed tannins) have been the focal
defence compounds, where genetic variation in these compound
groups has been repeatedly documented in the bark of conifers
(Sampedro et al. 2011). However, other secondary compounds
such as alkaloids have also been found to be under genetic
control in the needles of conifers (Gerson et al. 2009). In P. radiata,
the presence of genetic variation has been previously detected for
total terpenes and total phenolics (Moreira et al. 2012; Moreira
et al. 2013b) in the bark but not individual compounds. Genetic
variation in several individual cortical monoterpenoids have also
been reported in undomesticated populations (Burdon et al.
1992a; Burdon et al. 1992b). However, the present study is the first
to estimate narrow-sense heritability and genetic correlations for
numerous individual primary and secondary compounds in
P. radiata bark. This was only practical due to the development
of NIRS models for these chemical traits, a possibility signalled in
an earlier study of green-house grown plants (Nantongo et al.
2021a), and here shown possible for a wide range of chemical
compounds with field-grown plants and using the freeze-dried,
ground bark samples on which the genetic analyses focused.
Most of the chemical traits exhibited significant additive genetic

variation with low to moderate narrow-sense heritability esti-
mates. Numerous factors affect the heritability of a trait, and these
may be context and population specific. The low heritabilities of
some primary and secondary chemical traits could be a result of
the erosion of genetic variation through drift or indirect selection
during domestication, a possibility given that the species has
undergone breeding for up to four generations (Dungey et al.
2009). It could also be a base population effect reflecting the
erosion of additive genetic variation through natural selection
which could occur if the trait is closely related to fitness (Kruuk
et al. 2000; Mousseau and Roff 1987). Both primary and secondary
metabolites are particularly important as chemical cues in plant-
herbivore interactions. Primary metabolites like sugars indicate the
physiological status and nutritional value of the plants while
secondary metabolites may indicate toxicity and defence status.
Fatty acids exhibited the highest average heritability of the
compound groups studied. The importance of fatty acids in the
bark of P. radiata is not well studied. However, the storage and
structural functions of fatty acids, as well as their direct pathogen
defence properties have been documented in the needles of
P. radiata (Franich et al. 1983). Indeed, some of the most studied
signalling molecules like jasmonic acid belong to a group of
compounds formed by the oxygenation of fatty acids (Kachroo
and Kachroo 2009), emphasizing the role of fatty acids in stress
responses. In this study, the negative genetic correlation of the

Fig. 3 Dot plot of the distribution of estimated narrow-sense
heritabilities for selected chemical compounds in the bark. 54
chemical compounds that had RER > 6 or PRL < 3 (see ‘Materials and
methods’) were included in the plot. Each dot represents a narrow-
sense heritability estimate. The figure also shows the compound
that exhibited the highest heritability estimate in each group, where
ukn is an unknown sesquiterpenoid alcohol. Unknown indicates a
compound that could not be identified. Numbers in parentheses
refer to the ID code of the compound in Supplementary Table 1.

Fig. 4 A network diagram showing the genetic correlations
between different traits that significantly correlated with bark
stripping. Blue indicates a positive relationship and red indicates a
negative relationship as indicated in Table 2. A thicker line indicates
a stronger correlation.
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fatty acid linoleic acid[59] and the unknown sesquiterpenoid
alcohol[19] suggests that fatty acids may be partly linked to the
formation of sesquiterpenoids (Pott et al. 2019). Several fatty acids
were also positively associated with bark stripping.
Within the secondary compound groups, the terpenoids

appeared to have higher narrow-sense heritability compared to
phenolics (Moreira et al. 2013b). The average narrow-sense
heritability estimates of the sugars was similar to that of the
terpenoids. The heritability values of the secondary compounds
were lower or in range of what has been established for the same
compounds in the bark of other conifers (Sampedro et al. 2010;
Zhang et al. 2016). For sugars in other P. radiata populations, low
genetic variation for bark and wood has been detected (Cranswick
et al. 1987; Donaldson et al. 1997). However, in other conifer
species, observations have been mixed. For example, while no
genetic variation was observed for sugars in the bark of juvenile
Pinus pinaster (Sampedro et al. 2011), high heritability of glucose
levels was observed in the wood of Pseudotsuga menziesii
(Ukrainetz et al. 2008). These counter examples may also suggest
population, tissue or species-specific differences in additive
genetic variation for sugars. However, it is noted that differences
in heritability can also arise from differences in the residual
variance due to unaccounted environmental (e.g. phenotypic
plasticity), and non-additive genetic variance or a combination of
all these effects, rather than from different levels of additive
genetic variation (Price and Schluter 1991; Visscher et al. 2008).
Although the SCA variation, a major component of the non-
additive genetic variation, was not significant after accounting for
multiple testing for the traits in this study, possibly better
accounting for spatial heterogeneity in the genetic models
(Nantongo et al. 2020) may improve the genetic estimates in
the chemical traits that exhibited low heritability. It has also been
noted for secondary compounds that the relative amount of
additive genetic variation may be related to the amount of
compound harboured by the plant, where compounds that occur
in higher amounts have been found to have higher heritability
estimates than those in lower amounts (Haviola et al. 2006). For
P. radiata bark, the amount of monoterpenoids often dominate
the other terpenoid components (Nantongo et al. 2021c), which
could explain their high heritability estimates compared to other
secondary metabolites. However, over all chemicals studied no
significant effect of mean levels on heritability estimates was
observed. The low heritability of the phenolics could arise from
their poor predictability by NIRS, but this is also an unlikely
explanation as the present study showed no link between NIRS
accuracy and heritability. Regardless, while heritability estimates
for different secondary compounds may be variable between
studies (Sampedro et al. 2010; Zhang et al. 2016), the low to
moderate narrow-sense heritability values from different studies
indicate that the secondary compounds in the bark of P. radiata
and other conifers have sufficient additive genetic variation to be
potentially responsive to natural or artificial selection.
Induced changes in the amounts of primary and secondary

compounds were observed in response to artificial bark stripping.
This is consistent with previous studies (Moreira et al. 2012;
Nantongo et al. 2021c; Sampedro et al. 2011) that show a
reduction in the amounts of sugars and an increase in some of the
secondary compounds after chemical and biotic stress treatments.
However, genetic differences in inducibility as a result of artificial
bark stripping did not appear to be evident for individual
compounds in the present study despite an earlier greenhouse
study that showed the amounts of some individual terpenes,
phenolics and sugars reduced or increased differentially between
susceptible and resistant families (Nantongo et al. 2021b). While
several terpenoids showed genetic variation in the induced
response to bark stripping, the effect was weak and not significant
after statistical correction for multiple testing. In contrast, Moreira
et al. (2013b) and Sampedro et al. (2011) found high geneticTa
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variation in inducibility of stem resins in P. radiata and
diterpenoids in P. pinaster, respectively. The presence of genetic
variation in inducibility suggests that this trait can be selected for.
However, overall, the results for the populations studied suggest
that selection for reduced susceptibility of P. radiata to bark
stripping is more feasible based on the constitutive than the
induced chemistry, although correlations between bark stripping
and induced chemistry need further exploration.
The sugars fructose[54] and glucose[55] positively genetically

correlated with bark stripping, which clearly demonstrates an
additive genetic basis to this association which was previously
noted by Nantongo et al. (2021b). The initial association was based
on the comparison of the wet chemistry of families identified as
more and less susceptible to bark stripping. In other conifers, this
association between mammalian herbivory and sugars has been
mainly detected at the phenotypic level (Kimball et al. 1998). Of the
secondary compounds, an unknown sesquiterpenoid alcohol[19]

negatively correlated with bark stripping and this is consistent with
the earlier study of Nantongo et al. (2021b). In contrast, the
sesquiterpenoid bicylogermacrene that was the major compound
that differentiated the less from the more susceptible families in
Nantongo et al. (2021b) did not exhibit significant additive genetic
variation (after Bonferroni adjustment) and did not significantly
correlate with bark stripping at the additive genetical level. This
difference could possibly be in part due to non-linear genetic
associations with bark stripping. Non-linear genetic relationships,
where the range of a trait varies drastically from one extreme to
another have been detected in Arabidopsis thaliana (Vasseur et al.
2019) and this may have affected the genetic correlations for
bicyclogermacrene that were estimated based on linear models.
The only terpenoid that significantly genetically correlated with bark
stripping was the one unknown diterpenoid that had a positive
correlation. This diterpenoid was also highlighted by Nantongo
et al. (2021b) where its amount was higher in the susceptible
compared to the resistant families (although this was non-
significant). This positive association contrasts with the documented
role of diterpenoids in reducing herbivory in conifers (Franceschi
et al. 2005). However, it may be in part due to the capability of the
marsupials to ingest and metabolise a range of terpenes that would
be toxic to many other herbivore species (Boyle 1999; El-Merhibi
et al. 2007). Consistent with the wet chemistry results of Nantongo
et al. (2021b), the genetic correlations provided no evidence for the
involvement of the monoterpenoids in determining susceptibility of
P. radiata to bark stripping.
Although a significant negative correlation between the height

and the unknown sesquiterpenoid alcohol that could signify
presence of defence-growth trade-off was detected, further
evidence for presence of this trade-off may be required since the
unknown sesquiterpenoid alcohol occurs in very low quantities
and it is unlikely be solely responsible for the observed reduced
plant growth. A similar trend was still observed by Nantongo et al.
(2021b). However, trade-offs in expression of defences and growth
have also been detected in conifers based on molecular studies
(Porth et al. 2011). Similarly, the positive correlation between
sugars and height suggests that if susceptibility to bark stripping is
mainly driven by the sugars, positive selection for early growth in
the absence of bark stripping will increase the vulnerability of the
population to bark stripping. Positive correlations of herbivory of
the bark with plant height are common in conifers (Porth et al.
2011; Zas et al. 2017) and may be explained by fast-growing trees
potentially investing less in secondary compounds, especially in
the presence of resource constraints (Ferrenberg et al. 2015;
Moreira et al. 2015). In the present case, genetic correlations
suggest that fast-growing trees invested less in specific bark
terpenoids and more in sugars. In terms of the correlation between
early-age height and bark stripping, the positive correlation (but
non-significant) in the trivariate models in this study was consistent
with the results from bivariate models presented in Nantongo et al.

(2020) and the non-parametric comparison of susceptible and
resistant families presented in Nantongo et al. (2021b) which were
both statistically significant. However, in the linear models that
included three response variables - height, bark stripping and
chemical compounds as response variables, bark stripping was not
significantly correlated with height. While this may be due to
higher statistical power of the previous bivariate models, it may
also imply that height is an associational rather than independent
predictor of susceptibility, especially given its positive correlation
with the levels of glucose in the bark.
The genetic correlations among individual compounds were

mostly positive or non-significant, except for the negative
correlation between the unknown sesquiterpenoid alcohol[19] and
the fatty acid, linoleic acid[59]. Positive genetic correlations may
suggest common biochemical pathways which is common for traits
that interact together to perform a given function (Conner and Via
1993), and suggest the potential for multi-trait selection. In the
current system, susceptibility is potentially achieved by multiple
interdependent primary and secondary compounds (Nantongo
et al. 2021b). On the other hand, negative genetic correlations, such
as those between the unknown sesquiterpenoid alcohol and fatty
acids are predicted when the traits arise through intermediary
metabolites such as acetyl-CoA that is implicated both in primary
(e.g. fatty acid biosynthesis) and secondary metabolism (e.g.
isoprenoid precursor biosynthesis) (Pott et al. 2019).
Phenotypic correlations also indicate similar trends, where

positive phenotypic correlations indicate simultaneous resource
investment in multiple traits and negative correlations suggest
trade-offs (Moreira et al. 2015). For example, phenotypic correla-
tions indicate that a higher amount of the unknown sesquiterpe-
noid alcohol[19] will come at the expense of fatty acids, consistent
with a trade-off. This observation may explain the strong reduction
in fatty acids detected following stress treatments in Nantongo
et al. (2021c), consistent with suggestions that fatty acids can be
precursors to the formation of secondary compounds (Kachroo and
Kachroo 2009). Negative correlation between sugars and secondary
compounds have been hypothesized in most stress studies, where
after stress sugars should reduce to favour the formation of
secondary compounds (Herms and Mattson 1992; Lombardero
et al. 2000; Moreira et al. 2015; Sampedro et al. 2011). In this present
study, however, fatty acids rather than the sugars appear to be
more negatively associated with secondary compounds.

CONCLUSION
The use of NIRS offers opportunities for large scale, non-invasive,
low-cost, and environmentally safe chemical phenotyping to back
genetic studies. While, there is still a need for calibration
improvement for most of the compounds, which may be achieved
by increasing sample size, the current NIRS models have allowed
the detection of genetic variation for a large number of chemical
traits. Significant additive genetic variation was evident for most
primary and secondary compounds in the bark of P. radiata, with
low-moderate heritability estimates and little evidence of non-
additive genetic variation. The chemical associations detected
with bark stripping are consistent with those found using standard
wet chemistry procedures. While increased consititutive levels of
sugars (particularly glucose) and fatty acids in the bark are
genetically associated with susceptibility, an unknown sesquiter-
penoid alcohol was genetically associated with reduced bark
stripping. The unknown sesquiterpenoid alcohol was genetically,
negatively correlated with height, whereas glucose and fructose as
well as the fatty acids genetically positively correlated with height,
suggesting that positive selection for early-age height (up to 6
years) in the absence of bark stripping would shift the chemistry
of the plants towards increased susceptibility. Whether or not
these traits affect performance subsequent to browsing requires
further investigation. Overall, there is the possibility that selection
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for the unknown sesquiterpenoid in current breeding/deployment
programmes of P. radiata could be used to reduce bark stripping
by the marsupials. However, better knowledge of the extent to
which their heritability, genetic correlations and trade-offs change
in different environments (G × E) is needed, particularly correla-
tions involving growth.
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