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The two alleles an individual carries at a locus are identical by descent (ibd) if they have descended from a single ancestral allele in a
reference population, and the probability of such identity is the inbreeding coefficient of the individual. Inbreeding coefficients can be
predicted from pedigrees with founders constituting the reference population, but estimation from genetic data is not possible without
data from the reference population. Most inbreeding estimators that make explicit use of sample allele frequencies as estimates of allele
probabilities in the reference population are confounded by average kinships with other individuals. This means that the ranking of
those estimates depends on the scope of the study sample and we show the variation in rankings for common estimators applied to
different subdivisions of 1000 Genomes data. Allele-sharing estimators of within-population inbreeding relative to average kinship in a
study sample, however, do have invariant rankings across all studies including those individuals. They are unbiased with a large number
of SNPs. We discuss how allele sharing estimates are the relevant quantities for a range of empirical applications.
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INTRODUCTION
Allelic dependence at a locus is usually quantified by inbreeding
coefficients for individuals or populations, with these measures
referring either to correlations of allelic state indicators (Wright,
1922) or to probabilities of identity by descent, ibd, (Malécot, 1948).
Here we use ibd and we have advocated allele-sharing estimators
((Weir & Goudet, 2017), WG17 henceforth; (Goudet et al., 2018)) that
are unbiased for individual and population inbreeding coefficients
relative to average kinships among specified pairs of individuals.
Estimators such as those in PLINK ((Purcell et al., 2007) and GCTA
(Yang et al., 2011), that use sample allele frequencies, confound
inbreeding estimates by the averages of individual kinships. Our
work recognizes the need to estimate inbreeding coefficients from
many millions of SNP genotypes where likelihood methods may not
be feasible and we employ moment-based methods.
There have been many published accounts of inbreeding

estimation, including the recent evaluation of several methods by
Alemu et al. (2021). Among those that refer to allele sharing, Li &
Horvitz (1953) discussed an inbreeding estimator based on observed
homozygosity, i.e., within-individual sharing of maternal and paternal
alleles. They compared observed sharing to the value expected
without inbreeding. They also constructed an estimator from the
proportions of each allele type that were homozygous in a sample
and gave an expression that was investigated further by Ritland
(1996). Ritland used allele sharing within and between individuals
and his inbreeding estimates assumed “independence or near-
independence” of individuals. If individuals are not independent, the
rankings of his inbreeding coefficient estimates change with the
sample. In WG17 we estimated inbreeding coefficients by comparing
within-individual allele-sharing to average sharing between pairs of
individuals in a sample. By not making explicit use of sample allele
frequencies, we preserved the ranking of estimates across different
samples and this is our central theme here.

Ritland’s individual-level inbreeding coefficients were also
derived by Yang et al. (2011) as the correlation between uniting
gametes and were expressed in terms of allele dosages for an
individual and sample allele frequencies. This estimator was
written as F̂UNI in Yengo et al. (2017), and is less biased than the
estimator in Yang et al. (2011) obtained from the diagonal
elements of a genomic relationship matrix (GRM) of VanRaden
(2008). We compare these two estimates below with allele-sharing
and other methods: pedigree-based path-counting (Wright, 1922),
maximum-likelihood estimation, MLE, (e.g., (Hall et al., 2012)) and
runs of homozygosity (ROH) (e.g., (Ceballos et al., 2018)).

METHODS
Statistical sampling
We can describe the dependence between pairs of uniting alleles in a
single population without invoking an evolutionary model for the history
of the population. In this “statistical sampling” framework (Weir, 1996)
we do not consider the variation associated with evolutionary processes
but we do consider the variation among samples from the same
population. Although extensive sets of genetic data allow individual-
level inbreeding coefficients to be estimated with high precision, we
start with population-level estimation.
Allelic dependencies can be quantified with the within-population

inbreeding coefficient, written here as fW to emphasize it is a within-
population quantity, defined by

Hl ¼ 2plð1� plÞð1� fWÞ (1)

where Hl is the population proportion of heterozygotes for the reference
allele at SNP l and pl is the population proportion of that allele. The same
value of fW is assumed to apply for all SNPs. An immediate consequence of
this definition is that the population proportions of homozygotes for the
reference and alternative alleles are p2l þ plð1� plÞfW and ð1� plÞ2 þ
plð1� plÞfW respectively. This formulation allows fW to be negative, with
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the maximum of−pl/(1− pl) and−(1− pl)/pl as lower bound. It is bounded
above by 1. Hardy–Weinberg equilibrium, HWE, corresponds to fW= 0 and
textbooks (e.g., (Hedrick, 2000)) point out that negative values of fW
indicate more heterozygotes than expected under HWE.
Observed heterozygote proportions ~Hl have Hl as within-population

expectation EW over samples from the study population, EWð~HlÞ ¼ Hl ,
and this would provide a simple estimator of fW if the population allele
proportions were known. In practice, however, these proportions are
unknown. Steele et al. (2014) suggested use of data external to the study
sample to provide reference allele proportions in forensic applications
where a reference database is used for making inferences about the
population relevant for a particular crime. The more usual approach is to
use study sample proportions ~pl in place of the true proportions pl, as in
equation 1 of Li & Horvitz (1953):

f̂ Wl ¼ 1�
~Hl

2~plð1� ~plÞ
(2)

The moment estimator in Eq. (2) is also an MLE of fW when only one locus
is considered, but it is biased (Robertson & Hill, 1984) since not only is it a
ratio of statistics but also the expected value EW ½2~plð1� ~plÞ� over
repeated samples of n from the population is 2pl(1− pl)[1− (1+ fW)/(2n)]
(e.g., (Weir, 1996), p39).
This approach can be used to estimate the within-population

inbreeding coefficient fj for each individual j in a sample from one
population. These are the “simple” estimators of Hall et al. (2012) and the
f̂HOMj of Yengo et al. (2017):

f̂HOMjl ¼ 1�
~Hjl

2~plð1� ~plÞ
(3)

The sample heterozygosity indicator ~Hjl is one if individual j is
heterozygous at SNP l and is zero otherwise. Averaging Eq. (3) over
individuals gives the estimator based on SNP l in Eq. (2).
A single SNP provides estimates that are either 1 or a negative value

depending on ~pl , so many SNPs are used in practice. In both Hall et al.
(2012) and Yengo et al. (2017) data were combined over loci as weighted
or “ratio of averages” estimators:

f̂Homj ¼ 1�
P

lð~HjlÞP
l ½2~plð1� ~plÞ�

(4)

Gazal et al. (2014) referred to this estimator as fPLINK as it is an option in
PLINK. We show below the good performance of this weighted estimator
for large sample sizes and large numbers of loci. We will consider
throughout that a large number L of SNPs are used so that ratios of sums
of statistics over loci, such as in Eq. (4), have expected values equal to the
ratio of expected values of their numerators and denominators. Ochoa &
Storey (2021) showed statistics of the form ~AL=~BL, where ~AL ¼

PL
l¼1 al=L

and ~BL ¼
PL

l¼1 bl=L, have expected values that converge almost surely to
the ratio A/B when EWð~ALÞ ¼ AcL and EWð~BLÞ ¼ BcL . This result rests on
the expectations EWðalÞ ¼ Acl and EWðblÞ ¼ Bcl with cL ¼

PL
l¼1 cl=L. It

requires ∣al∣, ∣bl∣ to both be no greater than some finite quantity C, cL to
converge to a finite value c as L increases, and for Bc not to be zero. For
the ratio in Eq. (4), al ¼ ~Hjl , bl ¼ 2~plð1� ~plÞ so A= (1− fj), B= 1 for large
sample sizes n, and cL= ∑l2pl(1− pl)/L ≤ 1/2. The conditions are satisfied
providing at least one SNP is polymorphic. For an “average of ratios”
estimator of the form

PL
l¼1ðal=blÞ=L, the denominators bl can be very

small and convergence of its expected value is not assured.
As an alternative to using sample allele frequencies, Hall et al. (2012)

used maximum likelihood to estimate population allele proportions
for multiple loci whereas Ayres & Balding (1998) used Markov chain
Monte Carlo methods in a Bayesian approach that integrated out the
allele proportion parameters. Neither of those papers considered
data of the size we now face in sequence-based studies of many
organisms, and we doubt the computational effort to estimate, or
integrate over, hundreds of millions of allele proportions in Eqs. (2) or (4)
adds much value to inferences about f. The allele-sharing estimators we
describe below regard allele probabilities as unknown nuisance
parameters and we show how to avoid estimating them or assigning
them values.
Hall et al. (2012) used an EM algorithm to find MLEs for fj when

population allele proportions were regarded as being known and equal
to sample proportions. Alternatively, a grid search can be conducted
over the range of validity for the single parameter fj that maximizes the

log-likelihood

ln ½Likðf jÞ� ¼ Constantþ
XL

l¼1

f~Hjl ln ½ð1� f jÞ� þ ð1� ~HjlÞln ½1� 2~plð1� ~plÞð1� f jÞ�g

Estimation of the within-population inbreeding coefficients fW (FIS of
(Wright, 1922)) and fj does not require any information beyond genotype
proportions in samples from a study population, nor does it make any
assumptions about that population or the evolutionary forces that shaped
the population. The coefficients are simply measures of dependence of
pairs of alleles within individuals.

Genetic sampling
Inbreeding parameters of most interest in genetic studies are those that
recognize the contribution of previous generations to inbreeding in the
present study population. This requires accounting for “genetic sampling”
(Weir, 1996) between generations, thereby leading to an ibd interpretation of
inbreeding: ibd alleles descend from a single allele in a reference population.
It also allows the prediction of inbreeding coefficients by path counting when
pedigrees are known (Wright, 1922). If individual J is ancestral to both
individuals j0 and j″, and if there are n individuals in the pedigree path joining
j0 to j″ through J, then Fj= ∑(0.5)n(1+ FJ) where FJ is the inbreeding coefficient
of ancestor J and Fj is the inbreeding coefficient of offspring j of parents j0 and
j″. The sum is over all ancestors J and all paths joining j0 to j″ through J. The
expression is also the coancestry θj0 j00 of j0 and j″: the probability an allele
drawn randomly from j0 is ibd to an allele drawn randomly from j″.
The allele proportion pl in a study population has expectation πl over

evolutionary replicates of the population from an ancestral reference
population to the present time. Sample allele proportions ~pl provide
information about the population proportions pl, and their statistical
sampling properties follow from the binomial distribution. We do not invoke
a specific genetic sampling distribution for the pl about their expectations πl
although we do assume the second moments of that distribution depend on
probabilities of ibd for pairs of alleles. One consequence of the assumed
moments is that the probability of individual j in the study sample being
heterozygous, i.e., the total expected value ET of the heterozygosity indicator
over replicates of the history of that individual, is

ET ð~Hjl Þ ¼ 2πlð1� πlÞð1� FjÞ (5)

The quantity Fj is the individual-specific version of FIT of Wright (1922)
and we can regard it as the probability the two alleles at any locus for
individual j are ibd. There is an implicit assumption in Eq. (5) that the
reference population needed to define ibd is infinite and in HWE: there is
probability Fj that j has homologous alleles with a single ancestral allele
in that population and probability (1− Fj) of j having homologous alleles
with distinct ancestral alleles there. In the first place, the single ancestral
allele has probability π of being the reference allele for that locus and the
implicit assumption is that two ancestral alleles are both the reference
type with probability π2. This does not mean there is an actual ancestral
population with those properties, any more than use of ET means there
are actual replicates of the history of any population or individual, and
we note that Eq. (5) does not allow higher heterozygosity than predicted
by HWE. Nonetheless, the concept of ibd allows theoretical constructions
of great utility and we now present a framework for approaching
empirical situations.
Inbreeding, or ibd, implies a common ancestral origin for uniting alleles

and statements about sample allele proportions ~pl require consideration of
possible ibd for other pairs of alleles in the sample. The total expectation of
2~plð1� ~plÞ over samples from the population and over evolutionary
replicates of the study population is ((Weir, 1996), p176)

ET ½2~plð1� ~plÞ� ¼ 2πlð1� πlÞ ð1� θSÞ � 1
2n

1þ FW � 2θSð Þ
� �

(6)

where FW is the parametric inbreeding coefficient averaged over sample
members, FW ¼ Pn

j¼1 Fj=n, and θS is the average parametric coancestry in
the sample, θS ¼

Pn
j¼1

P
j0≠jθjj0=½nðn� 1Þ�. Equivalent expressions were

given by McPeek et al. (2004) and DeGiorgio and Rosenberg (2009).
We note the relationship fW= (FW− θS)/(1− θS) given by Wright (1922) and
we showed in WG17 the equivalent expression fj= (Fj− θS)/(1− θS) for
individual-specific values (θS is Wright’s FST).
For a large number of SNPs, the expectation of a ratio estimator of the

type considered here is the ratio of expectations (Ochoa & Storey, 2021).
Therefore, the total expectations of the f̂Homj , taking into account both
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statistical and genetic sampling, are

ET ðf̂HOMj Þ ¼ 1� 1� Fj
ð1� θSÞ � 1

2n 1þ FW � 2θSð Þ ¼
f j � 1

2n ð1þ fWÞ
1� 1

2n ð1þ fWÞ (7)

For all sample sizes, f̂HOMj has an expected value less than the true value fj,
with the bias being of the order of 1/n. The ranking of ET ðf̂HOMj Þ values,
however, is the same as the ranking of the fj and, therefore, of the Fj. For
large sample sizes, Eq. (7) reduces to ET ðf̂HOMj Þ ¼ f j . Averaging over
individuals shows that ET ðf̂HOMÞ ¼ fW : the population-level estimator in
Eq. (2) has total expectation of fW, not FW.
A different outcome is found for the f̂UNIj estimator of Yengo et al. (2017)

(i.e., f̂
III
of Yang et al. (2011); f̂GCTA3 of (Gazal et al., 2014)). This estimator, with

the weighted (w) ratio of averages over loci we recommend, as opposed to
the unweighted (u) average of ratios over loci used in their papers, is

f̂
w
UNIj ¼

PL
l¼1½X2

jl � ð1þ 2~plÞXjl þ 2~p2l �PL
l¼1 2~plð1� ~plÞ

(8)

In this equation Xjl is the reference allele dosage, the number of copies of the
reference allele, at SNP l for individual j. It is equivalent to the estimator given
by (Ritland (1996), eq. 5) and attributed by him to Li & Horvitz (1953).
Ochoa & Storey (2021) showed that f̂

w
UNIj has expectation, for a large

number of SNPs and a large sample size, of

ET ðf̂ wUNIj Þ ¼
Fj � 2Ψj þ θS

1� θS
¼ f j � 2ψj (9)

where Ψj is the average coancestry of individual j with other members of
the study sample: Ψj ¼

Pn
j0¼1;j0≠j θjj0=ðn� 1Þ. We term ψj= (Ψj− θS)/(1− θS)

the within-population individual-specific average kinship coefficient. The
Ψj have an average of θS over members of the sample, so the average of

the ψj’s is zero and expected value of the average of the f̂
w

UNIj is fW, as is the

case for f̂ASj below.
Equation (9) shows that the f̂

w
UNIj have expected values with the same

ranking as the Fj values only if every individual j in the sample has the
same average kinship ψj with other sample members.
Finally, we mention another common estimator described by

VanRaden (2008), termed fGCTA1 by Gazal et al. (2014) and available
from the GCTA software (Yang et al., 2011) with option --ibc. We referred
to this as the “standard” estimator in WG17. The weighted version for
multiple loci is

f̂
w
STDj

¼
P

lðXjl � 2~plÞ2P
l2~plð1� ~plÞ

� 1 (10)

and it has the large-sample expectation of (fj− 4ψj) as is implied by WG17
(Eq. 13) and as was given by Ochoa & Storey (2021). We summarize the
various measures of inbreeding and coancestry in Table 1, and we include
sample sizes in the expectations shown in Table 2.

The f̂HOM, f̂UNI; f̂ STD and f̂MLE estimators of individual or population
inbreeding coefficients make explicit use of sample allele proportions. This
means that all four have small-sample biases, and none of the four provide
estimates of the ibd quantities F or Fj. We showed that f̂HOM is actually
estimating the within-population inbreeding coefficients: the total inbreeding
coefficients relative to the average coancestry of pairs of individuals in the
sample, but f̂UNI and f̂ STD are estimating expressions that also involve average
kinships ψ.

Allele sharing
In a genetic sampling framework, and with the ibd viewpoint, we consider
within-individual allele sharing proportions Ajl for SNP l in individual j (we
wrote M rather than A in WG17 and in (Goudet et al., 2018)). These equal
one for homozygotes and zero for heterozygotes and sample values can be
expressed in terms of allele dosages, ~Ajl ¼ ðXjl � 1Þ2. We also consider
between-individual sharing proportions Ajj0 l for SNP l and individuals j and j0 .
These are equal to one for both individuals being the same homozygote,

Table 1. Measures of inbreeding and coancestry.

Measure Description Evaluation

Fj Inbreeding coefficient for individual j: FPED: Path counting.

ibd probability for homologous alleles FGold: Actual ibd in simulations.

θjj0 Coancestry for individuals j; j0 : ibd probability θPED: Path counting.

for random alleles from j and j0. θGold: Actual ibd in simulations.

The following hold for PED and Gold values.

FW Average inbreeding coefficient. FW ¼ 1
n

Pn
j¼1 Fj for n individuals.

Ψj
Average coancestry coefficient for individual j. Ψj ¼ 1

n�1

Pn
j0¼1 j0≠j

θjj0

θS
Average coancestry coefficient. θS ¼ 1

n

Pn
j¼1 Ψj

fj Within-population inbreeding coefficient f j ¼ Fj�θS
1�θS

for individual j.

fW Average within-population inbreeding coefficient. fW ¼ FW�θS
1�θS

ψj
Within-population average kinship coefficient for ψj ¼ Ψj�θS

1�θS

individual j.

Table 2. Estimators of inbreeding.

Estimate Calculationa Expected Valueb

F̂ROHj Proportion of homozygous
blocks.

No explicit expression.

f̂MLEj Maximization of likelihood for fj. No explicit expression.

f̂HOMj 1�
P

l
X jlð2�Xjl ÞP
l
2~plð1�~plÞ

f j� 1
2nð1þfW Þ

1� 1
2nð1þfW Þ

f̂HOMW 1� 1
n

Pn
j¼1

P
l
X jl ð2�Xjl ÞP
l
2~plð1�~pl Þ

f W� 1
2nð1þf W Þ

1� 1
2nð1þf W Þ

f̂ ASj

P
l
ð~Ajl�~ASl ÞP
l
ð1�~ASlÞ fj

f̂ ASW 1
n

Pn
j¼1 f̂ASj

fW

f̂
w

UNIj

P
l
½X2

jl�ð1þ2~plÞXjlþ2~p2l �P
l
2~plð1�~pl Þ

f j�2ψj� 1
2nð3þ4f j�8ψj�f W Þ
1� 1

2nð1þfW Þ

f̂
w

UNIW
1
n

Pn
j¼1 f̂

w

UNIj
f W� 3

2nð1þf W Þ
1� 1

2nð1þf W Þ

f̂
u

UNIj 1
L

PL
l¼1

X2
jl�ð1þ2~plÞXjlþ2~p2l

2~plð1�~pl Þ
No explicit expression.

f̂
w

STDj

P
l
ðXjl�2~plÞ2P
l
2~plð1�~pl Þ

� 1
f j�4ψj� 1

2nð3þ4f j�8ψj�f W Þ
1� 1

2nð1þfW Þ

f̂
w

STDW

1
n

Pn
j¼1 f̂

w

STDj

f W� 3
2nð1þf W Þ

1� 1
2nð1þf W Þ

f̂
u

STDj

1
L

PL
l¼1

ðXjl�2~plÞ2
2~plð1�~pl Þ � 1 No explicit expression.

aXjl is the reference allele dosage for SNP l in individual j.
a~pl ¼ 1

2n

Pn
j¼1 Xjl is the sample allele frequency for SNP l.

bFor weighted averages over large numbers of loci.
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zero for different homozygotes, and 0.5 otherwise. Observed values can be
written as ~Ajj0 l ¼ ½1þ ðXjl � 1ÞðXj0 l � 1Þ�=2, with an average over all pairs of
distinct individuals in a sample of ~ASl . Astle & Balding (2009) introduced ~Ajj0 l
as a measure of identity in state of alleles chosen randomly from individuals
j and j0 , and Ochoa & Storey (2021) used a simple transformation of this
quantity. The allele sharing for an individual with itself is Ajjl= (1+ Ajl)/2.
The same logic that led to Eq. (5) provides total expectations for allele-

sharing proportions for all j; j0 :

ET ð~Ajj0 lÞ ¼ 1� 2πlð1� πlÞð1� θjj0 Þ
ET ð~ASlÞ ¼ 1� 2πlð1� πlÞð1� θSÞ
Note that θjj= (1+ Fj)/2. The nuisance parameter 2πl(1− πl) cancels out of
the ratio ET ð~Ajj0 l � ~ASlÞ=ET ð1� ~ASlÞ and this motivates definitions of allele-
sharing estimators of the inbreeding coefficient for individual j and the
kinship coefficient for individuals j; j0 as

f̂ASj ¼
P

lð~Ajl � ~ASl ÞP
lð1� ~ASlÞ

; ψ̂ASjj0 ¼
P

lð~Ajj0 l � ~ASl ÞP
lð1� ~ASlÞ

(11)

For a large number of SNPs, these are unbiased for fj and ψjj0 for all sample
sizes. We showed in WG17 there is no need to filter on minor allele frequency
to preserve the lack of bias. Note that f̂ASj is a linear function of the form
aS þ bS~Aj with ~Aj being the total homozygosity for j and constants aS, bS
being the same for all individuals j. Changing the scope of the study, from
population to world for example, preserves linearity (with different values of
aS, bS). The changed estimates are linear functions of the old estimates: old
and new estimates are completely correlated and are rank invariant over all
samples that include particular individuals, i.e., over all reference populations.
Unlike the case for f̂UNI or f̂ STD, rank invariance is guaranteed for f̂ASj for any
two individuals even if only one more individual is added to the study.
For large sample sizes, ð1� ~ASlÞ � 2~plð1� ~plÞ. Under that approximation,

f̂ASj is the same as f̂Homj but the approximation is not necessary in computer-
based analyses. Summing the large-sample estimates over individuals not
equal to j gives an estimator for the average individual kinship ψj:

ψ̂ASj ¼ �
P

lðXjl � 2~plÞð1� 2~plÞP
l4~plð1� ~plÞ

(12)

Adding 2ψ̂ASj to f̂
w

UNIj gives f̂ASj , as expected, as does adding 4ψ̂ASj to

f̂
w
STDj

. Similarly, ψ̂ASjj0 is obtained by adding ψ̂ASj and ψ̂ASj0 to ψ̂STDjj0 , where
(Yang et al., 2011)

ψ̂STDjj0 ¼
P

lðXjl � 2~plÞðXj0 l � 2~plÞP
l 4~plð1� ~plÞ

These are the elements of the first method for constructing the GRM given
by VanRaden (2008).
When inbreeding and coancestry coefficients are defined as ibd probabilities

they are non-negative, but the within-population values f and ψ will be
negative for individuals, or pairs of individuals, having smaller ibd allele
probabilities than do pairs of individuals in the sample, on average. Individual-
specific values of f always have the same ranking as the individual-specific
F values, and they are estimable. Negative estimates can be avoided by the

transformation to ðf̂ASj � f̂
min
ASj Þ=ð1� f̂

min
ASj Þ where f̂

min
ASj is the smallest value over

individuals of the f̂ASj ’s. We don’t see the need for this transformation, and we
noted above the recognition of the utility of negative values. Ochoa & Storey
(2021) wished to estimate Fj rather than fj and, to overcome the lack of
information about the ancestral population serving as a reference point for ibd,
they assumed the least related pair of individuals in a sample have a
coancestry of zero. We showed in WG17 that this brings estimates in line with
path-counting predicted values when founders are assumed to be not inbred
and unrelated, but we prefer to avoid the assumption. We stress that, absent
external information or assumptions, F is not estimable. Instead, linear
functions of F that describe ibd of target pairs of alleles relative to ibd in a
specified set of alleles are estimable and have utility in empirical studies.

Runs of homozygosity
Each of the inbreeding estimators considered so far has been constructed for
individual SNPs and then combined over SNPs. Observed values of allelic state
are used to make inferences about the unobserved state of identity by
descent. Estimators based on ROH, however, suppose that ibd for a region of
the genome can be observed. Although F is the probability an individual has

ibd alleles at any single SNP, in fact ibd occurs in blocks within which there has
been no recombination in the paths of descent from common ancestor to the
individual’s parents. Whereas a single SNP can be homozygous without the
two alleles being ibd, if many adjacent SNPs are homozygous the most likely
explanation is that they are in a block of ibd (Gibson et al., 2006). There can be
exceptions, frommutation for example, and several publications give strategies
for identifying runs of homozygotes for which ibd may be assumed (e.g., Gazal
et al. (2014); (Joshi et al., 2015)). These strategies include adjusting the size of
the blocks, the numbers of heterozygotes or missing values allowed per block,
the minor allele frequency, and so on. These software parameters affect the
size of the estimates (Meyermans et al., 2020). Some methods (e.g., Gazal et al.
(2014); (Narasimhan et al., 2016)) use hidden Markov models where ibd is the
hidden status of an observed homozygote. Model-based approaches
necessarily have assumptions, such as HWE in the sampled population.
We provide more details elsewhere, but we note here that ROH methods

offer a useful alternative to SNP-by-SNP methods even though they cannot
completely compensate for lack of information on the ibd reference
population. We note also that shorter runs of ibd result from more distant
relatedness of an individual’s parents, and ROH procedures can be set to
distinguish recent (familial) ibd from distant (evolutionary) ibd. SNP-by-SNP
estimators do not make a distinction between these two time scales.

RESULTS
Simulation study
We used the quantiNemo software (Neuenschwander et al., 2019)
to simulate a five-generation pedigree of hermaphroditic indivi-
duals mating randomly, excluding selfing, with each mating
producing a number of offspring drawn from a Poisson distribution
with mean two. The zero-th generation was made of 50 founders,
the first generation had 47 individuals and the second, third, fourth
and fifth generations had 58, 56, 57, and 65 individuals respectively.
This pedigree was then fed to a custom R script to draw gametes
from each parent at each reproductive event, allowing for
recombination based on a 20 Morgan recombination map with a
genetic marker every 0.1 cM, for a total of 20,000 markers.
Each of the 100 alleles per marker among the 50 founders was

given a unique identifier so that alleles in subsequent generations
with the same identifier had actual identity by descent relative to
the founders. The average actual ibd proportions over loci, within
individuals and between each pair of individuals, provided “gold
standard” inbreeding and coancestry coefficients, as opposed to
the pedigree-based values we calculated by path counting. The
gold values for inbreeding coefficients Fj and coancestry
coefficients θjj0 then allow calculation of gold values for fj, ψj

and, therefore, f STDj and fUNIj .
Finally, the two unique identifiers for each marker of the 50

founders were mapped to the SNP genotypes of the 50 founders
generated with the msprime program (Kelleher et al., 2016) as
follows: we assume the founders originated from a population with
effective size Ne= 104, mutation rate μ= 10−9, recombination rate
between neighboring base pairs r= 10−7. We assumed 20 chromo-
somes each 10 Megabase (107) long. The necessary arguments are
mspms 100 20 -t 400 -r 40000 10000000 -p 9. This generated
a dataset of 100 gametes and over 40,000 SNPs, with the first 20,000
used for the mapping of unique identifiers to SNP alleles. This
mapping was applied to the genotypes of the non-founder
individuals of the pedigree to generate their SNP genotypes.
The pedigree was constructed to provide fairly high levels of

predicted coancestry among pairs of the 283 non-founder
individuals, ranging from 0 to 0.464, with a mean of θS= 0.053,
assuming the 50 founders were unrelated and not inbred. The
pedigree inbreeding coefficients ranged from 0 to 0.367, with a
mean of FW= 0.050. The within-population inbreeding coefficient for
the set of 283 non-founder individuals is f= (FW− θS)/(1− θS)=
−0.003. Note, however, that the 50 individuals regarded as founders
for the subsequent 283 had their own joint histories from the
msprime simulation. These 50 had an average within-individual allele
sharing of ~AW ¼ 0:80385 and an average between-individual allele
sharing of ~AS ¼ 0:80355. The difference of these two proportions,
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which would be zero for a reference set of non-inbred and unrelated
individuals, provides a within-founder allele-sharing inbreeding
coefficient f̂W of 0.0015.
The various estimators of inbreeding examined with these data

are shown in Table 2, and the correlation coefficients for each pair
of estimates over the whole set of 283 non-founder individuals are
shown in Table 3. There are very high correlations between
pedigree and gold-standard values and also very high correlations
between f̂HOM and f̂AS values, both as expected. There are lower
correlations of f̂UNI and f̂ STD with pedigree-based or gold-standard
inbreeding coefficients since those estimates reflect both f and ψ.
We see in Table 3 that F̂ROH values are the most highly

correlated with FGold: this high correlation was obtained by
adjusting the block size (100 SNPs) and the block overlap amount
(50 SNPs) to bring estimates close to the known FGold values. In
practice the FGold values are not known and the other estimators
are all evaluated without external information. The high correla-
tion of f̂AS and maximum likelihood values suggests that f̂MLE is
estimating f rather than F because it uses the sample allele
frequencies in place of the unknown allele probabilities. The
weighted and unweighted versions of f̂UNI are highly correlated
with each other and with their gold values, but not with fGold.
There are generally low correlations for weighted and unweighted
f̂ STD values.
Figure 1 (left) illustrates the linear relationship between f Pedj

and FPedj : f Pedj ¼ ðFPedj � θPedSÞ=ð1� θPedSÞ where θPedS ¼ 0:053 is
the average coancestry of pairs of non-founders, calculated from
the pedigree. The FGoldj and fGoldj values are also correlated with
the corresponding pedigree values, as is shown for fGoldj in Fig. 1

(center). The variation we see in Fig. 1 (center) for fGoldj around
FPedj reflects the variation of actual inbreeding about expected
values, even for whole genomes, pointed out by Hill & Weir (2011).
Wang (2016) showed that the number of SNPs also has an effect.
The lack of relationship between pedigree-based values of
individual average coancestry ψj and individual inbreeding fj,
leading to variable rankings for some estimators based on sample
allele frequencies, is shown in Fig. 1 (right).
Figure 2 (left) illustrates the similarity of F̂ROH and FGold and

Fig. 2 (center) shows general agreement between F̂ROH and f̂AS,
bearing in mind that f̂AS estimates (F− θS)/(1− θS). Figure 2 (right)
shows general agreement of the allele-sharing estimators f̂ASj with
the gold-standard within-population inbreeding coefficients fGoldj .

Figure 3 shows f̂UNIj to be a better estimator of fGoldj than is f̂ STDj ,
as noted by Yang et al. (2011), and better performance for the
weighted than unweighted averages over SNPs but still not as
good as f̂ASj .

1000 genomes data
We used 77m SNPs from the 22 autosomes for the 26 populations
of the 1000 Genomes whole genome data to estimate inbreeding
coefficients for all 2504 individuals in the project. Our focus was
on the algebraic invariance of estimate rankings as the reference
set of individuals changed from the population from which each
individual was sampled, to the continental group for that
population, to the whole world. We calculated the estimates
f̂ASj and f̂

u

UNIj for each individual and each reference set, and
ranked estimates within each population. The two sets of

Table 3. Correlations among inbreeding measuresa for simulated data.

FPED FGold F̂ROH fPED fGold f̂AS f̂HOM f̂MLE fGoldUNI f̂
w
UNI f̂

u
UNI fGoldSTD f̂

w
STD f̂

u
STD

FPED 1.00 0.94 0.92 1.00 0.94 0.84 0.84 0.80 0.80 0.71 0.74 0.44 0.36 −0.25

FGold 0.94 1.00 0.99 0.94 1.00 0.90 0.90 0.88 0.86 0.78 0.80 0.48 0.41 −0.24

F̂ROH 0.92 0.99 1.00 0.92 0.99 0.91 0.91 0.89 0.87 0.80 0.82 0.50 0.45 −0.20

fPED 1.00 0.94 0.92 1.00 0.94 0.84 0.84 0.80 0.80 0.71 0.74 0.44 0.36 −0.25

fGold 0.94 1.00 0.99 0.94 1.00 0.90 0.90 0.88 0.86 0.78 0.80 0.48 0.41 −0.24

f̂AS 0.84 0.90 0.91 0.84 0.90 1.00 1.00 0.99 0.77 0.86 0.86 0.42 0.44 −0.22

f̂HOM 0.84 0.90 0.91 0.84 0.90 1.00 1.00 0.99 0.77 0.86 0.86 0.42 0.44 −0.22

f̂MLE 0.80 0.88 0.89 0.80 0.88 0.99 0.99 1.00 0.82 0.92 0.91 0.53 0.57 −0.10

fGoldUNI 0.80 0.86 0.87 0.80 0.86 0.77 0.77 0.82 1.00 0.89 0.91 0.86 0.74 0.18

f̂
w
UNI 0.71 0.78 0.80 0.71 0.78 0.86 0.86 0.92 0.89 1.00 0.98 0.75 0.84 0.17

f̂
u
UNI 0.74 0.80 0.82 0.74 0.80 0.86 0.86 0.91 0.91 0.98 1.00 0.76 0.80 0.17

fGoldSTD 0.44 0.48 0.50 0.44 0.48 0.42 0.42 0.53 0.86 0.75 0.76 1.00 0.87 0.55

f̂
w
STD 0.36 0.41 0.45 0.36 0.41 0.44 0.44 0.57 0.74 0.84 0.80 0.87 1.00 0.53

f̂
u
STD −0.25 −0.24 −0.20 −0.25 −0.24 −0.22 −0.22 −0.10 0.18 0.17 0.17 0.55 0.53 1.00
aAs shown in Tables 1 and 2.

Fig. 1 Allele sharing estimates for 283 non-founders in simulated pedigree. Left: Pedigree f vs Pedigree F; Center: Gold f vs Pedigree f;
Right: Pedigree coancestry vs Pedigree f.
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estimates for all individuals are shown separately in Fig. 4. Figures
S1 and S2 show f̂

u

UNIj vs f̂ASj for estimates and ranks respectively.
Figure 4 shows that within-population inbreeding coefficients f̂ AS

for all 1000 Genomes populations outside the AMR group are
essentially the same, and generally close to zero, when they are
estimated relative to average coancestry within each population or
continental group but change when the complete set of 26
populations is used as a reference. These latter values compare the
allele sharing for each individual to the same reference value, the
average sharing over all pairs of individuals in the whole dataset.
The world reference gives markedly lower f̂AS values for the African
populations (AFR), reflecting their higher levels of genetic diversity.
The rankings for f̂ AS within a population, by construction, do not
change with reference set. High f̂AS values reflect admixture,
consanguineous matings and high evolutionary coancestry. In
contrast, the f̂UNI values are higher for African individuals than for
any other individuals when the allele frequencies are from all 26
populations: this reflects an African-specific pattern of negative
average individual kinships ψ, shown in the bottom row of Fig. 5.
The critical role that average kinship plays in inbreeding

estimation is illustrated in Fig. 5. With each reference set, the

allele-sharing inbreeding estimates f̂AS are clustered for European
(EUR) individuals, a little more diverse for East Asian (EAS)
individuals, much more diverse for South Asian (SAS) and African
(AFR) individuals, and extremely diverse for American (AMR)
individuals. These values are consistent with those reported for
the numbers of variant sites per genome (The 1000 Genomes
Project Consortium, 2015). The variation among African and
American average kinships ψ̂AS is substantial: as these quantities
determine how the expected values of f̂UNI and f̂ STD differ from
the f target parameters, it is clear that these estimates cannot be
used to rank individuals by their inbreeding levels.
For the African population ASW, individual NA20294 has f̂AS

values of −0.009, 0.001,−0.130 using ASW, AFR or World as a
reference set and each estimate is ranked as number 16 among
the 61 ASW estimates. The same individual has f̂

u

UNI values of
−0.007 (rank 36), 0.001 (rank 16) and 0.028 (rank 60) using ASW,
AFR or World allele frequencies. Estimator f̂

u

UNI indicates NA20294
to be among the least inbred of the ASW individuals when AFR
sample allele frequencies are used, but among the most inbred
when world-wide sample allele frequencies are used, even
though the individual’s own genotype is the same for each

Fig. 3 Values of UNI and STD estimates for 283 non-founders in simulated pedigree. Top left: f̂
w

UNI vs fGoldj ; Top right: f̂
w

STD vs fGoldj ; Bottom

left: f̂
u

UNI vs fGoldj ; Bottom right: f̂
u

STD vs fGoldj .

Fig. 2 Values of ROH estimates of F and allele-sharing estimates of f for 283 non-founders in simulated pedigree. Left: F̂ROH vs FGold;
Center: f̂ AS vs F̂ROH; Right: f̂AS vs fGold.
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Fig. 5 Estimates of within-population individual-specific average kinships vs estimates of within-population individual-specific
inbreeding coefficients for 1000 Genomes data. Y-axis: ψ̂ASj ; X-axis: f̂ASj . Top: Population as reference set; Center: Continent as reference set;
Bottom: World as reference set. Left: All populations; Right: Excluding AMR populations in top and center rows. Excluding AMR and AFR in
bottom row. Gold: AFR (not ACB or ASW); Orange: AFR (ACB and ASW); Red: AMR; Purple: SAS; Blue: EUR; Green: EAS.

Fig. 4 Individual inbreeding coefficient estimates for 1000 Genomes data. Left panel: f̂AS ; Right panel: f̂
u

UNI. Green: Population as reference;
Blue: Continental group as reference; Red: World as reference. Populations, left to right: (AFR) ACB, ASW, ESN, GWD, LWK, MSL, YRI; (AMR) CLM,
PEL, PUR, MXL; (EAS) CHB, CHS, CDX, JPT, KHV; (EUR) CEU, FIN, GBR, IBS, TSI; (SAS) BEB, GIH, ITU, PJL, STU.
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analysis. Other examples of rankings changing with reference
population for f̂UNI are shown in Fig. S3; for the admixed ACB and
ACB populations, for example, the individuals appearing the most
inbred with continental reference appear the least inbred with
world reference and vice versa. This can have implications for
studies of inbreeding depression, where trait values are regressed
on estimated inbreeding coefficients.
A comparison of runs-of-homozygosity estimates F̂ROHj with

SNP-by-SNP estimates is shown in Fig. 6. The ROH estimates were
produced with the --homozyg --homozyg-snp2 --homozyg-
kb100 options in PLINK (Meyermans et al., 2020). The values of
F̂ROHj depend on the PLINK settings for minor allele frequency
pruning and linkage disequilibrium pruning, as well as on SNP
density, so their expected values may differ from the true Fj values.
The left panel shows f̂ASj values and these have a correlation of

0.998 with F̂ROHj . The right panel shows f̂
u

UNIj estimates and these

have a correlation of −0.337 with F̂ROHj estimates.
Gazal et al. (2015) reported inbreeding estimates F̂Fsuitej from

ROH, although their method requires sample allele frequencies
and so may have estimates of F confounded by average
individual-specific average kinships. They also assumed
Hardy–Weinberg equilibrium. However, there is good agreement
of f̂ASj values with F̂Fsuitej values (Fig. S4). The agreement between

F̂Fsuitej and f̂
u

UNIj is seen there to be not as good.

DISCUSSION
Discussions on the estimation of individual inbreeding coefficients
generally refer to F, the probability an individual has pairs of
homologous alleles that are identical by descent. Among the
estimators we have considered here, F̂ROH addresses F by
assuming that long runs of homozygous SNPs represent ibd
regions. The ROH estimates, however, are conditional on the
settings used to calculate the estimates, and actual ibd in short
runs of homozygotes may be ignored, so the expected values of
these estimators is not known. The Bayesian approach of Vogl
et al. (2002) also addresses F but at the computational cost of
estimating allele proportions in a reference population assumed
to have zero inbreeding or relatedness. All the other estimators
considered here are, instead, addressing the within-population

inbreeding coefficient f that compares F values to ibd probabilities
for pairs of individuals. There is no need to specify the reference
population implicit in the definition of identity by descent. There is
also no need to assume the particular individuals in a sample have
an inbreeding coefficient of zero. For large numbers of SNPs,
allele-sharing estimators f̂ AS are unbiased for f for all sample sizes
and have values for a set of individuals that have invariant ranks
over studies that include that set. We show that most estimators
using sample allele frequencies are estimating some combination
of f and of individual-specific average kinships ψ with individuals
in the study. Estimators with expectations depending on ψ do not
have invariant rankings, as we showed with data from the 1000
Genomes project as the study scope varied from the population to
the continent to the world.
Our ibd-based model rests on expectations of allele-sharing

proportions satisfying expressions such as Eq. (5). There is no
requirement for nonoverlapping generations, or homogeneous
populations, for example. This generality is a consequence of not
needing allele frequencies, whether these refer to a population or
to an individual.
The role of ibd probabilities in theoretical population and

quantitative genetic contexts is well known, but we suggest it is
rank-invariant estimators for the within-population parameters fj
that are of relevance for empirical studies and we offer the
examples in the following sections.

Genotype probabilities
There is often a need to estimate genotype probabilities from
observed allele proportions using formulations with allele
probabilities and ibd probabilities F (e.g., (National Research
Council, 1996) for forensic science). Following Eq. (6) we see that it
is 2~plð1� ~plÞð1� f jÞ rather than 2~plð1� ~plÞð1� FjÞ that is
unbiased for 2πl(1− πl)(1− Fj) if Fj and fj are known.

Inbreeding depression
Inbreeding is known to affect, linearly, the expected value of
quantitative traits, and studies of inbreeding depression often
proceed by regressing trait means on inbreeding levels. In
Yengo et al. (2017), we used F̂ROH, f̂HOM and f̂UNI as inbreeding
estimates and Kardos et al. (2018) pointed out that we did
not discuss the distinction between F and f. We responded

Fig. 6 ROH/PLINK estimates vs SNP by SNP estimates for 1000 Genomes data, with the World as a reference set. Left: F̂ROH vs f̂AS; Right:
FROH vs f̂

u

UNI. Solid line X= Y. Gold: AFR (not ACB or ASW); Orange: AFR (ACB and ASW); Red: AMR; Purple: SAS; Blue: EUR; Green: EAS.
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(Yengo et al., 2018) with reasons for not wishing to use F̂ROH and
we could have pointed out the linear relationship between fj
and Fj and the high correlation we showed above between f̂ASj
and F̂ROHj means that regressing on either F̂ROH or f̂ AS should
lead to similar results. In less-homogeneous populations than
represented by the UK Biobank data (Allen et al., 2012) we used
in Yengo et al. (2017), it would appear to be better to use f̂ASj
than f̂UNIj to avoid any effects of individual-specific average
kinships on inbreeding estimates. The correlation of trait and f̂ASj
values is invariant over reference populations. Alemu et al.
(2021) pointed out that f̂HOM (and f̂AS), gives equal weights to all
SNPs, whereas f̂

u

UNI gives greater weight to SNPs with rare alleles.
Alemu et al. did not consider the role of individual average
kinships in the bias of f̂UNI.

Genetic relatedness matrix
Inbreeding is also known to affect, linearly, the additive
component of genetic variance. For additive traits, the genetic
variance for individual j is ð1þ FjÞσ2

A where σ2A is the additive
variance for populations in Hardy–Weinberg equilibrium. Conse-
quently, the expected value of the sample variance ~VT of trait
values over a sample of n individuals is (Speed et al., 2012)

ET ð~VT Þ ¼ 1
n

trðGÞ � 1
n� 1

ΣG

� �
σ2
A þ σ2

e

Here the trait is additive and the errors, with variance σ2
e , are

independent of genetic effects. The GRM G has trace trðGÞ and
sum of off-diagonal elements ΣG. If the GRM elements are (1+ Fj)
on the diagonal and 2θjj0 off the diagonal then the trace is
n(1+ FW) and the sum of off-diagonal elements is n(n− 1)θS so
the genetic component of VT is ð1þ FW � 2θSÞσ2

A. If the GRM is
replaced by a matrix with allele-sharing inbreeding and kinship
estimates, this becomes ð1þ fWÞσ2

A, reflecting that it is the
within-population estimated GRM that is used in practice. We
show elsewhere that the same expected variance holds with
GRMs constructed with f̂ STD or f̂UNI.
In summary, we have shown that inbreeding measures of

utility in empirical studies are “within-population” with the
choice of population being at the discretion of the investigator.
With allele-sharing inbreeding estimators, the population spe-
cifies the set of individuals whose pairwise coancestry is the
reference against which inbreeding is measured. For estimators
making explicit use of sample allele frequencies, it is the
population that furnishes those frequencies, although then
inbreeding estimates are confounded by individual-specific
average kinships. We showed algebraically and empirically that
allele-sharing estimators have invariant rankings across choice of
population.

SOFTWARE
Estimation of inbreeding coefficients can be performed with the
following software.
F̂HOM: PLINK
F̂Uni: PLINK2, GCTA.
F̂Std: PLINK1, GCTA.
F̂ROH: PLINK1, BCFtools/ROH, FSuite.
F̂AS: SNPRelate, hierFstat.
F̂MLE: SNPRelate.
Software is available at: BCFtools/ROH: https://samtools.github.

io/bcftools/howtos/roh-calling.html
FSuite: http://genestat.cephb.fr/software/index.php/FSuite
GCTA: http://gump.qimr.edu.au/gcta
hierFstat:https://cran.r-project.org/web/packages/hierfstat/

index.html
PLINK: http://pngu.mgh.harvard.edu/purcell/plink/
PLINK2: https://www.cog-genomics.org/plink/2.0/

SNPRelate:http://www.bioconductor.org/packages/release/bioc/
html/SNPRelate.html

DATA AVAILABILITY
The simulated data are available in the online supplement. The 1000 Genomes data
are available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/.
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