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Revisiting a GWAS peak in Arabidopsis thaliana reveals possible
confounding by genetic heterogeneity
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Genome-wide association studies (GWAS) have become a standard approach for exploring the genetic basis of phenotypic
variation. However, correlation is not causation, and only a tiny fraction of all associations have been experimentally confirmed. One
practical problem is that a peak of association does not always pinpoint a causal gene, but may instead be tagging multiple causal
variants. In this study, we reanalyze a previously reported peak associated with flowering time traits in Swedish Arabidopsis thaliana
population. The peak appeared to pinpoint the AOP2/AOP3 cluster of glucosinolate biosynthesis genes, which is known to be
responsible for natural variation in herbivore resistance. Here we propose an alternative hypothesis, by demonstrating that the
AOP2/AOP3 flowering association can be wholly accounted for by allelic variation in two flanking genes with clear roles in
regulating flowering: NDX1, a regulator of the main flowering time controller FLC, and GAT, which plays a central role in gibberellin
synthesis and is required for flowering under some conditions. In other words, we propose that the AOP2/AOP3 flowering-time
association may be yet another example of a spurious, “synthetic” association, arising from trying to fit a single-locus model in the
presence of two statistically associated causative loci. We conclude that caution is needed when using GWAS for fine-mapping.
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INTRODUCTION

Genome-wide association studies (GWAS) have become an
essential tool for studying the genetics of natural variation. In
addition to its tremendous impact on human genetics, GWAS is
being applied routinely to a wide range of species, and massive
numbers of genotype-phenotype associations have been revealed
(Atwell et al. 2010; Flint and Eskin 2012; MacArthur et al. 2017).
However, only for a tiny subset do we have any idea of why the
association exists, i.e., the molecular mechanism (Gallagher and
Chen-Plotkin 2018). There are many reasons for this, but an
important one is that peaks do not always pinpoint the causal
genes (Hormozdiari et al. 2014; Tam et al. 2019). In settings where
the environment cannot be controlled, spurious associations may
simply arise because of environmental confounding, but our focus
here is on confounding by the genetic background, and in
particular on genetic background effects that are not sufficiently
diffuse to be readily be removed by approximate methods like
kinship or Principal Component corrections (Atwell et al. 2010;
Vilhjdlmsson and Nordborg 2013). Such effects may arise
whenever there is linkage disequilibrium between non-trivial
allelic effects (Platt et al. 2010a; Dickson et al. 2010), and is a well-
known problem for fine-mapping when there is allelic hetero-
geneity. In Arabidopsis thaliana, examples include multiple
functional alleles of FRIGIDA (FRI) (Atwell et al. 2010), and DELAY
OF GERMINATIONT (DOGT) (Kerdaffrec et al. 2016). Less clear is
how frequently spurious associations arise from genetic hetero-
geneity, ie, from alleles for different genes affecting the same

trait, which is inherently less likely given the need for strong
associations (linkage disequilibrium) between the causative alleles.

In this paper we discuss what we believe to be an example of
this: causal allelic variation at two different genes, separated by
roughly 120 kb, inducing a spurious peak of association in a third
gene located between the causal loci. The phenotype in question
is flowering time, one of the most intensely studied traits in
A. thaliana, and the example is of special interest in that the two
putatively causal loci are well-known flowering time regulators,
whereas the putatively spurious association involves a highly
polymorphic and adaptively important gene with a demonstrated
role in glucosinolate metabolism and defense against herbivory,
but which could well have organism-wide pleiotropic effects. Our
intention is emphatically not to resolve causality in this particular
case, because this would require experimental data that we do not
have. Rather, we aim to re-open the discussion, and underscore
the need for experimental confirmation. However, most impor-
tantly, we seek to draw attention to the general problem, which is
that GWAS may be positively misleading (Platt et al. 2010b),
especially when used for fine-mapping.

RESULTS AND ANALYSIS

GWAS for flowering time suggested a role for AOP2
Flowering time is an adaptively and agriculturally important trait
that has been intensively studied in A. thaliana. Thanks to decades
of functional work, the pathways involved in flowering time
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regulation (and their interaction with the environment) are
extremely well understood (Koornneef et al. 1998; Srikanth and
Schmid 2011; Andrés and Coupland 2012). Known flowering-time
regulators are also highly variable in nature, and GWAS for
flowering time typical reveal a variety of known loci (Brachi et al.
2010; Atwell et al. 2010; Li et al. 2010; Sasaki et al. 2015; 1001
Genomes Consortium 2016; Zan and Carlborg 2019).

A major source of natural variation for flowering is a variety of
loss-of-function alleles of FRI, which regulates FLOWERING LOCUS C
(FLC), a key regulator of flowering time, crucial for helping plants
flower in the right season by “remembering” exposure to cold
winter temperatures using a fascinating epigenetic mechanism
(Whittaker and Dean 2017). Indeed, FRI was first identified through
natural variation (Johanson et al. 2000), but, despite explaining a
considerable fraction of the variation for flowering time, has
proven difficult to map using GWAS, mostly because it has such
high allelic heterogeneity (Atwell et al. 2010). However, several
GWAS identified a strong peak roughly 1 Mb from FRI, a peak
which stood out because it was not obviously associated with a
known flowering time gene (Brachi et al. 2010; Atwell et al. 2010;
Li et al. 2010; Zan and Carlborg 2019). Instead, this peak appeared
to pinpoint the highly variable and adaptively important ALKENYL
HYDROXALKYL PRODUCING (AOP) cluster (Atwell et al. 2010; Kerwin
et al. 2011; Jensen et al. 2015; Katz et al. 2020), containing three
tandemly duplicated genes involved in the synthesis of glucosi-
nolates, secondary metabolites that play important role in defense
against herbivory (Kliebenstein et al. 2001). In the Swedish
population, using SNPs from whole-genome sequencing, the
strongest association was found for the SNP at chr4:1355057,
961 bp upstream of AOP2, and strongly correlated both with
flowering time and FLC expression (Figs. 1 and S1). Here we focus
on this association, and return to associations in other populations
in the Discussion section.

Functional variation at AOP2 does not affect flowering time
Although transgene experiments had shown that AOP2 (but not
AOP3) could affect flowering time (Kerwin et al. 2011; Jensen
et al. 2015), pleiotropic effects on flowering time are common
(Chong and Stinchcombe 2019), and we were not convinced
that this was the explanation for the AOP2 peak. To investigate
this further, we first explored the functional AOP2 variants
tagged by chr4:1355057 (Fig. 1) to see if we could confirm a
causal connection.

Kerwin et al. (2011) showed that day-length dependent
flowering responses could change when AOP2 is introduced in
the reference line Col-0, which carries a natural non-functional
AOP2 allele due to a 5-bp deletion causing a frameshift and
leading to accumulation of different glucosinolates (Kliebenstein
et al. 2001). Jensen et al. (2015) showed that A. lyrata AOP2 delays
flowering when overexpressed in Col-0, whereas overexpressed
AOP3 does not. They suggested that delayed flowering results
from an interaction between the glucosinolate and flowering
pathways. Based on these results, we hypothesized that A.
thaliana lines carrying functional AOP2 alleles should flower later
than lines carrying the loss-of-function alleles. AOP2 has multiple
alleles inducing frameshift in addition to the Col-0 allele (Neal
et al. 2010). In the Swedish population, we identified five
frameshift alleles, including the Col-0 type (Fig. 2A; Table S1).

We assessed the functional effect of these five indels directly
using mass spectrometry (Fig. 2B). AOP2 converts 3-
methylsulfinylpropyl and 4-methylsulfinylbutyl glucosinolate to
2propenyl and 3-butenyl glucosinolate, respectively (Kliebenstein
et al. 2001). Lines having any indel in the second exon (a to c in
Fig. 2A) or the Col-0 indel (d) in the third exon did not accumulate
2-propenyl and 3-butenyl glucosinolate, although transcripts were
detected in all cases (Fig. 2B; Table S2). The fifth insertion (e) did
not affect 2-propenyl and 3-butenyl glucosinolate accumulation
significantly.
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Using these data, we then tested whether AOP2 functionality is
associated with flowering time variation. Contrary to this
hypothesis, AOP2 functionality is significantly associated neither
with chr4:1355057 nor flowering time. For example, all 105 lines
carrying the reference allele at chr4:1355057 show substantial
AOP2 expression, and 19 lines of them have indels that disrupt
function (Table S1), but this functionality showed only a very weak
effect on flowering time (Fig. 2C; p value = 0.07)—in stark contrast
with the very strong association between chr4:1355057 and
flowering time (Fig. 1C; p value = 1.85e—09; MAC = 0.2). There is a
weak correlation between AOP2 expression and flowering
(Fig. S1B), but it seems unlikely that this relationship reflects
causality, when functional allelic variation does not. In conclusion,
although it has been demonstrated that AOP2 can affect flowering
time (Kerwin et al. 2011; Jensen et al. 2015), the considerable
functional AOP2 variation observed in the Swedish population is
not significantly correlated with flowering time, suggesting that
the highly significant association between chr4:1355057 and
flowering time arises for other reasons.

The AOP2 peak tags a diverged allele of NDX1

In order to identify potential causal variants, we dissected the
local haplotype structure surrounding chr4:1355057 using
principal component analysis (PCA) (Fig. 3A). Consistent with
the fact that the Swedish population has a strong north-south
population structure (Long et al. 2013), the first two principal
components were correlated with the latitude of origin (PC1 r* =
0.28; PC2 1 = 0.25). However, the third principal component was
not correlated with global structure, but rather identified an
extended haplotype carried by 20 of the 51 lines that also carried
the non-reference chr4:1355057 allele (Fig. 3A). This cluster was
also found when the analysis was carried out only for the
southern Swedish population (the northern subset is too small
for meaningful analysis). The haplotype (denoted chr4:1355057b)
contained three genes upstream of AOP2, including NDX1
(AT4G03090; chr4:1366053..1371237)—a known regulator of
FLC that binds to the promoter region of COOLAIR, the antisense
transcript of FLC, and inhibits the degradation of FLC by
stabilizing the R-loop (Sun et al. 2013) (Fig. 3B).

Furthermore, the chr4:1355057b haplotype is perfectly asso-
ciated with a highly diverged NDXT allele (Fig. 3C). The non-
synonymous sequence divergence between this allele and the
reference allele is close to 1%, and two amino acid changes are in
the NDXB domain that is critical for the function (Sun et al. 2013)
(Fig. S2). Mutant lines confirmed that NDX1, unlike neighboring
genes, has a significant effect on flowering (Fig. S3).

Multilocus GWAS including NDXT1 reveals a new association
near GA1

These observations suggested that the flowering time association
peak centered on chr4:1355057 could partly be due allelic
variation at NDX1 (Fig. 4A). To explore this further, we performed
GWAS while including the chr4:1355057b haplotype as a cofactor
to regress out the effect of the NDX7 polymorphism (Fig. 4B).
Doing so did not eliminate the significant peak on chromosome 4
(suggesting that NDXT1 is not the only causal variant), but moved it
over 100 Kbp in the opposite direction of NDX1. The “new” peak
was quite broad and flat, but the second strongest association
(chr4:1236543; —logqop-value =11.85; MAC=15) was 1.1 Kbp
downstream of another well-known flowering regulator, GIBBER-
ELLIC ACID REQUIRING 1 (GA1 Chr4:1237671..1244822) that is
essential for gibberellic acid biosynthesis (Sun and Kamiya 1994).
Gibberellin plays a crucial role in the transition to flowering
through regulation of LEAFY (LFY) and FLOWERING TIME LOCUS T
(FT) (Blazquez et al. 1998; Porri et al. 2012), and loss of function
mutants of GAT cannot flower under certain conditions (Reeves
and Coupland 2001).
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Fig. 1

GWAS for flowering time revealed a peak centered on the chromosome 4 AOP cluster. A Genome-wide Manhattan plot for flowering

time at 10 °C in 132 Swedish lines, with SNP reported in Atwell et al. (2010) highlighted in blue (chr4: 1330749), and the strongest association
in red (chr4: 1355057). A linear model without structure correction was used (see Methods). B Zoom-in on the peak, with gene annotation.
C Violin plot showing the difference in flowering time between lines carrying major and minor alleles at chr4:1355057 (p = 1.85e—09 by two-

tailed Welch’s t-test).

Previous GWAS and linkage mapping studies have suggested
that allelic variation at GAT plays a role in flowering time variation,
and the association is known to be sensitive to population
structure correction (Brachi et al. 2010). These kinds of problems
are often caused by extensive linkage disequilibrium, the
existence of which is evident (Fig. S4). This can also be seen by
carrying out a third GWAS, now with the chr4:1236543 (GA1) SNP
as a cofactor, because this causes an increase in the height of the
AOP peak demonstrating that these peaks are indeed not
independent (Fig. 4C).

Polymorphisms at GAT and NDX1 jointly explain the AOP
association

Finally, we asked whether allelic variants at GAT and NDX1 were
jointly sufficient to explain the peak centered on AOP2. When we
performed GWAS using both chr4:1236543 (GA7T) and
chr4:1355057b (NDXT) as cofactors, the peak at the AOP cluster
completely disappeared (Fig. 4D)—just as if we had taken
chr4:1355057 (AOP2) as a cofactor (Fig. S5). The distribution of
phenotypes explained by chr4:1355057 is consistent with a
cumulative contribution by rarer alleles at chr4:1355057b and
chr4:1236543 (Fig. 4D), and explain more of the variation (as
expected given the extra parameter). The same pattern was seen
in a GWAS for FLC expression (Figs. S5 and 6). These results
suggest that the major flowering time association at the AOP
cluster may be a spurious, “synthetic” association that results from
the complex pattern of linkage disequilibrium between causal
polymorphism at two nearby loci, GAT and NDX1. The existence of

Heredity (2021) 127:245-252

extensive linkage disequilibrium (Fig. S4) and haplotype structure
(Fig. S7) in the region is clear, although we note the average decay
of linkage disequilibrium is by no means unusual relative to the
rest of the genome (Fig. S8).

DISCUSSION

In this paper we have presented an alternative interpretation for a
published GWAS peak, a potential example of genetic confound-
ing. We demonstrate that a reproducible association between
flowering time (and FLC expression) and SNPs in the AOP2/AOP3
glucosinolate biosynthesis cluster can alternatively be explained
using a two-locus model, where the causal variants are in two
flanking genes directly involved in the regulation of flowering:
GA1, essential for gibberellin synthesis, and NDX1, a regulator of
FLC. Under this interpretation, the AOP2 peak is a spurious
association (Fig. 5), an artifact of incorrectly fitting a singlelocus
model in the presence of two causative loci (Platt et al. 2010a;
Dickson et al. 2010; Atwell et al. 2010). The problem is analogous
to the problem of “ghost QTLs” in classical linkage mapping (Haley
and Knott 1992; Martinez and Curnow 1992).

We emphasize that neither of these two models (single-locus
AOP2 or two-locus NDX1 and GAT), has been experimentally
confirmed. It is clear that all three genes discussed here can affect
flowering time when deleted, but this tells us little about the natural
allelic variants. Merely knocking genes out is not sufficient for a trait
like flowering time, which has been shown to be highly “omnigenic”
(Boyle et al. 2017) in the sense that random knock-out mutations are
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Fig. 2 Functional validation of AOP2 alleles. A The gene model of AOP2.1. Colored parts are conserved protein domains. Triangles show
predicted indels that could cause frameshift. + and — are the indel size from the Col-0 reference sequence. B Accumulation of 2-propenyl
glucosinolate in each type of allele and the AOP2 expression. Marks from a to e are corresponding to the indels. C The flowering time based on
AOP2 indel genotypes. “Functional AOP2” corresponds to lines without frameshift (n =86) and “truncated AOP2" corresponds to lines with
frameshift (a-d; n =19, Table S1). To control for the effect of chr4:1355057 (which is known to be associated with flowering time variation),
only chr4:1355057 reference lines with expressed AOP2 were used (p = 0.07 by two-tailed Welch’s t-test).

as likely as a priori candidates to affect it (Chong and Stinchcombe
2019). Because direct gene replacement is not feasible in A. thaliana,
experimental testing of these two models would thus entail
knocking out the native allele at multiple loci in multiple genetic
backgrounds, and replacing it with cloned native alleles, using on
the order of 50 independent transgenic lines per construct to
account for position effects (Li et al. 2014). In late-flowering
A. thaliana, with an essentially annual life-cycle, this would be a
multi-year project requiring considerable resources.

That said, we believe that our two-locus model (involving two
known flowering regulators, one of which directly interacts with
FLC) is a more likely explanation for the association seen here than
the single-locus model (involving glucosinolate production). We
say this primarily because, although flowering time is clearly
“omnigenic” in the sense of presenting a large mutation target,
GWAS results for flowering time (like many other phenotypes in A.
thaliana) have generally showed a strong over-representation for
genes in known pathways (Atwell et al. 2010; Sasaki et al. 2015).
This is in sharp contrast to human genetics, where GWAS results
have generally been extremely difficult to interpret (Boyle et al.
2017). A plausible explanation for this difference is that much of
the variation in A. thaliana is adaptive (Atwell et al. 2010).

Indeed it may well be the case that selection is indirectly
responsible for the AOP2 flowering time association. The role of
the AOP cluster in defense against herbivory is well established
(Kliebenstein et al. 2001), and it is tempting to speculate that
strong selection on glucosinolate variation could have contributed
to the complex haplotype structure in the region—leading to
associations between SNPs in AOP2 and functional variants in
nearby flowering regulators simply through random hitchhiking
(Maynard Smith and Haigh 1974). It should be noted that while a
two-locus model appears to be required to explain the AOP2
flowering-time association seen in the Swedish population, the
association seen in two other samples (Atwell et al. 2010; Li et al.
2010), can simply be explained by extremely strong linkage

SPRINGER NATURE

disequilibrium between AOP2 variants and the diverged NDXT
haplotype described above (Fig. S9). Spurious flowering time
associations due to regional selection on other traits has also been
suggested for maize (Larsson et al. 2013).

To conclude, while we may never know which (if any) of the
models proposed here is correct, there is no doubt that spurious
associations like this do exist, and may complicate interpretation
of mapping results (Huang et al. 2010; Atwell et al. 2010; Larsson
et al. 2013; Hormozdiari et al. 2014; Kerdaffrec et al. 2016).
Although representing a difficult model-selection problem, better
methods for systematically identifying such associations could be
a very cost-efficient way of getting more information out of GWAS
results.

MATERIALS AND METHODS

Data sets

We used published A. thaliana data sets containing genotypes (Long et al.
2013), RNA-seq transcriptome data (Dubin et al. 2015), as well as flowering
time phenotypes (Sasaki et al. 2015, 2018) for the Swedish population. All
plants were grown under a constant 10°C (132 lines) in 16 h day length
condition. For RNA seq analysis, RNA from whole rosettes were collected at
11-12 h after dawn at nine-leaf stage (Dubin et al. 2015). We obtained
other phenotype data, including FLC expression (Atwell et al. 2010) and
flowering time under Sweden spring condition in 2008 (Li et al. 2010), from
AraPheno (Seren et al. 2017). All the data sources are listed in Table S3.

Plant materials

We grew loss-of function mutants of AT4G03050 (SALK_001655),
AT4G03080 (SALK_051383), AT4G03100 (SALK_082878), and NDX1 (WiscD-
sLox344A04) (Sun et al. 2013) with the wild type under a constant 21 °C in
16 h day length condition.

Statistical analysis
GWAS. We performed GWAS using LIMIX version 3.0.4 (Lippert et al. 2014)
with full genome SNPs in a Swedish population (n = 132) (Long et al. 2013)

Heredity (2021) 127:245-252
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Fig.3 Haplotype structure around the AOP peak. A PCA of SNPs in the 60 kb region around chr4:1355057. Major (reference type) and minor
alleles of chr4:1355057 are plotted in gray and blue, respectively. The clusters of minor chr4:1355057 alleles are indicated in orange and green,
respectively. Numbers in brackets are allele counts. B Decay of linkage disequilibrium with respect to chr4:1355057 and chr4:1355057b, the
subset of the chr4:1355057 minor alleles associated with an extended haplotypes (the borders of which are indicated by vertical green lines).
C Neighbor-joining tree of NDX1 alleles in the Swedish population (n = 259). Diverged NDX1 haplotypes associated with the chr4:1355057b
haplotype are shown in green, while orange denotes remaining lines associated with rest of the chr4:1355057 minor allele.

and 250K SNP chip genotypes in RegMap panel (Horton et al. 2012). We
used a linear regression model (LM) for GWAS without correction of
population structure (Figs. 1, 4, S1, S5, and S6) because several of the
variants in the chromosome 4 region are strongly correlated with
population structure in the Swedish population, rendering fine-mapping
impossible because of lack of power. Note that our primary interest is not
the genome-wide significance of the region, but rather identifying
potential causal SNPs within it. It has previously been observed that
kinship correction can obscure causality locally (Kerdaffrec et al. 2016). We
used a linear mixed model (LMM) for GWAS to correct population structure
with a kinship matrix representing genetic relatedness (IBS) (Yu et al. 2006;
Kang et al. 2008) (Fig. S9).

Subsequently, we performed multilocus GWAS to dissect chromosome 4
peak using a multiple linear regression model without population structure
correction in the Swedish population (Figs. 4, S5, and S6), and LMM for
global population (Fig. S9). As described in figures, SNPs or the allele
(chr4:1355057b) were taken as cofactors to be regressed out from the
phenotypic variation.

PCA. We used the entire Swedish population (259 lines; Long et al. 2013)
to analyze local genetic structure around the AOP cluster. SNPs in the 60 kb
region around chr4:1355057 were extracted and analyzed using the
prcomp function in R (https://www.r-project.org).

Haplotype analysis. For the analysis (Fig. S7), we used SNPs covering GA1
and NDX1 regions, including the 30 Kbp upstream of GAT and downstream

Heredity (2021) 127:245-252

of NDX1, from a pre-imputation version of the Regional Mapping Project
SNP panel, including 1307 global lines (Horton et al. 2012). These SNPs were
used as the input into fastPHASE version 1.4.8 (Scheet and Stephens 2006),
which was run using the default settings as described in Li et al. (2014).

Genotyping NDX1 and AOP2

For population samples (n = 259), we predicted amino acid sequences of
NDX1 and AOP2 using genome data, including SNPs and short indels (Long
et al. 2013). NDX1 sequences of Col-0 and chr4:1355057b alleles were also
confirmed by Sanger sequencing after cloning the 7.8 Kbp region with
forward primer 5-CTGGTAAATACTGTGTGTAGACAATTCT-3’ and reverse
primer 5'-TCGATGTTTGACGGCAAAGGATGAAG-3'. Line 6180 (TAL 07; latitude
62.6322 longitude 17.6906) was chosen to represent chr4:1355057b alleles.
We confirmed all predicted chr4:1355057b allele-specific SNPs by the Sanger
sequencing.

Measurement of expression levels

For population samples, we extracted FLC and AOP2 expressions from RNA-
seq data of leaf tissue under 10°C constant temperature (Dubin et al.
2015). For mutants, we extracted total RNA from aerial parts of nine-leaf
stage seedlings collected at 8 h after dawn using RNeasy mini kit (Qiagen)
with DNase treatment (Thermo Fisher Scientific). We used the SuperScript
Il First-Strand Synthesis System (Invitrogen) for cDNA synthesis. We
performed gRT-PCR using the LightCycler 96 system (Roche) with FastStart
Essential DNA Green Master (Roche).
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Fig. 4 Multilocus GWAS suggests genetic heterogeneity. Zoom-in plots of multilocus GWAS surrounding chr4:1355057 with violin plots
illustrating how much of the variation is explained by each model. Arrows on the Manhattan plots indicate SNPs used for the cofactors. A The
original association identified an association in AOP2 (chr4:1355057, magenta) that explained 33% of the flowering time variation. B Multilocus
GWAS using a diverged NDX1 haplotype (chr4:1355057b, orange) that explained 29% of the variation revealed an association near GA1
(chr4:1236543, dark blue). € Multilocus GWAS using GAT peak that explained 11% of the variation. D Multilocus GWAS using both NDXT and
GA1 as co-factors fully explained the original peak (explaining 45% of the variation).

SAND (AT2G28390) was used for a control to normalize the transcript
abundance (Czechowski et al. 2005) using the ddCT method. The primer’s
sequences were SAND: 5’AACTCTATGCAGCATTTGATCCACT-3' and 5'-
TGATTGCATATCTTTATCGCCATC-3/, and FLC: 5'-TGAGAACAAAAGTAGCCGA-
CAAG-3’ and 5-ATGCGTCACAGAGAACAGAAAGC-3'.

Assessment of AOP2’s functionality

Glucosinolate extraction from plant tissue. We extracted glucosinolates
from whole rosettes at nine-leaf stage grown under 21°C, 16 h light
condition, as follows. Frozen 10 mg samples in liquid nitrogen in 2 ml
Eppendorf tubes were stored at —80°C. Precooled 1 ml 90% methanol
(90% MeOH/10% 10 mM ammonium bicarbonate in H,O; —20°C) was
added by the final methanol concentration remaining above 78%. Tissue
was disrupted by adding two small stainless beads bearings and agitating
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with a tissue lyser (TissueLyser I, Qiagen) for 10 min at 20 rev/s. The
samples were shaken for a further 60 min (70 rev/s) in the cold. After
centrifuging at 13,000 rpm, the supernatant was transferred to a fresh tube
and the pellet was discarded.

Measurement. We measured glucosinolates according to a previous study
(Liang et al. 2018). Briefly, 2 pl of each sample was injected into a SeQuant
ZIC-pHILIC HPLC column (Merck, 100 x 2.1 mm; 5 um), and the respective
guard column operated with an Ultimate 3000 HPLC system (Dionex,
Thermo Fisher Scientific) at a flow rate of 100 pl/min. The HPLC was directly
coupled via electrospray ionization in the negative ion mode (2.8kV) to a
TSQ Quantiva mass spectrometer (Thermo Fisher Scientific). A linear
gradient (A: 95% acetonitrile 5%, 10 MM aqueous ammonium acetate;
B: 5 mM agqueous ammonium acetate) starting with 5% B and ramping up
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Fig. 5 Summary of our results. We consider three bi-allelic SNPs, in (or near) GA1, AOP2, and NDX1, respectively. Because of strong linkage
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model is that the minor GAT and NDX1 alleles are tagging early-flowering alleles at these two loci, and that the minor AOP2 allele is associated
with early flowering because it is the best single locus that tags both of these loci. Colors in the single-locus model correspond to those in the

two-locus model.

to 45% B in 9min was used for separation. Chromatograms were
interpreted using TraceFinder (Thermo Fisher Scientific) and manually
validated. The following transitions were used for relative quantitation: 3-
hydroxypropyl glucosinolate m/z 376 - m/z 97; m/z 376 — m/z 259, 2-
propenyl glucosinolate m/z 358 > m/z 97, m/z 358->m/z 75, 4-
hydroxybutyl glucosinolate m/z 390 - m/z 259; m/z 390 - m/z 97; m/z
390 - m/z 75 and 3(methylsulfinyl)propyl glucosinolate m/z 422 — m/z
259; m/z 422 - m/z 97; m/z 422 - m/z 75.
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