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Genomic selection based on the single-step genomic best linear unbiased prediction (ssGBLUP) approach is becoming an
important tool in forest tree breeding. The quality of the variance components and the predictive ability of the estimated breeding
values (GEBV) depends on how well marker-based genomic relationships describe the actual genetic relationships at unobserved
causal loci. We investigated the performance of GEBV obtained when fitting models with genomic covariance matrices based on
two identity-by-descent (IBD) and two identity-by-state (IBS) relationship measures. Multiple-trait multiple-site ssGBLUP models
were fitted to diameter and stem straightness in five open-pollinated progeny trials of Eucalyptus dunnii, genotyped using the
EUChip60K. We also fitted the conventional ABLUP model with a pedigree-based covariance matrix. Estimated relationships from
the IBD estimators displayed consistently lower standard deviations than those from the IBS approaches. Although ssGBLUP based
in IBS estimators resulted in higher trait-site heritabilities, the gain in accuracy of the relationships using IBD estimators has resulted
in higher predictive ability and lower bias of GEBV, especially for low-heritability trait-site. ssGBLUP based on IBS and IBD
approaches performed considerably better than the traditional ABLUP. In summary, our results advocate the use of the ssGBLUP
approach jointly with the IBD relationship matrix in open-pollinated forest tree evaluation.
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INTRODUCTION
Eucalyptus L’Hér. (Myrtaceae) is the most valuable and globally
planted forest tree genus. Fast growth, adaptability to a broad
diversity of tropical and subtropical regions, combined with
versatile wood properties for energy, solid products, pulp, and
paper have warranted their outstanding position in current world
forestry (de Lima et al. 2019). Eucalyptus dunnii Maiden (hereafter
E. dunnii) has become increasingly used in commercial afforesta-
tion due to its combined good performance for growth, stem
straightness, and frost tolerance, together with suitable wood
density and pulp yield.
In a broad sense, genomic selection (GS) is a family of statistical

methods developed for predicting the breeding values of non-
phenotyped individuals with the assistance of a large number of
molecular markers widespread distributed throughout the gen-
ome (Meuwissen et al. 2001). These methods exploit co-
segregation between markers and quantitative trait loci (QTL) in
linkage disequilibrium (LD). In forest trees, GS is of particular
benefit due to the extended breeding cycles caused by delayed

reproductive maturity and the need for early selection of traits
that express late in life (Mphahlele et al. 2020). In this context, GS
has a potentially substantial impact on the rate of genetic gain by
increasing the intensity and accuracy of selection and, particularly,
by shortening the generational interval (Grattapaglia et al. 2018).
The genomic best linear unbiased prediction (GBLUP) is one of

the most commonly GS methods. It is basically a variant of the
standard BLUP method (hereafter ABLUP, cf. Henderson 1984),
where the pedigree-based numerator relationship matrix (A-
matrix) is replaced by a genomic relationship matrix (G-matrix,
e.g., Habier et al. 2013). Many empirical studies with forest tree
species have shown that GBLUP is a very promising approach for
tree breeding (e.g., Mphahlele et al. 2020; Resende et al. 2017;
Lenz et al. 2019). However, to our knowledge, only two of them
have directly investigated the efficiency of genomic prediction
using only genotyped trees in E. dunnii through GBLUP (Naidoo
et al. 2018; Jones et al. 2019).
Importantly, standard GBLUP can only be implemented when all

trees are genotyped, although there are different approaches to
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produce genomic-enabled breeding value predictions for non-
genotyped individuals. One of these is the so-called single-step
GBLUP (ssGBLUP), which produces predictions for both genotyped
and non-genotyped trees simultaneously in a single evaluation
(Misztal et al. 2009; Legarra et al. 2009; Aguilar et al. 2010;
Christensen and Lund 2010). The ssGBLUP is nowadays a routinely
employed method for genomic evaluation in animal breeding,
where it has been shown that it produces more accurate and less
biased breeding values prediction than pedigree-based ABLUP
(e.g., Legarra et al. 2014) and GBLUP (e.g., Christensen et al. 2012;
Croué and Ducrocq 2017). However, the use of ssGBLUP for
genomic prediction in forest trees is more recent and scarce
(Klápště et al. 2018; Klápště et al. 2020a; Cappa et al. 2019;
Ukrainetz and Mansfield 2020; Thavamanikumar et al. 2020). For
instance, using data from a Eucalyptus hybrid population, Cappa
et al. (2019) showed that ssGBLUP provided the higher predictive
ability and lower prediction bias for non-phenotyped but
genotyped trees when compared to GBLUP, and concluded that
the ssGBLUP model is a promising breeding tool for genomic
evaluation in Eucalyptus.
In ssGBLUP, single nucleotide polymorphisms (SNPs) markers

are used to infer genetic relationships among the subset of
genotyped individuals. The estimated relationships are subse-
quently used to set up the breeding values covariance matrix.
Therefore, precise estimation of variance parameters and accurate
prediction of breeding values will depend on how well marker-
derived genomic relationships describe genetic relationships
realized at unobserved causal loci (de los Campos et al. 2013;
Forneris et al. 2016). That is, on how well estimates of genomic
relationships capture the signals from the true identity-by-descent
(IBD) process in the genome continuum, which in turn is affected
by LD, incomplete pedigree information, and inbreeding (Forneris
et al. 2016).
Several methods for estimating genomic relationships have

been developed. One group of estimators of realized relationships
make use of SNP marker information exclusively. Of these, the
estimator proposed by VanRaden (2008) (Method 1) is the most
widely employed in forestry GS studies (e.g., Bartholomé et al.
2016; Durán et al. 2017; Rambolarimanana et al. 2018). VanRaden’s
estimates are computed by means of cross-products of marker
genotypes deviated from mean allele frequencies and divided by
the total heterozygosity at the locus (VanRaden 2008). Notice that
this estimator reflects the actual proportion of marker alleles
shared by two individuals, as a deviation from the expected
proportion of alleles shared in the population, and thus it is an
identity-by-state (IBS) measure (Vela-Avitúa et al. 2015). Also, this
estimator gives extra weight to SNPs with high heterozygosity

(Meuwissen et al. 2011). To account for this latter fact, Yang et al.
(2010) proposed a modified version, where a different weight is
used to avoid down-weighting the information from SNPs with
low minor allele frequency (MAF).
Although these IBS-based genomic relationship measures

ultimately estimate the realized proportion of genome shared
by two individuals, they do not take into account either the
pedigree or the segmental nature of DNA inheritance (Forneris
et al. 2016). Therefore, relatedness estimators that introduce
additional information to account for the IBD process, such as
marker order and position within the genome or LD pattern,
could improve the accuracy of the relationship estimation
(Wang et al. 2017). Using a probabilistic hidden Markov model
(HMM), Han and Abney (2011) developed a method for
estimating relationships that trace markers through the
pedigree by linkage analysis while accounting for population
LD. A variant of this method, presented some years later by the
same authors (Han and Abney 2013), allows estimating
relationships when the pedigree is not known but a large
amount of SNPs is available.
Even though estimates of realized relationships may play a

critical role in the performance of GBLUP and ssGBLUP methods of
GS, this has scarcely been investigated in plant and animal
breeding. Using both simulated and real data of pigs, Forneris
et al. (2016) showed that the IBD estimates of genetic relation-
ships, combining pedigree and marker data, were more precise
and this resulted later in higher accuracies in genomic breeding
value predictions of candidates to selection when implementing
ssGBLUP. Vela-Avitúa et al. (2015), using a GBLUP approach, run a
stochastic simulation of a typical aquaculture breeding scheme
and showed the superiority of the IBD estimates on the accuracy
of genomic predictions compared to IBS estimates, but only at
lower marker densities (≤100 SNPs/Mb).
In this study, we obtained and compared the precision of

different IBD and IBS measures of genomic realized relationships
in five open-pollinated (OP) first-generation progeny trials of E.
dunnii. The two IBD estimators proposed by Han and Abney (Han
and Abney 2011; Han and Abney 2013) and the IBS estimators of
VanRaden (2008) and Yang et al. (2010) were compared. Next, we
used these estimates to build up the corresponding genomic
covariance matrices and implemented ssGBLUP for the breeding
value prediction of diameter at breast height and tree stem
straightness in these populations. As a control, we also fitted the
conventional pedigree-based model (ABLUP). We compared the
performance of the different models in terms of variance
components (and functions of them), and the accuracy and bias
of the predicted breeding values.

Table 1. Location, experimental design information, and traits (diameter at breast height: DBH, tree stem straightness: STR) means and standard
deviations (SD) for each of the five progeny trials.

Trial Del Valle Concepción Ubajay Istueta Cerro

Latitude (°S) 35°51′ 32°33′ 31°45′ 26°06′ 27°39′

Longitude (°W) 43°43′ 58°26′ 58°15′ 54°28′ 55°26′

Elevation (m) 58 35 40 176 283

Establishment date 01/10/1992 19/11/1991 22/10/1991 30/04/1992 30/10/1992

Measurement date 01/04/1999 27/07/1998 23/09/1998 01/09/1995 02/09/1998

Age (years, months) 6,6 6,8 6,11 3,5 5,11

Number of replicates 16 20 20 20 19

Number of rows 24 35 30 41 29

Number of columns 46 33 54 36 39

Survival at the measurement date (%) 72.25 93.52 94.4 75.29 74.89

Mean DBH (SD) (cm) 16.61 (3.54) 13.72 (2.97) 16.32 (3.06) 15 (3.59) 15.62 (4.43)

Mean STR (SD) (Scale 1–4) 2.28 (0.89) 2.11 (0.93) 2.46 (1.06) 2.61 (0.81) 1.82 (0.89)
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MATERIALS AND METHODS
Progeny trial data
Data for this study was obtained from five progeny trials of Eucalyptus
dunnii Maiden established by the National Institute of Agricultural
Technology (Instituto Nacional de Tecnología Agropecuaria, INTA), during
1991 and 1992, in different sites of Argentina; ranging from latitude 26° to
35° S, from longitude 43° to 58° W, and from elevation 35m to 283m.
These sites were identified as Del Valle, Concepción, Ubajay, Istueta, and
Cerro. The field experimental design was the same for all locations: a
randomized complete block design with single-tree plots. Each trial
contained from 16 to 20 replicates. The spacing was 3 × 3m. Diameter at
breast height (1.3 m, DBH) was measured (in cm) as an indicator trait for
growth. In turn, stem straightness (STR) was assessed using a four-point
subjective score, and the analyses were performed considering one the
most crooked trees and four the straightest trees. This categorical STR trait
was transformed into normal scores (Gianola and Norton 1981) and
renamed NSTR. Details of the five trials and traits measured are
summarized in Table 1. The population in this study consisted of 4860
trees, obtained from 75 OP seed lots: 63 OP families from 6 native stands in
Australia and 12 OP families from a landrace originated in Argentina. The
12 Argentinean OP families were derived from trees that were
phenotypically selected for growth and stem straightness in a commercial
plantation of E. dunnii located near Oliveros, Santa Fe, Argentina. Seeds for
these plantations were originally introduced from the Australian prove-
nance known as Moleton, NSW (30°10′ S, 152°10′ E) (Marcó and White
2002). A detailed description of the genetic origin of the trees used in this
study can be found in Table S1.

Molecular markers
A sample of 642 trees originated from 74 (out of 75) families was
genotyped with a range of 2–20 trees per family from three (Del Valle,
Concepción, and Ubajay) out of the five sites. The total number of
phenotyped trees, with at least one genotyped half-sib, was 2851 (out of
4860) (i.e., 58.66%) (see Table 2 for a summary). The distribution of DBH
and STR traits for genotyped and non-genotyped trees are presented in
Fig. 1. Generally, genotyped trees follow the same distribution as non-
genotyped trees for both traits.
Genomic DNA was isolated from lyophilized young leaves using the

CTAB method as described in Marcucci Poltri et al. (2003). The quality and
quantity of the extraction were verified by agarose (1%) gel electrophoresis
analysis and spectrometry using Nanodrop equipment (Thermo Fisher
Scientific, Waltham, MA, USA). A standard concentration of 500 ng of each
dried DNA sample was sent for genotyping with the Illumina chip for
Eucalyptus (EUChip60K; Silva-Junior et al. 2015) at GeneSeek, Inc. (a
Neogene company, Lincoln, NE, USA). Genotyping SNP was called using
GenomeStudio Genotyping module v2.0.3 (Illumina, USA). SNP markers
were filtered for MAF > 0.05 and missing values <0.10, using the R-package
(www.r-project.org) “synbreed” (Wimmer et al. 2012). As a result, a total of
11,284 SNP markers were used for the genetic analyses providing good
genome-wide coverage of the 11 Eucalyptus chromosomes as measured by
the pairwise LD (Table S2 and Fig. S1). The average number of SNPs per
chromosome was 1026, ranging from 700 on chromosome 1 to 1547 on
chromosome 8 (Table S2). Figure S2 shows the distribution of MAF after
filtering SNPs with extreme frequencies.

Estimation of pedigree and realized relatedness coefficients
Five different measures of pairwise relatedness coefficients among
genotyped trees were computed. The measures are based only on
pedigree information, combine pedigree and marker information (and so
are referred to as IBD-based), or use only marker information, either
incorporating (also referred to as IBD-based) or not LD between SNPs

(IBS-based). In this sub-section, we present a brief but detailed description
of these five studied measures and the methods used to compute them.
The first measure is Wright’s additive relationship (Wright 1922), defined

as twice the coancestry between two individuals. As it is standard, additive
relationships can be computed recursively from the pedigree information
(Henderson 1984). The procedure returns the standard numerator
relationship matrix (A) and was implemented by means of the R-package
(http://www.r-project.org) “synbreed” (Wimmer et al. 2012). Pedigree errors
were corrected using molecular marker information, before building up the
A-matrix, as described by Muñoz et al. (2014).
The two IBD-based measures employed a hidden Markov model (Han

and Abney 2011; Han and Abney 2013), where the hidden states are the
nine possible condensed identity states (Jacquard 1974) on a locus for a
given pair of individuals, and the observed states are the marker
genotypes. The first of these methods use the pedigree information to
assign hidden state probabilities for the first marker in the chromosome
and next to estimate the transition probabilities between states, and the

Table 2. Number of genotyped and non-genotyped trees and mothers of the studied five progeny trials of the open-pollinated Eucalyptus dunnii
population studied.

Site Del Valle Concepción Ubajay Istueta Cerro

Number of trees with phenotype 682 1010 1416 1039 713

Number of genotyped trees 120 228 294 0 0

Number of trees from mothers with genotyped offspring 484 1010 1357 0 0

Total number of mothers 59 54 75 69 51

Number of mothers with genotyped offspring 41 54 72 0 0

Fig. 1 Phenotype frequency distribution. Frequency histograms of
diameter at breast height (DBH) and stem straightness (STR, based
on the observed original scale 1–4) for the entire Eucalyptus dunnii
population (gray= all population) and genotyped trees (black=
genotyped).
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probabilities of the observations given the underlying state. These
transition probabilities are calculated according to the actual distances
between markers, as well as the pedigree connecting the pair under
consideration. The “emission” probabilities of any locus, in turn, depend on
the observed allele frequencies and the genotypes at the previous loci,
accounting thus for LD between markers. As a result, a multi-point
estimation of probabilities of each condensed identity state is given, which
is next averaged over the full set of markers to obtain an estimate of the
genome-wide IBD sharing for each pair of individuals. These estimates are
used to build up the genomic relationship matrix GHA. We implemented
this method by means of the IBDLD v3.14 software (Han and Abney 2011)
using the “LD-RR” option, keeping the default parameters for the number
of previous loci (i.e., window size) equal to 10 and the distance for
choosing previous loci equal to 2 cM. A sensitivity analysis showed that
when the window size was set to 20 and 40 loci, no big differences were
observed in the estimates of relationship coefficients (only differences in
the third decimal place) and variance components (also only differences in
the third decimal place).
The second IBD-based measure is similar to the previous one, but it does

not use pedigree information. In turn, it only uses the marker information
of each individual and the genetic map of the markers (Han and Abney
2013). We also implemented this method by means of the IBDLD
v3.14 software (Han and Abney 2011) but using the “GIBDLD” option.
The resulting genomic relationship matrix is termed GHA-G.
Finally, two measures that use only marker information were also

computed. The first one of these is an IBS-based method widely used in
forest GS studies (Vanaden 2008, Method 1), in which the realized genomic
relationships between all pair of individuals are calculated as:

GVR ¼ WW 0

2
P

pi 1� pið Þ
where W is a matrix with entries equal to wij= gij−2pi, in which gij is the
gene content at SNP locus i for tree j, and pi is the current (or observed)
allele frequency for marker i. Notice that it assumed that the gene content
of any locus is independent of the rest, so GVR does not exploit LD (Gianola
et al. 2020). Indeed, a random permutation of the SNPs position will result
in the same GVR matrix (Forneris et al. 2016). The GVR matrix was calculated
using R-package (www.r-project.org) “synbreed” (Wimmer et al. 2012).
The last measure of relatedness computed, also based solely on

molecular markers, was the method developed by Yang et al. (2010).
According to this procedure, the genomic covariance matrix (GY) is
calculated as:

GY ¼ ZZ0

m

where Z contains standardized genotypes calculated as zij ¼
gij � 2pi
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pi 1� pið Þp

for which gij and pi are the same as described
above, and m is the number of SNPs. This method was described by
Meuwissen et al. (2011) as the best estimate of genetic relationships when
a high proportion of loci with low MAF are used. We employed the R-
package (http://www.r-project.org) “AGHmatrix” (Amadeu et al. 2016) to
implement this method.

Statistical analysis
Due to spatial heterogeneity within trials, as well as for reasons of
computational efficiency, the statistical analyses were conducted in two
stages. In the first stage, a pedigree-based single-trait single-site classical a
priori block design model (Block) and a posteriori spatial model with a first-
order autoregressive error (co)variance structure (AR1 × AR1) (Cappa et al.
2019), were fitted to data from each combination of trait and site. The most
appropriate model (i.e., either Block or AR1 × AR1) was then chosen based
on the spatial distribution (heatmap) and semivariogram of residuals
(Gilmour et al. 1997), and the Akaike information criterion (Table S3). Fig.
S3 illustrates an example of the spatial patterns (i.e., spatial effects) found
from the Block and AR1 × AR1 models for DBH and NSTR at the site Del
Valle. The goal of this stage was to generate spatially adjusted phenotypes
for each tree accounting for environmental variation in each of the
five sites.
More explicitly, the single-trait single-site a priori block design model

(Block) was as follows:

y� ¼ Xβþ Zbbþ Zaaþ e (1)

where y* is the vector of original individual-tree observations, β is the

vector of fixed effects for genetic groups formed according to provenance;
b is the vector of random block effects distributed as b � N 0; Iσ2b

� �
, where I

is the identity matrix and σ2b is the block variance; a is a vector of random
effects that represents the genetic effects (or breeding values) distributed
as a � N 0;Aσ2a

� �
where A is the numerator relationship matrix derived

from the pedigree (Henderson 1984) and σ2a is the additive variance.
Finally, e is the vector of random residuals distributed as e � N 0; Iσ2e

� �
where σ2e is the residual variance. In turn, for the spatial model (AR1 × AR1),
the vector e was partitioned into spatially dependent (ξ) and spatially
independent (η) residuals. Therefore, the residual (co)variance matrix can
be expressed as σ2ξ AR1 ρcolð Þ � AR1 ρrowð Þ½ � þ σ2ηI, where σ2ξ is the spatially
dependent variance, σ2η is the spatially independent variance, AR1(ρ) is the
first-order autoregressive correlation process, ρcol and ρrow are autocorrela-
tions parameters for columns and rows, respectively, and ⊗ denotes the
Kronecker product. The X, Zb, and Za are all incidence matrices for their
respective effects.
In the second stage, the spatially adjusted phenotypes were obtained

for each tree and trait and at each site by subtracting the estimated block
(NSTR for all sites except at the site Del Valle, see Table S3) and the
autoregressive residual effects (ξ, model [1]) (DBH for all sites and NSTR at
the site Del Valle, see Table S3) from the original phenotypes. After
adjusting phenotypes, a pedigree-based (ABLUP) multiple-trait multiple-
site mixed model was fitted as:
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or, more compactly as:

y ¼ Xβþ Zaþ e

where y ¼ y011; ¼ ; y0ij ; ¼ ; y025
h i

is the vector of spatially adjusted
phenotypes for each i trait (I= DBH and NSTR) and j site (j= Del Valle,
Concepción, Ubajay, Istueta, and Cerro); β ¼ β011; ¼ ; β0ij ; ¼ ; β025

h i
is the

vector of fixed effects for provenance for each trait-site combination; the
random vector of genetic effects in a ¼ a011; ¼ ; a0ij ; ¼ ; a025

h i
is distributed

as a � N 0; Σ0 � Að Þ, where Σ0 is the (co)variance matrix of genetic effects
for each combination of the two traits (DBH and NSTR) and the five sites
(Del Valle, Concepción, Ubajay, Istueta, and Cerro) with dimension 10 × 10,
and A is the numerator relationship matrix (Henderson 1984) containing
the additive relationships among all trees: 75 mothers without records plus
4860 offspring with data in y. Finally, e ¼ e011; ¼ ; e0ij ; ¼ ; e025

h i
is the vector

of random residual distributed as e � N 0; R0 � Ið Þ where R0 is the residual
(co)variance matrix for each combination for the two traits and five sites
with dimension 10 × 10. We assumed an unstructured (co)variance matrix
for the genetic effects (Σ0). However, for the residual (co)variance matrix
(R0), we set the covariances between traits across sites to zero, given that
the sites were assessed separately. The matrices Xij and Zij relate the
spatially adjusted phenotypes to the means of the provenances β0ij

h i
, and

the genetic effects in a0ij
h i

. The symbol ′ indicates the transpose operation.
For the prediction of the genetic effects, the A-matrix based on the
pedigree is used to solve the following mixed model equations (MME,
Henderson 1984):

X 0R�1X X 0R�1X

Z0R�1X Z0R�1Z þP
0 �A

" #
β

a

� �
¼ X 0R�1y

Z0R�1y

� �
(3)

In order to fit the ssGBLUP models, the A-matrix of model [2] and MME
[3] was replaced by the H-matrix, of the same dimension as the A-matrix.
This matrix is a function of the genomic relationship matrices described
above. Actually, only the inverse of H is needed to fit the ssGBLUP models.
The inverse of the H-matrix (H−1) was obtained as follows (Misztal et al.
2009; Legarra et al. 2009; Aguilar et al. 2010; Christensen and Lund 2010):

H�1 ¼ A�1 þ 0 0

0 λ G�1 � A�1
22

� �
" #

where λ scales the differences between genomic and pedigree-based
information, G−1 is the inverse of the corresponding genomic relationship
matrix (either, as described above, GHA, GHA-G, GVR, or GY), and A�1

22 is the
inverse of the pedigree-based relationship matrix for the genotyped
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individuals. In all our analyses, the weight on the pedigree was λ= 0.95.
Genomic relationship matrices calculated using only marker information
(GHA-G, GVR, and GY) were scaled to have the same diagonal and off-
diagonal averages as the corresponding A-matrix, as previously described
Christensen et al. (2012) (Eq. (4)).
The narrow-sense heritability bh2 for each trait-site combination was

estimated as:

bh2ij ¼ bσ2aijbσ2aij þ bσ2eij
where bσ2aij is the estimated genetic variance for the i trait and j site, and bσ2eij
the estimated residual variance for the i trait and j site from the multiple-
trait multiple-site model [2]. The genetic correlations, br, were estimated as:

brij ¼ bσaijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2aii bσ2ajj
q

where bσ2aii and bσ2ajj are the genetic variances for the traits or sites i and j,
respectively, and bσaij is the estimated covariance between traits or sites i
and j from the multiple-trait multiple-site model [2].
The ABLUP and the four ssGBLUP (ssGBLUPHA, ssGBLUPHA-G, ssGBLUPVR,

and ssGBLUPY) evaluation models described above were fitted in R (www.r-
project.org), with the function remlf90 from the package “breedR” (Muñoz
and Sánchez 2014), using the expectation-maximization (EM) algorithm
followed by one round of an average information (AI) algorithm to
compute the standard deviations of the variance components, heritabil-
ities, and genetic correlations (Chateigner et al. 2020). The remlf90 function
in the R-package “breedR” is based on the REMLF90 (for the EM algorithm)
and AIREMLF90 (for the AI algorithm) of the BLUPF90 family (Misztal et al.
2018). The program preGSf90, also from the BLUPF90 family (Misztal et al.
2018), was used to build up the inverse of the H-matrices (
H�1
HA ; H

�1
HA�G; H

�1
VR ; andH

�1
Y ).

Relatedness coefficients and model performance
The mean and variance of the five measures of pairwise relatedness
coefficients across either half-sibs or unrelated trees were calculated and
compared. Self-relationships were also considered. Additionally, to study
the population (and family) structure of the E. dunnii dataset, we generated
a network visualization of these five types of relatedness coefficients.
Following the work by Rincent et al. (2012), we represented each
genotyped or non-genotyped tree in a network in which two individuals
are either linked when their estimated relationship coefficient is larger
than 0.05, or unlinked. We used the R-package (http://www.r-project.org)
“network” (Butts 2008) to generate and plot this representation.
In turn, ABLUP and the four ssGBLUP models were compared in terms of

their predictive ability and prediction bias. Tenfold cross-validation with
ten replications was carried out, in which one random subsample was used
as the validation set and the remaining nine samples as the training set. All
trees with phenotypic data were in the training population at least once in
each replication. The variance components were fixed to the respective
variance components calculated with all the available trees with
phenotypic data in the cross-validation analysis. The predictive ability
was determined as the Pearson correlation between the estimated
breeding values from the ABLUP, ssGBLUPHA, ssGBLUPHA-G, ssGBLUPVR,
and ssGBLUPY model obtained by fitting the full data set (i.e., using all the
available phenotyped trees, 4860 trees) and those of the validation set
predicted from the respective model, multiplied by the square root of the
narrow-sense heritability of each trait-site combination calculated using
ABLUP for all available trees (Legarra et al. 2008). Standard errors (SE) were
computed using the following expression: SE ¼ σ=

ffiffiffi
n

p
, where σ is the

standard deviation across replicates, and n is the number of replicates (10).
The prediction bias was calculated by regressing the observed breeding

values of the trees estimated using the full data set, on those predicted
with either the ABLUP, ssGBLUPHA, ssGBLUPHA-G, ssGBLUPVR, or ssGBLUPY
model. A slope equal to one is consistent with no bias, while an estimate
greater or smaller than one indicates deflated or inflated predictions,
respectively.
In this study, only the predictive ability and prediction bias of the

genotyped trees from the validation set of the three genotyped sites (Del
Valle, Concepción, and Ubajay) are presented for all site-trait combinations
examined.
An analysis of variance (ANOVA) on the predicted ability and the

prediction bias measures was performed to test differences in performanceTa
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across the pedigree (ABLUP) and the four ssGBLUP models. A Tukey’s
multiple comparison test was employed at a significance level α= 0.05.
Programs from the BLUPF90 family (Misztal et al. 2018) were used for

cross-validation analyses. A customized R-script was written to automate
the cross-validation analyses.

RESULTS
Relatedness and genomic relationship matrices
Statistics of the distribution of pairwise relatedness coefficients for
both half-sibs and unrelated genotyped trees, as well as for self-
relationship coefficients, are presented in Table 3 and Fig. 2. For
the 642 genotyped trees, a total of 205,761 pairwise relationships
were estimated, 98.38% (202,426) of which involved estimates for
unrelated individuals (according to the pedigree) and only 1.62%

(3335) represented half-sibs. This latter proportion varied across
sites with genotyped trees: 3.00% for Del Valle, 1.82% for
Concepción, and 1.30% for Ubajay.
As expected, the estimated pairwise coefficients were con-

sistently larger for related trees than for unrelated ones (the
average across different marker-based measures was 0.278
against 0.000, respectively). However, these averages exhibited
differences across the four IBD- and IBS-based methods. For
related individuals, Table 3 and Fig. 2 show that the IBS-based
methods yielded, on average, the largest estimated pairwise
coefficients (GVR= 0.291 and GY= 0.290), followed by the IBD-
based methods GHA-G (0.270) and GHA (0.261). The same trend
was observed for the standard deviations (SD), where the IBS-
based values were consistently larger (GVR= GY= 0.092) than

Fig. 2 Distribution of estimated actual pairwise relatedness coefficients for genotyped trees belonging to the same (half-sibs) or
different (unrelated) family, as well as self-relationships (Selfs), obtained by Han & Abney, either considering (GHA) or not (GHA-G)
pedigree information, VanRaden (GVR), and Yang (GY) methods. The dotted line represents Wright’s additive relationship for each group.
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the IBD-based ones (GHA= 0.055 and GHA-G= 0.086); on average,
SD of IBS-based relationships was 30.50% larger than IBD-based
relationships. For unrelated individuals, the actual relatedness
estimates obtained were, on average, close to the expected
value of zero for all methods. However, the SD followed the

same trend as for related individuals, i.e., the IBS-based
approaches showed larger SD (GVR= GY= 0.036) than the IBD-
based approaches (GHA= 0.000 and GHA-G= 0.022); on average,
SD of IBS-based relationships was 227.27% larger than IBD-
based relationships.

Fig. 3 Network representation of pedigree-based (A) and combined pedigree-genomic (H) relationship matrices. Each H-matrix was built
up based on a different relatedness measure between genotyped trees (see text for references). The colored circles represent the 75 half-sibs
Eucalyptus dunnii families, whereas larger clusters and edges represent connections among these families. The network connects trees that
have a kinship > 0.05. White and black smallest dots represent trees with pedigree and with genomic information, respectively. The colors
represent the seven provenances: Acacia Creek (yellow), Boomi Creek (blue), Dead Horse Track (violet), Oaky Creek (brown), South Yabra State
Forest (orange), Unumgar State Forest (green), and Argentinean landrace (Oliveros, light blue).
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On average, the self-relationships coefficients were equal to the
expected value of one for all genomic matrices. In fact, this is by
design for the case of matrices calculated using only marker
information. Recall that these matrices were scaled so that the
means of diagonals (and off-diagonals) are the same as in the
pedigree relationship matrix (Christensen et al. 2012). Instead, the
SD of these diagonal entries were more close to zero for IBD-based
estimators (GHA= 0.003 and GHA-G= 0.004) than for IBS-based
ones (GVR= 0.048 and GY= 0.046).

Pedigree and combined pedigree-genomic relationship
matrices
In ssGBLUP, the relationship matrix H is obtained by combining
the marker-based relationships between genotyped trees with the
additive relationships between non-genotyped trees. For each
genomic relationship matrix, a corresponding H-matrix was built
up. Network visualization of these H-matrices is presented in Fig. 3.
In the figure, each node represents either a genotyped (black) or a
non-genotyped (white) tree, and pairs of individuals with a
relationship coefficient larger than 0.05 are linked by an edge
(black) (Rincent et al. 2012). At a first glance, a clear pattern arises,
clustering tightly the trees belonging to each of the 75 half-sib
families. For the pedigree-based (A) and HHA matrices, these
clusters appear unlinked with the other clusters, meaning that a
model with this covariance structure assumes no correlations

between breeding values beyond the family level. Instead, all
other H-matrices show connections among families. The color
palette helps relating these connections to the seven different
provenances of the families. Interestingly, the HHA-G matrix
showed lower connectivity among trees from families of the
same provenances, and lower clustering of families of the same
provenance, than matrices HVR and HY. Moreover, in the HHA-G

matrix, the provenance Unumgar State Forest (in green) has not
connected with the other provenances (i.e., the relationship
coefficient is lower than 0.05). In the HHA-G, HVR, and HY matrices, is
also clear one isolated cluster from one half-sib family of the Dead
Horse provenance (in violet), with all non-genotyped trees (i.e., all-
white node).

(Co)variance components estimation
Table 4 displays the estimates of genetic parameters for diameter
at breast height (DBH) and stem straightness normal score (NSTR)
within each progeny trial for each of the five models fitted.
Overall, there are clear and important differences in the estimates
between the models that fitted IBD-relatedness measures (ABLUP,
ssGBLUPHA, and ssGBLUPHA-G) and the models that fitted an IBS-
based genomic matrix (ssGBLUPVR and ssGBLUPY). The latter, in
general, produced the largest heritabilities, with some variation
across sites (remarkably, Del Valle site against the others). The
ssGBLUP model estimates showed lower SE than the ABLUP

Fig. 4 Average predictive ability and prediction bias for diameter at breast height (DBH) and stem straightness normal score (NSTR) of
each of the five models fitted: ABLUP and the four single-step GBLUP models (see text for references). Vertical bars represent standard
error and different letters above bars indicate significant differences (p-value < 0.05) between values of predictive accuracy or prediction bias
for the five evaluation models as assessed by Tukey’s multiple comparison tests.
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estimates, except for those from the ssGBLUPHA-G model that was
similar to the ABLUP one.
We also estimated genetic correlations between DBH and NSTR

traits within and across sites. Overall, our results showed that the
genetic correlations within sites estimated using the ABLUP and
ssGBLUP models were moderate to high and positive at the sites
Del Valle, Istueta, and Cerro, ranging from 0.533 to 0.849 (average
of 0.668, Table S4). However, at the Concepción and Ubajay sites,
the genetic correlations between these traits were low and
ranging from −0.024 to 0.166 (average of 0.093) for the ABLUP
and the models that fitted the IBD-based genomic matrix
(ssGBLUPHA and ssGBLUPHA-G), and large and positive (from
0.645 to 0.736; an average of 0.696) for the models that fitted
an IBS-based genomic matrix (ssGBLUPVR and ssGBLUPY) (Table
S4). Estimates of genetic correlations between sites from the
ABLUP and ssGBLUP were high for DBH (average of 0.761, Table
S5) with values ranging from moderate to high (from 0.432 to
0.969), with the lowest values between the sites Istueta and
Ubajay (average of 0.573) and Istueta and Cerro (average of 0.520).
Slightly higher genetic correlations were obtained for NSTR
(average of 0.841, from 0.445 to 0.999) (Table S5). As we observed
for the estimates of heritability and genetic correlation between
traits, higher estimates of the correlation between sites were
founded for models that fitted the IBS-based genomic matrix
(average across sites 0.717) compared to the IBD-based genomic
matrix (average across sites 0.400).

Accuracy and bias of predicted breeding values
Predictive abilities and prediction bias of each of the five models
fitted to DBH and NSTR data are presented in Fig. 4. Our empirical
study in E. dunnii showed that the ssGBLUP models provided
larger predictive abilities (average correlation across sites= 0.648
and 0.632, for DBH and NSTR, respectively) than the pedigree-
based ABLUP model (average correlation across sites= 0.406 and
0.400, for DBH and NSTR, respectively), with a single exception for
NSTR at the site Concepción. As expected, this superiority of the
genomic predictions over the traditional pedigree predictions was
more pronounced when heritabilities were lower. For instance, the
ssGBLUPHA breeding value prediction for DBH was 104.85% more
accurate (i.e., the model showed larger predictive ability) than the
pedigree-based one when heritability was 0.246 (site Concepción),
while with a heritability of 0.808 (site Del Valle), the corresponding
difference was only 9.27%. Similar results were obtained for the
IBS-based model ssGBLUPVR, which showed 90.69 and 13.18%
greater accuracies than the pedigree-based method for heritabil-
ities of 0.246 and 0.808, respectively.
Among the ssGBLUP models, the ones that fitted an IBD-based

covariance structure showed clear superiority over the ones that
fitted an IBS-based one (Fig. 4). There was only one exception to
this, in Del Valle site, where the ssGBLUPY predictions for DBH and
ssGBLUPVR predictions for NSTR outperformed the ssGBLUPHA
predictions. The differences, however, were small compared to the
other cases; the large heritability in this site leveled out all
differences in performance among models. Within each group of
models (i.e., IBS- and IBD-based), differences were smaller,
although statistically significant for IBD-based ones, favoring
ssGBLUPHA-G, and not significant for the IBS-based ones, with a
few exceptions.
Regarding prediction bias, the least-square estimates of the

regression coefficients for the two studied traits and the three
sites with genotyped trees ranged from 0.726 to 0.915 for the
ABLUP model, from 0.720 to 0.943 for the IBD models (ssGBLUPHA
and ssGBLUPHA-G), and from 0.480 to 0.879 for the IBS models
(ssGBLUPVR and ssGBLUPY) (Fig. 4). Averaged across sites, the IBD-
based ssGBLUPHA-G model showed the lowest bias. Within the IBS-
based ssGBLUP models, ssGBLUPVR predictions showed no
differences in bias with respect to predictions from ssGBLUPY,
except for NSTR at Concepción and Ubajay sites.

DISCUSSION
GS based on combining phenotype, pedigree, and genomic
information by means of the ssGBLUP is becoming an important
tool in forest tree breeding. Predictive ability using ssGBLUP
depends on the choice of genomic relationship matrix (Speed and
Balding 2015). Here, using data from an E. dunnii breeding
population we compared the accuracy and bias of predicted
genomic breeding values of four multiple-trait multiple-site
ssGBLUP models, each with a different genomic relationship
matrix derived from two IBD- and two IBS-based relatedness
measures. As a reference, we also fitted a standard pedigree-
based model without the use of marker information. To the best of
our knowledge, neither multiple-trait and multiple-site models nor
IBD-based genomic relationship matrices have been previously
employed in GS in forestry.

Relatedness and genomic relationship matrices
Accurate genomic prediction of breeding values from GS models
depends entirely on how well marker-derived genomic relation-
ships describe actual genetic relationships realized at unobserved
causal loci (de los Campos et al. 2013). This is, to the extent to
which marker-based relationships properly describe the unob-
served genetic relationships at trait loci (Hill 2014). In connection
to this, we presented descriptive statistics of the different
relatedness measures we calculated across trees with the same
pedigree relationship. IBD-based measures of relatedness have
consistently lower standard deviations than those from IBS-based
approaches (see Table 3 and Fig. 2). These findings are in
agreement with Forneris et al. 2016, who reported for a pig
dataset that standard deviations of IBD-based relationship
coefficients (GHA, as used here) were smaller than their IBS-
based counterparts (e.g., GVR as used here) for different types of
relatives. In related work, García-Baccino et al. (2017) found that
the actual relationship of half-sib pigs, estimated with relatedness
measures that do not use pedigree information (e.g., GVR as used
here), had larger standard deviations than the ones estimated
with genomic and pedigree data (e.g., GHA as used here). As
discussed by Wang et al. (2017), these results are expected, given
that IBD-based estimators make use of additional sources of
information through linkage analysis and LD between markers
and, thus, follow the true inheritance of DNA that is segmental in
nature. Actual LD patterns are informative of the joint inheritance
across markers.

Heritability estimates
Estimates of heritability from ssGBLUP models with IBS genomic
relationship matrices (GVR and GY) were larger than those
estimated from both IBD ones (GHA and GHA-G) and pedigree (A)
(Table 4). Kumar et al. (2016) demonstrated that in structured
populations, like the one analyzed here, BLUP analyses with
genomic relationship matrices based solely on marker information
produced biased heritability estimates with unreliable SE. Accord-
ing to these authors, the bias arises because, in structured
populations, thousands of eigenvalues from IBS G-matrices are
closely packed (near 0) and have large sampling errors associated
with their values. This bias is proportional to the skewness of the
genomic relationship matrix eigenvalues distribution. Network
representation revealed some population structure in the E. dunnii
population used in this study (Fig. 3). Skewness values founded for
the eigenvalues of the IBS G-matrices were twice as large (GVR=
7.29 and GY= 7.29) as those from IBD G-matrices (GHA= 3.47 and
GHA-G= 4.32). The same patterns were observed when we
analyzed the eigenvalues of the corresponding H-matrices.
Several authors have also studied from a theoretical perspective

the problem of biases in the heritability estimates when fitting
genomic models. de los Campos et al. (2015) warned about
problems arising when GBLUP approaches are used for variance
components inferences in complex traits, especially in populations
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with distantly related individuals as the E. dunnii one studied here.
In these populations, when large numbers of markers are in
linkage equilibrium with the underlying QTLs, G-matrices build up
using IBS-based measures can lead to an incorrect specification of
genomic relationships and this can result in potential incon-
sistencies of estimates of genomic heritability. Wang and
Thompson (2019) investigated the properties of the heritability
estimates when the genetic correlation matrix differs from the
truth. They show that heritability estimates can be biased if the
genetic correlation matrix is misspecified, especially, when the
population sample contains many remotely related individuals.
Cuyabano et al. (2018) also concluded that if the covariance
structure specified by the genomic model provides a poor
description of that specified by the true inheritance process, then
the likelihood misspecification may lead to the biased inference of
the variance parameters.
All together, our results suggest that heritability estimates

obtained for this E. dunnii population using IBS models could have
been biased. However, this assertion should be taken with caution,
because the results were not uniform across all the traits and sites
studied; e.g., one exception was observed for the NSTR trait at the
Del Valle site (Table 4). As stated by de los Campos et al. (2015),
further research is needed to understand under what circum-
stances GS approaches based on IBS-based methods can be used
to correctly estimate genetic parameters of interest.
Now, comparing the models with IBS genomic relationship

matrices, both resulted in similar heritabilities estimates (Table 4).
This result shows that the different scaling that these two genomic
relationship matrices performed didn’t have a large impact on
variance component estimation for the two studied traits (DBH
and NSTR) in the E. dunnii population. Given that this is the first GS
forestry study that contrasts these two IBS-matrices, a comparison
with other studies is not feasible. However, in animal breeding,
using a GBLUP model, Choi et al. (2017) also observed no
differences in the variance components and heritability for
intramuscular fat trait assessed in Korean cattle using the G-
matrices proposed by VanRaden (2008) and Yang et al. (2010).
These two IBS approaches were compared in a Merino sheep
dataset by Clark et al. (2013) and they neither observed
differences in the estimates of variance components and
heritability.

Predictive ability and bias
In this study, the ssGBLUP models showed larger predictive ability
than the standard ABLUP model for all the trait-site combinations
studied (Fig. 4). Under the pedigree-based ABLUP model, and in
the absence of inbreeding and of assortative mating, the accuracy
of prediction of breeding values is limited given that the
Mendelian segregation term can explain the 50% of the
individual’s breeding value variance (Daetwyler et al. 2013).
However, when genomic information from a large number of
markers is available, the Mendelian sampling term can be
estimated with great accuracy early in its life even when an
individual’s own record or records from progeny is not yet
available. Cantet and Vitezica (2014) demonstrated that this gain
in accuracy of predicted breeding values is explained by markers
accounting for a greater proportion of the individual’s breeding
value variance and a concomitant reduction in the variance of the
Mendelian residuals.
As expected, the superiority of the ssGBLUP GS models over the

ABLUP model was more important for those trait-site combina-
tions with lower heritability. Previous studies on marker-assisted
selection have shown that selection response rates are relatively
larger for traits with lower heritability estimates (Lande and
Thompson 1990; Meuwissen and Goddard 1996). However, as
discussed by Su et al. (2010), these calculations were conditional
on the fact that QTL had been identified, which is much more
difficult for low-heritability traits because of the low statistical

power of detection. In GS approaches, however, information from
a large number of SNP markers is used to estimate breeding
values without having a precise knowledge of where the QTLs are
located, and this is the reason that accurate breeding values can
be obtained even for low-heritability traits. As in our work, several
studies in forest tree species using both simulated and empirical
data have shown that GS is especially effective for low-heritability
traits over traditional ABLUP selection. For instance, Stejskal et al.
(2018) showed the advantage of GS (GBLUP) over the conven-
tional phenotypic selection (ABLUP) using stochastic simulations.
Similar findings were reported for Eucalyptus grandis and using
ssGBLUP (Cappa et al. 2019) and in Pinus radiata and Eucalyptus
nitens using GBLUP GS approaches (Klápště et al. 2020b).
The application of GS models for growth, stem straightness, and

wood quality traits in E. dunnii has been understudied. For DBH,
the predictive ability reported here is consistent with recent
results in E. dunnii by Jones et al. (2019) and larger than those
reported by Naidoo et al. (2018). Though GBLUP and ssGBLUP GS
approaches has been scarcely studied in E. dunnii, there is
extensive literature on tree species in general (e.g., Isik et al. 2016;
Li et al. 2019; Calleja-Rodriguez et al. 2020) and Eucalyptus in
particular (e.g., Resende et al. 2012; Klápště et al. 2018;
Thavamanikumar et al. 2020). For instance, a similar predictive
ability of GS was reported for stem straightness in Pinus radiata D.
Don (0.55; Li et al. 2019), Eucalyptus nitens (0.65; Klápště et al.
2018), and for stem sweep (a measure of tree stem straightness) in
Pinus pinaster Ait. (0.49; Isik et al. 2016). Predictive abilities
reported for growth traits were also quite similar to those found in
our work (Klápště et al. (2018) in Eucalyptus nitens, 0.63; Resende
et al. (2012) in two Eucalyptus hybrid populations, 0.51–0.54; Isik
et al. (2016) in Pinus radiata D. Don, 0.43–0.47; Thavamanikumar
et al. (2020) in Eucalyptus pellita, 0.60–0.82; Calleja-Rodriguez et al.
(2020) in Pinus sylvestris L., 0.66–0.75).
Across the two traits and three sites with genotyped trees,

greater prediction ability and lower bias were associated with
ssGBLUP models that used IBD-based G-matrices (Table 3 and Fig.
4). Other researchers have also compared predictive performance
between IBD and IBS models. Our results agree with previous
findings in the simulation study carried out by Forneris et al.
(2016). On the other hand, in the simulation study carried out by
Vela-Avitúa et al. (2015), where a strong family structure (full-sib
families) was simulated, the genomic prediction based on IBS
relatedness measures was slightly superior to the one based on
IBD information when dense marker panels were used. At lower
densities (≤100 SNPs/Mbp) the IBD model was more accurate. The
IBD model used in the study by Vela-Avitúa et al. (2015) didn’t
include information on LD and this could explain the different
results they obtained compared to our own work. Fitting a GBLUP
model to data on scanned trait eye muscle depth in Merino sheep,
Clark et al. (2013) found that there was no difference in accuracy
between the IBS and the IBD methods. Luan et al. (2012) obtained
small favorable differences in accuracies of predicted breeding
values of dairy bulls when using an IBD relatedness estimator.
We hypothesize that the increase in the predictive ability of the

ssGBLUP models based on IBD relatedness measures was due to a
better account for the realized relationship between related (and
unrelated) trees, and consequently to the increased similarity
between the IBD-based covariance matrix and the true genetic
relationships at unobserved causal loci (de los Campos et al. 2013)
compared with the IBS-based matrix used in ssGBLUP. As we
stated above, IBD-based estimators make use of additional sources
of information through pedigree and LD between markers. Further
evidence in support to our hypothesis was attained when we
calculated the predictive ability in terms of correlations between
predicted breeding values and adjusted phenotypes (see r2 in
Klápště et al. 2020a) (results not shown). Lower predictive ability
than the one obtained in terms of correlations between breeding
values was observed. In addition, predictive ability from the
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ssGBLUP models with IBD-based genomic matrices was also
higher than the one estimated from IBS-based matrices for the
two studied traits. These findings suggest a limited short-range LD
between markers and putative QTLs underlying the trait in this E.
dunnii population and support our previous interpretation:
predictive performance is mainly driven by the ability of markers
to capture realized relatedness. Therefore, and as other authors
have also observed (Forneris et al. 2016; de los Campos et al.
2013), our results point towards the idea that the better ability in
capturing the true patterns of realized genetic relationships at
unobserved causal loci of the IBD-based relationship matrices
should be seen as the key factor for the higher predictive ability
obtained from the IBD-based ssGBLUP models in this population.
Comparing the two IBD ssGBLUP models, the one that fitted a

genomic covariance matrix without pedigree aid (GHA-G) resulted,
in general, in larger predictive abilities than the one that used
pedigree information (GHA) (Fig. 4). The latter infers relationships
by tracing the transmission of markers throughout the pedigree
(linkage analysis) while accounting for population LD or back-
ground sharing beyond the pedigree (Forneris et al. 2016). In our
case, given that families were unrelated, it only captured
information from known half-sibs, which typically share long
chromosomal segments IBD (Ødegård and Meuwissen 2014). In
contrast, the former, which also considers LD but whose estimates
are not conditional to the pedigree, tends to pick up short-range
hidden relationships (e.g., among founding families). Arguably, the
additional information from hidden relationships between indivi-
duals helped to improve the accuracy of the predicted breeding
values. Therefore, this larger accuracy could be explained by a
deeper exploration of the background IBD sharing (i.e., beyond
the pedigree) while also accounting for the population-wide LD.

Heritability vs predictive performance
As we have already pointed out, IBS models produced larger
heritabilities but lower predictive performance than IBD models.
Using simulations and real human data from related and unrelated
individuals, de los Campos et al. (2013) also reported that the
estimates of genomic heritability did not follow the same patterns as
those of predictive ability. As these authors explained, the entries of
the derived genomic relationships matrices represent, in different
ways, the patterns of realized genetic relationships at causal loci:
some of these elements (off-diagonal elements of related individuals
and diagonal elements) represent very well the true covariance
function while others (off-diagonal elements of distant relatives and
pairs of unrelated individuals) do not. In addition, as they pointed out,
variance components estimators are functions of diagonal and off-
diagonal elements of G-matrix whereas the predictive ability is mainly
determined by the off-diagonal entries of G-matrix and, therefore,
these two tasks (inference vs. prediction) are driven, in part, by
different forces (de los Campos et al. 2013). Given that the E. dunnii
breeding population we studied here showed a larger proportion of
pairs of unrelated trees compared to related ones plus self-
relationships (Table 3), we believe our contrasting results on
heritability estimates and predictive ability could be explained by
these considerations. These should be taken into account in further
GS forestry studies.

CONCLUSION
This is the first study that investigated the potential benefit of using IBD
measures of relatedness in the context of ssGBLUP methods for the
prediction of breeding values in forestry data. Our study, that fitted
data on an E. dunnii population, showed that marker-based IBD
genomic relationship matrices produced consistently larger predictive
abilities than standard IBS genomic matrices, over a range of two
different traits and five different experimental sites. The benefit of using
ssGBLUP methods, compared to standard pedigree-based approaches,
was more relevant for trait-site combinations with lower heritability.

DATA AVAILABILITY
Information of the Eucalyptus dunnii trials including phenotypic, pedigree, and
genomic data are available in the Zenodo repository, https://doi.org/10.5281/
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