Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide association studies demonstrate that TASP1 contributes to increased muscle fiber diameter

Abstract

Muscle fiber diameter is an economically important trait because it affects meat yield and quality. However, the genetic basis underlying muscle fiber diameter has not been determined. In this study, we collected THREE muscular histological phenotypes in 479 ducks from an F2 segregating population generated by mallard × Pekin duck crosses. We performed genome-wide association studies (GWAS) and identified a quantitative trait locus (QTL) significantly associated with muscle fiber diameter on chromosome 3. Then, we discovered the selection signatures using the fixation index among 40 mallards and 30 Pekin ducks in this QTL region. Furthermore, we characterized the recombination event in this QTL region and identified a 6-kb block located on TASP1 that was significantly associated with muscle fiber diameter. Finally, five SNPs were screened as potential causative mutations within the 6-kb block. In conclusion, we demonstrated that TASP1 contributes to an increase in muscle fiber diameter, which helps to characterize muscle development and contributes to the genetic improvement of meat yield and quality in livestock.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Pekin duck and mallard and their muscle fiber histomorphological data.
Fig. 2: GWAS for muscle fiber diameter and selective sweep analyses for the QTL region.
Fig. 3: Fine-mapping of the QTL region.
Fig. 4: The hypothesis that TASP1 regulation affects muscle fiber diameter: TASP1 encodes an endopeptidase to cleave MLL.

Data availability

All sequences have been deposited in the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) with the accession codes PRJNA471401 and PRJNA450892. We deposited the genome assembly, all of the sequence data and SNP information in BIG Data Center (http://bigd.big.ac.cn/)65. The accession numbers are PRJCA000651, PRJCA000647, and GVM000015. The Illumina sequencing data used in this study can be available at BIG Data Center (http://bigd.big.ac.cn/) with the accession code PRJCA001307. Other data sets supporting the results of this article are included within the article and its supplementary information.

References

  1. An JY, Zheng JX, Li JY, Zeng D, Qu LJ, Xu GY et al. (2010) Effect of myofiber characteristics and thickness of perimysium and endomysium on meat tenderness of chickens. Poult Sci 89(8):1750–1754

    CAS  PubMed  Google Scholar 

  2. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C et al. (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810

    CAS  PubMed  Google Scholar 

  4. Carlson ME, Conboy MJ, Hsu M, Barchas L, Jeong J, Agrawal A et al. (2009) Relative roles of TGF‐β1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 8(6):676–689

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen DY, Lee Y, Van Tine BA, Searleman AC, Westergard TD, Liu H et al. (2012) A pharmacologic inhibitor of the protease Taspase1 effectively inhibits breast and brain tumor growth. Cancer Res 72(3):736–746

    CAS  PubMed  Google Scholar 

  6. Chen XD, Ma QG, Tang MY, Ji C (2007) Development of breast muscle and meat quality in Arbor Acres broilers, Jingxing 100 crossbred chickens and Beijing fatty chickens. Meat Sci 77(2):220–227

    CAS  PubMed  Google Scholar 

  7. Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle: basic mechanisms and clinical implications. Curr Pharm Des 16(8):906–914

    CAS  PubMed  Google Scholar 

  8. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    CAS  PubMed  PubMed Central  Google Scholar 

  9. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Erfurth FE, Popovic R, Grembecka J, Cierpicki T, Theisler C, Xia Z-B et al. (2008) MLL protects CpG clusters from methylation within the Hoxa9 gene, maintaining transcript expression. Proc Natl Acad Sci 105(21):7517–7522

    CAS  PubMed  Google Scholar 

  11. Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M et al. (2009) HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113(11):2375–2385

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan W, Liu W, Liu H, Meng Q, Xu Y, Guo Y et al. (2020) Dynamic accumulation of fatty acids in duck (Anas platyrhynchos) breast muscle and its correlations with gene expression. BMC Genom 21(1):58

    Google Scholar 

  13. Gan J, Sonntag HJ, Tang MK, Cai D, Lee KK (2015) Integrative analysis of the developing postnatal mouse heart transcriptome. PLoS ONE 10(7):e0133288

    PubMed  PubMed Central  Google Scholar 

  14. Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead, UK. www.vsni.co.uk

  15. Gondret F, Lefaucheur L, Juin H, Louveau I, Lebret B (2006) Low birth weight is associated with enlarged muscle fiber area and impaired meat tenderness of the longissimus muscle in pigs1,2. J Anim Sci 84(1):93–103

    CAS  PubMed  Google Scholar 

  16. Gonyea W, Ericson GC, Bonde‐Petersen F (1977) Skeletal muscle fiber splitting induced by weight‐lifting exercise in cats. Acta Physiol Scand 99(1):105–109

    CAS  PubMed  Google Scholar 

  17. Hsieh JJ, Cheng EH, Korsmeyer SJ (2003) Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115(3):293–303

    CAS  PubMed  Google Scholar 

  18. Hwang YH, Kim GD, Jeong JY, Hur SJ, Joo ST (2010) The relationship between muscle fiber characteristics and meat quality traits of highly marbled Hanwoo (Korean native cattle) steers. Meat Sci 86(2):456–461

    PubMed  Google Scholar 

  19. Gille U, Salomon FV (1998) Muscle growth in wild and domestic ducks. Br Poult Sci 39(4):500–505

    CAS  PubMed  Google Scholar 

  20. Janssen I, Heymsfield SB, Wang Z, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 89(1):81–88

    CAS  PubMed  Google Scholar 

  21. Joo ST, Kim GD, Hwang YH, Ryu YC (2013) Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci 95(4):828–836

    CAS  PubMed  Google Scholar 

  22. Khan JA, Dunn BM, Tong L (2005) Crystal structure of human Taspase1, a crucial protease regulating the function of MLL. Structure 13(10):1443–1452

    CAS  PubMed  Google Scholar 

  23. Larzul C, Le Roy P, Gogué J, Talmant A, Jacquet B, Lefaucheur L et al. (1999) Selection for reduced muscle glycolytic potential in Large White pigs. II. Correlated responses in meat quality and muscle compositional traits. Genet Sel Evol 31(1):61

    PubMed Central  Google Scholar 

  24. Lee JK, Hallock PT, Burden SJ (2017) Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length. eLife 6:e29905

  25. Lee JT, Chen DY, Yang Z, Ramos AD, Hsieh JJD, Bogyo M (2009) Design, syntheses, and evaluation of Taspase1 inhibitors. Bioorg Medicinal Chem Lett 19(17):5086–5090

    CAS  Google Scholar 

  26. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li HF, Zhu WQ, Song WT, Shu JT, Han W, Chen KW (2010) Origin and genetic diversity of Chinese domestic ducks. Mol Phylogenet Evol 57(2):634–640

    CAS  PubMed  Google Scholar 

  28. Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170(4):421–435

    CAS  PubMed  Google Scholar 

  29. Ozawa S, Mitsuhashi T, Mitsumoto M, Matsumoto S, Itoh N, Itagaki K et al. (2000) The characteristics of muscle fiber types of longissimus thoracis muscle and their influences on the quantity and quality of meat from Japanese Black steers. Meat Sci 54(1):65–70

    CAS  PubMed  Google Scholar 

  30. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2(12):e190

    PubMed  PubMed Central  Google Scholar 

  31. Payne GW, Bearden SE (2006) The microcirculation of skeletal muscle in aging. Microcirculation 13(4):275–277

    CAS  PubMed  Google Scholar 

  32. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904

    CAS  PubMed  Google Scholar 

  33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ryu YC, Choi YM, Lee SH, Shin HG, Choe JH, Kim JM et al. (2008) Comparing the histochemical characteristics and meat quality traits of different pig breeds. Meat Sci 80(2):363–369

    CAS  PubMed  Google Scholar 

  36. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280(17):4294–4314

    CAS  PubMed  Google Scholar 

  37. Schworer S, Becker F, Feller C, Baig AH, Kober U, Henze H et al. (2016) Epigenetic stress responses induce muscle stem-cell aging by Hoxa9 developmental signals. Nature 540(7633):428–432

    PubMed  Google Scholar 

  38. Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V et al. (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506(7488):316

    CAS  PubMed  Google Scholar 

  39. Suleiman J, Mundt M, Sampath S, El‐Hattab AW (2018) TASP1 is deleted in an infant with developmental delay, microcephaly, distinctive facial features, and multiple congenital anomalies. Clin Genet 94(1):170–173

    CAS  PubMed  Google Scholar 

  40. Szpiech ZA, Hernandez RD (2014) selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol Biol Evol 31(10):2824–2827

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Takeda S (2006) Proteolysis of MLL family proteins is essential for Taspase1-orchestrated cell cycle progression. Genes Dev 20(17):2397–2409

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Q, Tian F, Pan Y, Buckler ES, Zhang Z (2014) A SUPER powerful method for genome wide association study. PLoS ONE 9(9):e107684

    PubMed  PubMed Central  Google Scholar 

  44. Wang Z, Heo M, Lee RC, Kotler DP, Withers RT, Heymsfield SB (2001) Muscularity in adult humans: proportion of adipose tissue‐free body mass as skeletal muscle. Am J Hum Biol: Off J Hum Biol Assoc 13(5):612–619

    CAS  Google Scholar 

  45. White RB, Biérinx A-S, Gnocchi VF, Zammit PS (2010) Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10(1):21

    PubMed  PubMed Central  Google Scholar 

  46. Wysokar A, Tibbetts K, McCown M, Homer N, Fennell T (2014) Picard: a set of tools for working with next generation sequencing data in BAM format. http://picard.sourceforge.net

  47. Zammit PS (2008) The muscle satellite cell: the story of a cell on the edge! In: Skeletal muscle repair and regeneration. Springer, Dordrecht, p 45–64

  48. Zeisig BB, Milne T, García-Cuéllar M-P, Schreiner S, Fuchs MartinM-E et al. (2004) Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 24(2):617–628

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou Z, Li M, Cheng H, Fan W, Yuan Z, Gao Q et al. (2018) An intercross population study reveals genes associated with body size and plumage color in ducks. Nat Commun 9(1):1–10

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31972523), the Young Top-notch Talent Project of the National Ten Thousand Talent Program, the National Scientific Supporting Projects of China (2015BAD03B06), the China Agriculture Research System of Waterfowl (CARS-42), and the CAAS Innovation Team Project (ASTIP-2016-IAS-9 and CAAS-XTCX2016010-03).

Author information

Affiliations

Authors

Contributions

SH and ZZ conceived and coordinated the study. DL performed the study and wrote the manuscript. DL, WF, YX, SY, and WL carried out the bioinformatics and experimental analyses. SH, ZZ, ZG, and WH constructed the F2 population. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhengkui Zhou or Shuisheng Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

All animals used in the study were treated following the guidelines for the experimental animals established by the Council of China Animal Welfare. Protocols of the experiments were approved by the Science Research Department of the Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS) (Beijing, China).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor Sara Knott

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Fan, W., Xu, Y. et al. Genome-wide association studies demonstrate that TASP1 contributes to increased muscle fiber diameter. Heredity 126, 991–999 (2021). https://doi.org/10.1038/s41437-021-00425-w

Download citation

Search

Quick links