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Abstract
The spatial patterns of non-neutral genetic variations at fine spatial scales and their possible associations with
microenvironments have not been well-documented for tree populations. Based on 25–32 SNP markers, we examine
whether non-neutral SNPs and their associations with microenvironments can be detected in FcMYB1603, a gene
homologous to that encoding a protein induced by drought stress in Arabidopsis thaliana for the 166 adult trees in a 1-ha
plot in a mature population of Fagus crenata. In the 83 individuals of a younger cohort of below canopy trees, the
nonsynonymous SNP at locus FcMYB1603_684 exhibited a spatial signature representing a departure from the expected
spatial patterns of neutral genetic variation. Evaluations of non-neutrality for this locus were robust against the potential risks
of false positives due to the low number of SNP loci, a low criterion set for minor allele frequency, and any edge effect on
the trees’ spatial structure. An older cohort exhibited no signal of the existence of non-neutral genetic variation, suggesting
that temporal fluctuation in the microenvironmental conditions on the forest floor may have exposed different cohorts to
different magnitudes of selection pressure. Although genotypes of the locus showed a spatial association with a
microenvironmental variable potentially related to soil moisture, the present study was subject to a limitation due to the
generally low polymorphism of nonsynonymous loci within the single plot, which suggests that it will be important to
replicate the study design in order to carry out research on fine-scale non-neutral genetic variations.

Introduction

Spatial patterns of genetic variation provide information
about the ecological processes through which tree popula-
tions establish and develop (Vekemans and Hardy 2004;

Wang and Bradburd 2014). Beside well-documented eco-
logically neutral processes (Vekemans and Hardy 2004),
recent advance in sequencing technologies have enabled
genome-wide scans of single nucleotide polymorphisms
(hereafter SNP) (Peterson et al. 2012; Suyama and Matsuki
2015) and provided information about non-neutral genetic
variations (Ahrens et al. 2018). In forest trees species, non-
neutral SNPs associated with environments have been
identified by comparing populations at regional or species
range-wide scales where climates, elevations, or topo-
graphic conditions are markedly different from each other
(Csillery et al. 2014; Tsumura et al. 2014). In contrast, few
studies have attempted to identify non-neutral genetic var-
iations at fine scales within local populations [but see Lin-
hart and Grant (1996), compelling classical work using
neutral markers]. Given that microenvironmental forces are
strong enough to determine the success or failure of species-
specific recruitment within forest communities even at
scales of <1 ha (e.g., Akaji et al. 2017), such forces may
also have the potential to drive survival selection against
individuals even in the same species. Because
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microenvironments are highly spatially structured (e.g.,
Harms et al. 2001), the spatial patterns of
microenvironment-associated genes may differ from those
of neutral genetic variations at fine scales. Examination of
genome-microenvironment association based on SNPs will
therefore help us to understand the ecological processes
behind the fine-scale spatial distribution of genetic varia-
tions observed in tree populations.

Soil moisture is a major microenvironmental factor
determining the success or failure of tree recruitment within
local populations (Leck et al. 2008). Microtopography and
soil conditions are often used as indicators of soil wetness,
since microsites with concave topography and/or mature
(i.e., less gravel) soils usually feature moist conditions
(Barberis et al. 2002; Shin and Nakamura 2005). Such
abiotic conditions are often reflected in the understory
vegetation (e.g., Yamamoto et al. 1995). Individual plants
are also exposed to competition with surrounding vegeta-
tion for soil water and if the amount of soil water available
for individual plants is limited their growth will be reduced
(Takahashi et al. 2003). Thus, assessing several indicators
of soil wetness may better capture the microenvironmental
signals to which plant genes respond. In addition, due to
changes in abiotic and biotic microenvironmental condi-
tions in forest floors over time (Kutnar et al. 2019; Torimaru
et al. 2018), different cohorts can be exposed to different
kinds and/or magnitudes of selection pressures at different
times (e.g., Linhart and Grant 1996). In particular, because
natural tree populations are generally composed of indivi-
duals from multiple generations, separate analysis of indi-
vidual cohorts will increase the opportunity to detect non-
neutral spatial patterns of environment-associated genes and
to identify the factors that generate such patterns.

Transcription factors play substantial roles in the reg-
ulatory networks underlying plant responses to environ-
mental stresses (Golldack et al. 2014). A major regulon in
these responses to stresses is R2R3-MYB (myeloblastosis
oncogen) transcription factors (Dubos et al. 2010). They are
characterized by the presence of a conserved R2R3-DNA-
binding domain in their N-terminal regions and of highly
variable amino acids in their C-terminal parts (Paz-Ares
et al. 1987). It has been reported that the R2R3-MYB gene
family consists of 126 members of genes classified into
25 subgroups in Arabidopsis thaliana (Stracke et al. 2001)
or 192 members classified into 48 clades in Populus tri-
chocarpa (Wilkins et al. 2009). Some of these genes are
involved in signaling pathways that are activated to cope
with environmental stresses, including drought (Katiyar
et al. 2012), cold weather (Agarwal et al. 2006), low
nitrogen stress (Liang and He 2018), and herbivory attacks
(Schafer et al. 2017). Thus, R2R3-MYB genes are promising
genetic markers for accessing the non-neutral genetic var-
iations associated with microenvironments.

Fagus crenata Blume (Fagaceae), which is a deciduous
broadleaved tree, is the dominant canopy species in cool-
temperate deciduous broadleaved forests (i.e., beech forests)
in the Japanese archipelago. Spatially and temporally het-
erogeneous microenvironments on the forest floors are
typical of these beech forests, which play a substantial role
in the successful regeneration of tree species including F.
crenata (Torimaru et al. 2018; Yamamoto et al. 1995). The
species is monecious but exhibits self-incompatibility
(Mukai 2008). Significant genetic structure has been repor-
ted among the trees within populations (Asuka et al. 2004b;
Hanaoka et al. 2007), mainly due to the species’ mode of
gene dispersal; seed dispersal is by gravity and therefore
restricted, and pollination is wind-mediated and distance-
dependent (Inanaga et al. 2014; Oddou-Muratorio et al.
2010). Furthermore, a previous study identified 85 genes
encoding the R2R3-DNA-binding domain (R2R3-DBD)
among the MYB transcription factors in F. crenata (Mat-
suda et al. 2011). This large body of existing data makes the
species an attractive model for exploring spatial signals of
non-neutral genetic variations within tree populations.

The object of the study presented herein was to test two
hypotheses: (i) whether spatial signals of non-neutral
genetic variations could be detected, and if detected, (ii)
whether such variations are associated with microenviron-
ments in a local adult population of F. crenata. To this end,
the spatial patterns of 19–25 genome-wide SNPs detected
were examined in order to confirm the utility of those SNPs
as a reference for neutral genetic variation. Six to seven
SNPs in the R2R3-MYB gene of F. crenata (hereafter
FcMYB) were targeted as candidate loci exhibiting non-
neutral genetic variations. The population was divided into
a younger and an older cohort, and those cohorts were
tested to determine whether spatial outlier loci that departed
from spatial patterns of neutral genetic variation could be
detected. In addition, the associations of the spatial dis-
tribution of these SNPs with variables derived from
microenvironments relating to soil wetness were investi-
gated. After discussing the potential risks of erroneously
identifying neutral loci as non-neutral, we propose further
experimental designs in order to confirm the existence of
genome-microenvironment association and to identify the
selective agents and factors responsible for fine-scale spatial
patterns of non-neutral genetic variation in different cohorts.

Materials and methods

Study site

The stand studied was situated in an old-growth beech
forest near the Karikomiike Pond at the foot of Mt Gan-
kyojisan [36°03′25′′ N, 136°44′23′′ E; summit, 1691 m
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above sea level (a.s.l.)] in the southern part of the Hakusan
Mountains, central Japan. The parental rock is volcanic (Ito
and Shiratake 1983), and the dominant soil type is Dark
Brown Forest Soil (Japan National Land Agency 1988). In
2016, we established a 1-ha (100 × 100 m) permanent plot
at about 1100 m a.s.l. in the study stand and mapped all
living adult stems [defined as woody stems ≥5.0 cm dia-
meter at breast height] in three dimensions (i.e., on xyz axes)
using a laser ranger (Makie et al. 2017). In 2018, there were
443 living stems representing 25 tree species in the 1-ha
plot; F. crenata was dominant in terms of density
(166 stems ha−1) and widely distributed throughout the plot
(Fig. 1). Dwarf bamboo [Sasa kurilensis (Rupr.) Makino et
Shibata] and ferns (e.g., Dryopteris crassirhizoma Nakai,
Plagiogyria matsumurana Makino) are the main species on
the forest floor in this plot.

Field methods and microenvironmental analyses

Based on the categorization by structural layers that has
been reported to be useful in inferring the ecological pro-
cesses responsible for spatial patterns in different cohorts
(Manabe et al. 2000; Yamamoto et al. 1995), the stems were
assigned to one of the two groups according to their vertical
position, crown position and height: 83 F. crenata indivi-
duals belonged to the canopy and subcanopy layers, with
their height being ≥ca. 8 m [hereafter designated the upper
layer (i.e., an older cohort)], and the remaining 83 to the
understory layer [lower layer (i.e., a younger cohort)]
(Fig. 1, Supplementary information Fig. S1). In June 2018,
young leaves were collected from all 166 F. crenata indi-
viduals in the plot and stored at −25 °C until DNA was
extracted.

Because we focused on loci that were expected to be
associated with plant responses to drought stress (i.e., the
FcMYB1603 region; see below), four microenvironment
parameters associated with soil wetness were measured as
follows. First, we used the xyz coordinates of the census
trees and 10 × 10 m grid points obtained from Makie et al.
(2017) to estimate the elevation of each 5 × 5 m quadrat by
linear interpolation. Then topographic wetness index (TWI)
was calculated to quantify the pattern of soil water dis-
tribution that is affected by topography (Radula et al. 2018),
with the aid of the following packages in R v.3.5.2 (R
Development Core Team 2018): raster (Hijmans 2017) and
dynatopmodel (Metcalfe et al. 2018). The index is deter-
mined as follows:

TWI ¼ lnðα=tan βÞ;
where α is the microtopographical upslope area draining
through a certain point per unit contour length, which is
equal to a certain grid cell width, and β is the local slope. A
higher TWI represents a wetter microsite. Second, in
addition to the proportions of rock and/or gravel (i.e.,
magnitude of soil immaturity), we used the amounts of fern
and Sasa cover as biological indicators of the degree of soil
maturity (Torimaru et al. 2018; Yamamoto et al. 1995). In
the autumn of 2018, we estimated the proportion of cover of
dwarf bamboo and that of ferns in each of 400 5 × 5 m
contiguous quadrats within the plot; the proportion of the
cover in each quadrat was visually inspected and quantified
at 0.05 intervals except that in cases where cover was
present but its proportion was <0.05, cover was set at 0.01
(e.g., Yamamoto et al. 1995). Similarly, the proportions of
rocks and/or gravels (surface soil conditions) were visually
inspected and quantified in each of those quadrats on the
same scale as that used for the vegetation census above
(e.g., Torimaru et al. 2018). Third, we considered Sasa
cover to be an indicator of competition with beech trees for
soil water, since trees competing with Sasa for soil water
have reportedly exhibited reduced growth (Takahashi et al.
2003). However, Sasa cover is also expected to be
influenced by the degree of soil maturity mentioned above
and/or may be influenced by soil moisture gradients
generated through microtopography, hence the raw values
of Sasa cover may confer substantial bias when interpreting
the effects of competition for soil water. To mitigate such
biases, we performed non-metric multidimensional scaling
(NMDS) analysis to summarize these four variables and
converted them into more refined forms, using the “vegan”
package (Oksanen et al. 2018) in R v.3.5.2 (R Development
Core Team 2018). Before NMDS analyses, proportional
variables were arcsin square-root transformed and TWI log-
transformed to improve the normality of data distribution.
The metaMDS procedure in vegan was used with default
options, which include use of the Bray–Curtis dissimilarity
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Fig. 1 Spatial distribution of individual stems of Fagus crenata
adults. Large circles indicate stems in the upper layer; dots stems in
the lower layer.
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index and a maximum of 20 random starts in search of the
stable solution, except that we tested a number of
dimensions ranging between one and three. To evaluate
the set of ordinations obtained, stress values (Kruskal 1964)
were calculated and their significance was assessed by
1000 simulations with permutation of the microenviron-
mental variables among 400 quadrats (Sasaki et al. 2015),
followed by Bonferroni correction.

Mig-seq experiment and SNP detection

Total genomic DNA was extracted using a modification of
the hexadecyltrimethylammonium bromide method
(Murray and Thompson 1980) as described in Asuka et al.
(2004a). Genome-wide SNPs were detected using multi-
plexed ISSR genotyping by sequencing (Mig-seq) with a
minor modification. In principle, this technique amplifies
the loci between two ISSRs by PCR, and sequence ana-
lysis is carried out using a next-generation sequencer
(Suyama and Matsuki 2015). The Mig-seq libraries were
prepared following the protocol outlined in Suyama and
Matsuki (2015) but we used the adapter sequences and
barcode sequences (10–12 base) for the Ion Proton
sequencing platform (Thermo Fisher Scientific) to identify
each individual sample. The final PCR products for each
individual were multiplexed in the size range 200–500 bp
using Agencourt Ampure XP (Beckman Coulter Inc.,
California, USA) and sequenced on an Ion Proton plat-
form using an Ion 318TM Chip v2 (Thermo Fisher Sci-
entific) at the Center for Molecular Biology and Genetics
in Mie University. We constructed three sets of data,
representing all the adult individuals in the population
(n= 166), and the individuals belonging to the lower (n=
83) or upper layer (n= 83). SNPs were called using
Stacks 2.0 (Catchen et al. 2013) in which minor allele
frequency (MAF) was set to 0.01 (see Appendices S1 and
S2 in detail), and mapping of the reads to the reference
sequence yielded, respectively, 35, 28, and 23 SNPs for
the whole population, the lower layer and the upper layer.
After applying the further filtering setting (Appendix S2),
we detected, respectively, 25, 24, 19 SNPs with 91.4,

93.7, and 92.9% genotyping rates for the three categories
(Tables 1, S2, and S3).

DNA sequencing of MYB region and SNP detection

We targeted the R2R3-MYB genes identified by Matsuda
et al. (2011). Preliminary experiments demonstrated that
expression of FcMYB1603 increased strikingly after
drought treatment both in the first leaves and in the roots of
a month-old beech seedling (Appendix S3 and Figs. S2,
S3), and the full genomic sequence of FcMYB1603 was
identified (Appendix S4). BLAST reported that the protein
sequence showed high similarity (E value= 3 × 10−180) to
the transcription factor MYB102-like in Quercus suber, a
member of the same family (Fagaceae). The expression of
MYB102 in A. thaliana, AtMYB102, was induced when
plants were exposed to drought stress (Denekamp and
Smeekens 2003) or to abscisic acid, which is a drought-
induced hormone (Leonhardt et al. 2004). We designed
forward (5′-GGAAAAAGCTGCCGACTTCG-3′) and
reverse (5′-AATGGTGTTGGGCTCGATGT-3′) primers
from, respectively, exon 2 (R2R3-DBD region) and exon 3
in the MYB region. PCRs were carried out in 10-μL
volumes, each containing 1–10 ng of template DNA, 0.5 U
of AmpliTaq Gold® 360 DNA Polymerase, 1× AmpliTaq
Gold® 360 buffer (Thermo Fisher Scientific), 0.2 mM of
each dNTP (New England BioLabs Inc., Massachusetts,
USA), and 0.2 μM of each primer pair. PCR was performed
with an initial denaturation for 10 min at 95 °C, followed by
30 cycles of denaturation for 1 min at 94 °C, annealing for
1 min at 60 °C and extension for 1 min at 72 °C, with a final
extension for 7 min at 72 °C. Sanger sequencing was per-
formed at Macrogen Japan Inc. using a 3730xl DNA ana-
lyzer following the manufacture’s protocol (Thermo Fisher
Scientific). DNA sequences were edited manually in ApE
(Davis 2017), and sites that were heterozygous, poly-
morphic, or of low sequence quality were visually examined
by checking electropherograms. Alignments were per-
formed using MUSCLE implemented in MEGA 5 (Edgar
2004; Tamura et al. 2011). Sequences with a length of
868 bp were aligned for all of the 166 individuals, and there

Table 1 Pearson’s correlation
coefficients among the four
microenvironmental variables
and the non-metric
multidimensional scaling
(NMDS) axes for 400 5 × 5 m
quadrats.

NMDS axis Sasa cover Fern cover Proportion of rock
and/or gravel

TWIa

NMDS1 (Microtopographic effect) 0.448*** −0.234*** 0.171** −0.940***

NMDS2 (Effect of soil maturity) −0.241*** 0.719*** 0.811*** −0.010n.s.

NMDS3 (Effect of biological competition) −0.729*** −0.207*** 0.139n.s. −0.176**

Interpretation of each NMDS against the factors potentially affecting soil moisture is in parentheses.

Bonferroni correction was used to determine significance in multiple testing.

***P < 0.001; **P < 0.01; n.s.P ≥ 0.05.
aTopographic wetness index.
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were 13 polymorphic sites for each of the three categories
(Fig. S4). After applying the filtering setting (Appendix S5),
these were reduced to seven sites (=seven loci) for the
whole population and lower layer, and six sites for the
upper layer (Table 1). There were four and three sites with
synonymous and nonsynonymous substitutions, respec-
tively (Fig. S4).

In total, we used 32, 31, and 25 SNPs from Mig-seq and
FcMYB1603 loci in the subsequent data analyses for the
whole population, the lower layer, and the upper layer,
respectively.

Genetic variation and spatial genetic structure

The genetic diversity of F. crenata in the 1-ha plot was
analyzed using standard population genetics parameters:
observed (HO) and expected (HE) heterozygosity, and
inbreeding coefficient FIS (Weir and Cockerham 1984).
Deviations from Hardy–Weinberg equilibrium at each locus
were evaluated by the exact test using GENEPOP version
4.2 (Rousset 2008), with false discovery rate (FDR < 0.05)
correction for multiple testing (Benjamini and Hochberg
1995).

To describe the spatial patterns of genetic variations of
SNP markers, we calculated their kinship coefficient Fij

[coancestry; (Loiselle et al. 1995) in the plot using SPA-
GeDi version 1.4c (Hardy and Vekemans 2002)]. The mean
Fij value was calculated for each of 10 continuous distance
classes of 10 m intervals, from 0–10 to 90–100 m (the
numbers of pairs of individuals per distance class ranged
from 175 to 435 and from 117 to 525 in the lower and upper
layers, respectively). The regression slope of Fij against the
logarithm of the distance between adult trees (hereafter bF)
was calculated following the procedure of Oddou-Muratorio
et al. (2010). The significance of the mean Fij and bF values
was assessed by 1000 simulations with permutation of the
spatial distances between adult trees.

Spatial outlier detection based on the MSOD–MSR
method

We used a two-step method of spatial outlier detection
based on the power spectrum of the Moran eigenvector map
(MEM) (Dray et al. 2006). The MEM power spectrum
quantifies how the variation in a variable, such as the fre-
quency of an allele at a SNP locus, is distributed across a
range of spatial scales defined by MEM spatial eigenvectors
(Wagner et al. 2017). The first step [Moran spectral outlier
detection (MSOD)] uses genetic and spatial information to
identify outlier loci by their unusual power spectrum. The
second step uses Moran spectral randomization (MSR) to
test the association between outlier loci and environmental
predictors, accounting for spatial autocorrelation.

In the first step (MSOD), we identified the outlier loci that
deviated from a spatial pattern of genotypes derived from an
ecologically neutral process of gene dispersal (i.e., non-
neutral loci). We firstly defined neighbors of each individual
at n locations based on a Gabriel graph [a proximity graph
that captures some concept of neighborliness; see Gabriel and
Sokal (1969)], and the jth neighbors of the ith individual
received a weight wij proportional to the inverse distance 1/dij
between them. The weights wij of all neighbors of ith indi-
vidual were then normalized so that they summed to 1. This
spatial weight matrix W of size n × n was used to derive
MEM by eigenanalysis of the symmetric matrix Ws= 0.5 ×
(W+WT), where T denotes a matrix transposition (Dray
et al. 2006). The eigenanalysis results in n− 1 orthogonal
and uncorrelated eigenvectors Vk associated with the kth
largest eigenvalue λk, while a single eigenvector with zero
eigenvalue is dropped. The vectors of the correlation between
each of m loci and the matrix V [of size n × (n− 1)] were
calculated, generating a matrix of correlations between each
locus and each spatial eigenvector, which was denoted by
R.YV [of size m × (n− 1)]. For the correlation between the lth
locus and Vk in R.YV, denoted by r.YVlk, the power spectrum
r.YVlk

2 indicated the proportion of variance of the lth locus
explained by the kth spatial eigenvector, and satisfied the
condition

P
k r:YV

2
lk ¼ 1, which means that the n− 1 spatial

eigenvectors together fully explain the variance in allele
frequencies at the locus. The deviation of the spectrum r:YVl:

of the lth locus from the mean spectrum S, denoted by Dl,

was quantified as Dl ¼
P

k
r:YV2

lk
Sk

� 1
� �

� bk, where Sk indi-

cates the mean values of proportion of variance explained by
the kth spatial eigenvector across all loci, and bk= 1 if the
term in brackets is negative and bk= 0 if it is positive
(Wagner et al. 2017). Dl values were scaled to obtain a z
score [i.e., z(Dl)] for all loci. The |z(Dl)| was compared with
the cutoff value corresponding to the two-sided probability of
0.01 assuming normal distribution, |z0.01|= 2.58, which is
recommended because it offers the best balance between high
power to detect true positives and low false positive rates
(FPRs) (Wagner et al. 2017). In addition, to further assess the
validity of significance for the loci with |z(Dl)| > |z0.01|, we
generated the empirical distribution of the z score by per-
muting the individual genotypes of one locus but keeping the
other loci, and compared the observed z(Dl) with the 99%
confidence intervals of the empirical distribution.

One factor that can cause fluctuations in z scores is the
edge effect, in which the limited number of neighbors of an
individual located near the edge of the study plot increases
its wij relative to that of one located distant from the edge
even when the spatial patterns of neighbors are same
between the two individuals. This may cause a tendency to
detect a significant z score depending on the distance to the
plot’s edge from individual trees. To examine this potential
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problem, we chose pairs of individuals separated by <5 m
each other [we tentatively set this criterion based on the fact
that the two individuals in which an outlier SNP genotype
was detected were separated by ca. 5 m (see “Results”)]. We
calculated the minimum distances to the edges of the plot
from the centroids of the pairs. Then we applied the gen-
eralized linear model with a binomial distribution and logit
link function. The response variable is one if the pairs of
individuals exhibit |z(D)| > |z0.01| and the z(D) departs from
the 99% confidence intervals of the empirical distribution
above, otherwise zero. The explanatory variable (i.e., dis-
tance to the nearest edge) was log-transformed to improve
the normality of residual variances. The significance of the
explanatory variable was tested by comparing the change in
deviance with the χ2 distribution (Bolker et al. 2009).

In the second step (MSR), because we focused on a MYB
gene associated with drought stress, it was hypothesized that
non-neutral spatial patterns of those SNPs detected are
associated with some soil moisture indicators in the plot. To
test this hypothesis, we firstly estimated values of NMDS
axes for each individual’s location by interpolation and
extrapolation using the akima package of R statistical envir-
onment (Akima and Gebhardt 2016). Then ordinary Pearson
coefficients of correlations (rle) were calculated between
the lth locus and the eth NMDS variable. The rle can be
decomposed into two matrices representing the correlation of
the spatial eigenvectors in matrix Vk with the locus (r.YVlk)
and the NMDS variable (r.XVek): rle ¼

P
k r:YVlk � r:XVek

� �

(Wagner et al. 2017). In MSR, an empirical distribution for
rle under the null hypothesis of no correlation that preserved
the spatial structure of both variables (i.e., retaining the power
spectra of both variables) was obtained by randomizing the
NMDS variables with the “singleton” method (Wagner and
Dray 2015), where the new correlation matrix between
NMDS variable and spatial eigenvector (r.XVek.rand) was
generated by randomizing the sign of each element in r.XVek.
Then rle.rand was obtained by replacing the r.XVek.rand with
r.XVek in the formula above. This procedure was repeated
5000 times and the P value was computed as the proportion
of |rle.rand| larger than the |rle| observed (Wagner et al. 2017).
Furthermore, to assess the validity of significance of asso-
ciations of the NMDS variables with the loci that were
identified as spatial outliers in MSOD, we permuted the
individual genotypes of the locus while keeping the other
loci, estimated the P values of the correlation coefficients
based on the “singleton” method above, and determined the
proportion of the P values that were <0.05. We performed the
MSR analysis for all SNP loci, but any locus that was sta-
tistically significant in both the MSOD and the MSR analysis
was considered to be substantially associated with the
environment, as recommended by Wagner et al. (2017).

We performed all of the MSOD and MSR analyses using
the source code from Wagner et al. (2017), with the aid of

the following packages in R v.3.5.2 (R Development Core
Team 2018): adespatial (Dray et al. 2016) and spdep
(Bivand and Piras 2015).

Results

Microenvironmental characteristics of the stand

The four microenvironmental variables were spatially hetero-
geneously distributed in the plot. Dwarf bamboo and ferns
covered some of the forest floor; the proportion of Sasa cover
per quadrat ranged from 0.00 to 0.95 with an average of 0.25,
and that of fern cover ranged from 0.00 to 0.80 with an
average of 0.12 (Fig. S5). The proportion of rocks and/or
gravels ranged from 0.00 to 0.95 with an average of 0.10.
Ground surfaces with high proportions of rocks and/or gravels
were observed mostly at the eastern corner of the plot (Fig.
S5). TWI ranged from 0.96 to 13.0 with an average of 4.70
and microsites with concave slopes tended to be wet (Fig. S5).

The NMDS analyses showed that the stress value was 0.302
when the four microenvironmental variables were summarized
into one axis, whereas the values were 0.170 and 0.109 in the
cases when they were summarized into two and three axes,
respectively. There was a statistically significant stress value in
the case of three axes (P= 0.024) but not in the remaining two
cases (single axis; P= 1.000, two axes; P= 0.132). Thus we
used the values of NMDS in the case of three axes for sub-
sequent analyses. The first axis (hereafter NMDS1) was pre-
dominantly correlated with TWI (Table 1 and Fig. S6), and
thus represented the magnitude of soil moisture associated with
microtopography in the plot. The second axis (NMDS2) was
predominantly and positively correlated with fern cover and
the proportion of rock and/or gravels as well as negatively
correlated with Sasa cover (Table 1 and Fig. S6). Given that
these ferns prefer microsites with rocky soils and/or gravels
(Torimaru et al. 2018) and that Sasa usually grows pre-
dominantly on microsites with mature soils (Yamamoto et al.
1995), the NMDS2 value represents the magnitude of soil
maturity, and is likely to be associated with soil moisture. The
third axis (NMDS3) was predominantly correlated with Sasa
cover (Table 1 and Fig. S6), constituting an indicator poten-
tially representing the magnitude of biological competition for
soil water (Takahashi et al. 2003).

Genetic variation and spatial genetic structure of
the F. crenata population

For the SNPs from Mig-seq experiments, the HE values
ranged from 0.021 to 0.271 (with an average of 0.075),
0.025 to 0.419 (0.103), and 0.024 to 0.461 (0.106) for the
whole population, the lower and the upper layer, respec-
tively (Tables 2 and S1–S3). For the SNPs from the
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FcMYB1603 region, the HE values ranged from 0.030 to
0.501 (with an average of 0.167), 0.024 to 0.497 (0.165),
and 0.024 to 0.566 (0.193) for the whole population, the
lower layer and the upper layer, respectively. For each of
the two markers, the mean values of HE were similar
between the layers, and the FIS of every locus from each
layer showed no significant deviation from zero (P > 0.05)
(Tables 2 and S1–S3).

The correlograms of coancestry for the 166 individuals
showed that mean values for the first distance class were
significantly positive (Fig. 2). The values showed a general
trend of decreasing with distance class, and such trends
were also found in the individuals belonging to the lower
layer irrespective of genetic markers and those in the upper
layer for Mig-seq SNPs only (Fig. 2). Those correlogram
patterns are consistent with the estimates of bF, which
exhibited significant negative values except for the SNPs
including the FcMYB1603 loci in the upper layer (Table 2).

Identification of outlier SNP loci from spatial
signature and the association with
microenvironmental variables

In the lower layer, FcMYB1603_684 had a z score of
−2.848, which was below the lower boundary of the

threshold, whereas all of the z scores of the Mig-seq SNPs
were within the range of the threshold (Fig. 3). As a con-
sequence, frequency distributions of Dl departed from nor-
mality in the lower layer (Shapiro–Wilk test, W= 0.917,
P= 0.02). No such departure was found in the whole
population (W= 0.937, P > 0.05) or upper layer (W=
0.955, P > 0.05). For FcMYB1603_684 in the lower layer,
since only the two minor heterozygotes and the remaining
81 major homozygotes were found (Fig. S7), we simulated
all of the permutations (i.e. 3403 cases), computed the z
score, and obtained the empirical distribution with a 99%
confidence interval ranging between −2.787 and 0.253
(Fig. S8).

There were 58 cases in which the two individuals in a
pair were separated from each other by <5 m. Nine cases
showed z scores deviating from the 99% confidence interval
of empirical distribution (Fig. S9), but we did not detect any
effect of distance from the plot edge on the occurrence
of a statistically significant z score (regression coefficient
against the logarithm of distance to plot edge was −0.831,
χ2=−3.058, P > 0.05), indicating that outlier detection was
not affected by the positions of individual trees relative to
the plot edges.

Application of the MSR method identified three cases
that demonstrated a statistically significant correlation of

Table 2 Summary of SNPs from
Mig-seq and FcMYB1603 loci in
the Fagus crenata trees in the
1-ha plot.

Genetic markers No. of loci All individuals

N HO HE FIS bF

Mig-seq SNPs 25 166.0 0.074 0.075 0.029n.s. −0.012***

FcMYB1603 SNPs 7 147.3 0.176 0.167 −0.022n.s. −0.012**

All SNPs 32 151.4 0.096 0.095 0.018n.s. −0.012***

Genetic markers No. of loci Lower layer

N HO HE FIS bF

Mig-seq SNPs 24 76.3 0.089 0.103 0.074n.s. −0.016**

FcMYB1603 SNPs 7 83.0 0.174 0.165 0.009n.s. −0.023*

All SNPs 31 77.8 0.108 0.117 0.059n.s. −0.017***

Genetic markers No. of loci Upper layer

N HO HE FIS bF

Mig-seq SNPs 19 75.3 0.093 0.106 0.068n.s. −0.035***

FcMYB1603 SNPs 6 83.0 0.181 0.193 −0.039n.s. 0.004n.s.

All SNPs 25 77.1 0.117 0.124 0.043n.s. −0.018**

Bonferroni correction was used to determine significance in multiple testing for FIS.

Deviations of bF from zero were assessed by 1000 simulations, permuting the spatial distances between
adult trees.

N mean number of genotyped individuals per locus, HO mean observed heterozygosity per locus, HE mean
expected heterozygosity per locus, FIS mean fixation index per locus, bF the estimates of slopes of regression
for coancestry values (Fij) against the logarithm of the spatial distances.
***P < 0.001; **P < 0.01; *P < 0.05; n.s.P ≥ 0.05.
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SNPs with the NMDS variables in the whole population and
the lower layer, whereas there were seven cases in the upper
layer (Fig. 4). In the whole population and the upper layer,
since all of the loci that showed significant association with
NMDS variables could be identified as neutral based on
MSOD analysis (Fig. 3), the associations were likely to be
false positives (see Wagner et al. 2017 for interpreting the
combined results of MSOD and MSR analyses in detail). In
the lower layer, the SNPs whose z score in the MSOD
method departed from the 99% confidence interval (i.e.,
FcMYB1603_684, Fig. 3) were associated with the NMDS3
variable (Fig. 4); the individuals that were heterozygous for
the minor allele at the locus were located on sites with
higher values of NMDS3 (i.e., microsites where there was

less competition with Sasa for soil water) (Fig. S7) and
were close to each other (separated by 5.3 m). Simulation
based on permuting the genotypes of FcMYB1603_684
indicated that significant associations of the locus with
NMDS3 variables were present in 180 cases out of all those
analyzed; that is, the proportion was 0.053 (=180/3403).
Among these cases, the observed pattern of spatial dis-
tribution of the genotypes was the only situation in which
there was no spurious association with XY coordinates and
MSOD detected the spatial outlier.

Discussion

The main findings arising from the present research are that
(i) we detected a spatial signal of departure from neutrality
for an SNP in FcMYB1603, a gene that is associated with
drought stress in F. crenata, in the younger cohort but not
in the older one, whereas genome-wide SNPs exhibited no
departure from the spatial patterns expected from neutral
genetic variation for any of the three categories, and (ii) the
non-neutral locus identified, FcMYB1603_684, was spa-
tially associated with a microenvironmental variable
potentially related to soil moisture. Since false identifica-
tion of neutral or non-neutral loci can lead to mis-
understanding of the ecological processes behind the
spatial patterns of genetic variations, we firstly focus on
discussing whether the neutrality and non-neutrality
derived from our statistical procedures are likely or not,
and then infer the ecological phenomena responsible for the
inter-generational difference in the detection of non-neutral
genetic variation.

Evaluation of the spatial outlier detected by MSOD
and MSR

The criterion for MAF set in our study (0.01) was lower
than that in other published studies, where MAF ≥ 0.05 was
often used (Ahrens et al. 2018). Thus, there was some
concern that such low levels of polymorphism may have
been generated through processes other than gene dispersal,
such as sequencing errors and/or mutations occurring ran-
domly across the genome, which would also result in spatial
patterns of genetic variation indistinguishable from those of
neutral ones. However, our study detected a pattern of
spatial genetic variation, that is a negative relationship
between coancestry and spatial distances between the trees
based on the Mig-seq SNP loci. This pattern has previously
been reported to originate from gene dispersal by isolation
by distance in tree populations (Vekemans and Hardy
2004). Because our preliminary study based on micro-
satellite markers also confirmed the pattern (Appendix S6,
Fig. S10, and Tables S4, S5), the mode of isolation by
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Fig. 2 Correlograms of mean coancestry values for Mig-seq SNPs
only (left) and SNPs from Mig-seq and FcMYB1603 (right) in
Fagus crenata individuals in the 1-ha plot; the panels show all
individuals (top, n= 166), lower layer (middle, n= 83), and upper
layer (bottom, n= 83) in the populations. Distance classes were
defined at continuous 10 m intervals from 0–10 to 90–100 m. Dashed
lines indicate 95% confidence intervals of coancestry values based on
1000 simulations permuting the individual genotypes. Note that the
numbers of Mig-seq SNPs were 25, 24, and 19 in the whole popula-
tion, the lower layer, and the upper layer, respectively, and the num-
bers of FcMYB1603 SNPs were seven for the whole population and
the lower layer, and six for the upper layer.
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distance evidently operates in the population studied. Thus
the spatial patterns of the Mig-seq SNPs in our study were
likely to have been generated through ecologically relevant
and neutral processes.

In addition, a nominal level of sequencing error was obvious
for the FcMYB1603 region, since the Sanger method is the gold
standard for DNA sequencing. Based on the synonymous
mutation rate of 2.5 × 10−9 per site per year in Populus that is
frequently used as the rate of mutation in angiosperm tree
species (Ingvarsson 2008) and the mean stand age of 205 years

in the F. crenata populations in the region studied (Senno
1979), the probability of finding mutated sites across 868 bp of
FcMYB1603 per individual tree was estimated to be 4.4 × 10−4

(=1− [(1− 2.5 × 10−9)868]205), and the number of individuals
with mutated sites in the plot studied was estimated to be 0.07
[=1− (1− 4.4 × 10−4)166]. Furthermore, considering that
nonsynonymous substitutions, which occurred at some geno-
mic sites in our study (Fig. S4), are usually less likely than
synonymous ones (Hartl and Clark 2007), mutations were
unlikely to have contributed to the genetic variation of
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Fig. 3 Outlier detection with the Moran spectral outlier detection
(MSOD) method in the Fagus crenata populations. All individuals
[a n= 166, 32 SNPs], lower layer [b n= 83, 31 SNPs], and upper
layer [c n= 83, 25 SNPs]. Each point shows the z score of a locus
representing the degree of deviation from the mean spectrum of the

proportion of variance of the locus associated with each spatial
eigenvector, plotted against the locus ID (“Fc” represents the
FcMYB1603 locus, and “M” Mig-seq loci). Dashed lines indicate the
probability levels of 0.01 used in MSOD. Open circles and dot indicate
spatial non-outlier and outlier loci, respectively.

Fig. 4 Correlation coefficients of SNP genotypes with the three
NMDS variables (rle) in the Fagus crenata populations. All indi-
viduals [a n= 166, 32 SNPs], lower layer [b n= 83, 31 SNPs], and
upper layer [c n= 83, 25 SNPs]. Positive values of rle indicate that
homozygotes with major SNP alleles tend to be located at sites with

higher values of NMDS variables. The correlation coefficients were
tested based on Moran spectral randomization (MRS) with the sin-
gleton method, and significant correlation (P < 0.05) is shown by red
large symbols.
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FcMYB1603 found in the present study. It has been reported
that nonsynonymous SNPs, which could be also detected in
the present study, are more likely to have a MAF< 0.05
(Cargill et al. 1999), and alleles associated with a specific
environment can be significantly rarer than the average allele
(Fournier-Level et al. 2011).

The distance of individuals from the plot edge had no
effect on the z score for FcMYB1603_684, suggesting that
the MSOD analysis suffered little from an edge effect for
this locus. Because the present results showed that the two
individuals with the minor genotype were close to each
other (i.e., they formed a single spatial cluster), we could
easily quantify the relationship of the plot edge to the fea-
tures of the spatial structure of target individuals by using
the distance of the centroid of the two individuals to the plot
edge. However, in general the situation will be more com-
plex, and it will not be an easy task to associate the plot
edge with the spatial structure of the population where
multiple individuals possessing the same genotypes can be
divided into several spatial clusters. Thus, while our special
case study allows us to investigate the edge effect on the z
score for FcMYB1603_684, further studies are needed to
establish a more general framework in which to evaluate the
consequences of the edge effect for the detection of spatial
outlier loci.

A more general concern is the small number of SNP loci
used in our study, relative to other studies [i.e., generally
>100 SNPs (Ahrens et al. 2018)]. To check the robustness
of the MSOD and MSR approaches against a small number
of SNPs, we borrowed the simulated dataset and the source
code of the R program from the original studies introducing
MSOD and MSR (Forester et al. 2016; Wagner et al. 2017).
Our simulations confirmed that a reduction of SNP loci to
29 (equal to the mean number of loci across the three
datasets in the present study) resulted in trends similar to the
results from 100 SNP loci in terms of true positive rate
(TPR; the proportion of selected loci correctly identified as
outliers) and FPR (the proportion of neutral loci that were
erroneously identified as outliers) (Fig. S11), as effectively
as in the original studies (see Figs. S6 and S7 in Wagner
et al. 2017). Despite some reductions in the power to detect
loci under selection (i.e., lower TPR) in the case of 29
SNPs, there were nominal levels of FPR across the various
situations of selection strength, dispersal and habitat con-
figurations (Fig. S11). Furthermore, these negligible levels
of FPR were maintained even if the assumption of normality
of Dl was violated in MSOD (Fig. S11). Our results there-
fore suggest that the number of SNP loci used in the present
study would be acceptable for MSOD and MSR analyses
when exploring non-neutral loci at a fine spatial scale.

A concern specific to the present study arises from the
results for the locus FcMYB1603_684, where the non-
synonymous SNP was identified as non-neutral, and for

which the only two heterozygous individuals grew close to
each other in a spot with a wetter microenvironment and all
other trees were homozygotes for the major allele. There
was thus concern that the two heterozygous individuals may
have happened to grow in such a microenvironment. Our
study evaluated the locus based on the two procedures (i.e.,
MSOD and MSR). In the first procedure (MSOD), all loci
were used to quantify the mean values of proportion of
variance explained by each spatial eigenvector across loci
(i.e., Sk in “Materials and methods”) and to determine the
mean and standard deviation of Dl values (see “Materials
and methods”); hence, in order to calculate the z score of
one locus, MSOD utilizes the polymorphisms and spatial
patterns of the other loci analyzed, not solely those of the
single locus targeted. Indeed, the mean values of z score of
FcMYB1603_684 decreased (and the proportion of sig-
nificant z score increased) with the number of loci that were
added to MSOD (Fig. 5), indicating the dependency of z
score for one locus on the other loci. Thus, the low poly-
morphism of the locus FcMYB1603_684 in the lower layer
was likely to be compensated for by the information about
the other 30 loci in the present study.

In contrast, caution should be exercised in interpreting
the result of MSR analysis (i.e., the second procedure)
showing the association of FcMYB1603_684 with a
microenvironmental variable potentially relating to soil
moisture (i.e., NMDS3). While the result seems to be in line
with those of other studies that have reported the associa-
tions of SNPs with environmental variables affecting soil
moisture (Csillery et al. 2014; Krajmerova et al. 2017) at
regional scales, such studies have adopted thresholds of
MAF higher than in the present study. Because MSR used
solely the polymorphism of the loci targeted when exam-
ining the association with each environmental variable, the
low polymorphism of FcMYB1603_684 could have inflated

Fig. 5 Mean values (open circle) and standard deviations (error
bars) of z score (left panel) and proportions of significant z score
(right panel) for the locus FcMYB1603_684 against the number of
loci used (minimum was four loci) for MSOD analysis. Note that the
numbers were those used to combine with the locus FcMYB1603_684.
In cases where the number of loci ranged from 4 to 27, we randomly
chose the loci, calculated the z scores for the locus FcMYB1603_684,
and repeated the procedure 1000 times. Otherwise, we calculated the z
scores for the locus FcMYB1603_684 for all the combinations.
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uncertainty when justifying the spatial association with the
microenvironmental variable. Given the reported studies that
showed generally low polymorphisms for nonsynonymous
SNPs (Cargill et al. 1999; Fournier-Level et al. 2011), a
dataset derived from a single plot as in our study will be
inadequate, and studies applying MSR within local popula-
tions should a priori plan to utilize multiple populations in
which to replicate the same design in order to justify the spatial
association of non-neutral loci with microenvironments.

Inconsistency of detection of non-neutrality
between the two layers

It is expected that separation of an adult population into
different categories linked to cohorts would facilitate the
identification of non-neutrality of SNPs in tree populations,
since rapid changes in microenvironmental conditions can
expose different cohorts within the populations to different
kinds and/or magnitudes of selection pressure, thereby
generating inter-generational differentiation in spatial patterns
of non-neutral genetic variations (see “Introduction”). The
present study supports this prediction; a signal of non-
neutrality was detected in a younger cohort, whereas there
were no signals of non-neutrality when pooling the trees
belonging to different cohorts (i.e., whole population). Given
that tree mortality occurs predominantly in the earlier stages of
trees’ life history [especially at the time of seedling estab-
lishment; reviewed by Leck et al. (2008)], microenviron-
mental conditions at the timing of seedling establishment may
have been different between the cohorts. Because our study
did not succeed in relating the spatial patterns of non-neutral
genetic variations to ecologically meaningful factors due to the
inadequate dataset derived from a single plot, further studies
combining the results of genome-microenvironment associa-
tions obtained from several F. crenata populations will be
needed to identify the selective agents and factors that can
explain the absence/presence of spatial patterns of non-neutral
genetic variations among different cohorts.

Conclusions

No signals of departure from neutrality were detected
among Mig-seq SNPs (i.e., genome-wide SNPs), whereas
for the SNPs from the FcMYB1603 region, one nonsynon-
ymous SNP locus named FcMYB1603_684 exhibited a
spatial distribution that departed from those expected under
the assumption of an ecologically neutral process of gene
dispersal. Simulations suggested that the signal of statistical
significance detected at the locus was robust against the
potential risks of false positives that might have arisen due
to the low number of SNP loci, a low criterion set for MAF,
and any edge effect on the spatial structure of the trees, and

thus the locus could be considered to be a spatial outlier.
Inconsistency of detecting non-neutrality between the two
layers was found in the case of this locus, suggesting that
temporal changes in microenvironmental conditions could
expose those cohorts to different kinds and/or magnitudes
of selection pressures. We concluded that the locus was at
least in part affected by processes other than ecologically
neutral processes of gene dispersal in the study plot.
However, the present study was subject to several limita-
tions, and although the locus exhibited a spatial association
with a microenvironmental variable potentially related to
soil moisture, the low level of polymorphism at the locus
would have reduced the statistical reliability in the single
plot used in the present study. The focus on a single
population also meant that it was not possible to justify
drawing conclusions about what kinds of ecological pro-
cesses were behind the pattern observed for each cohort.
These limitations indicate that further studies examining
fine-scale non-neutral genetic variations should plan to
utilize multiple plots to replicate the design in order to test
for genome-microenvironment association and to identify
the selective agents and factors responsible for the spatial
patterns of non-neutral genetic variation in different cohorts.

Data availability

The sequences of FcMYB1603 and the draft genome
reported in this study were deposited in GenBank with
accession numbers LC497503—LC497669, DRA008930,
and BKZX01000001—BKZX01052213. Genotype data,
spatial coordinates of individual trees and environmental
variables are available from the Data Set file.
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