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Abstract
This study evaluated the use of multiomics data for classification accuracy of rheumatoid arthritis (RA). Three approaches
were used and compared in terms of prediction accuracy: (1) whole-genome prediction (WGP) using SNP marker
information only, (2) whole-methylome prediction (WMP) using methylation profiles only, and (3) whole-genome/
methylome prediction (WGMP) with combining both omics layers. The number of SNP and of methylation sites varied in
each scenario, with either 1, 10, or 50% of these preselected based on four approaches: randomly, evenly spaced, lowest p
value (genome-wide association or epigenome-wide association study), and estimated effect size using a Bayesian ridge
regression (BRR) model. To remove effects of high levels of pairwise linkage disequilibrium (LD), SNPs were also
preselected with an LD-pruning method. Five Bayesian regression models were studied for classification, including BRR,
Bayes-A, Bayes-B, Bayes-C, and the Bayesian LASSO. Adjusting methylation profiles for cellular heterogeneity within
whole blood samples had a detrimental effect on the classification ability of the models. Overall, WGMP using Bayes-B
model has the best performance. In particular, selecting SNPs based on LD-pruning with 1% of the methylation sites selected
based on BRR included in the model, and fitting the most significant SNP as a fixed effect was the best method for predicting
disease risk with a classification accuracy of 0.975. Our results showed that multiomics data can be used to effectively
predict the risk of RA and identify cases in early stages to prevent or alter disease progression via appropriate interventions.

Introduction

Rheumatoid arthritis (RA) is an autoimmune disease produ-
cing chronic inflammation of the joints and other areas of the
body, such as blood vessels and lungs, and its prevalence
ranges from 0.5 to 1% across populations (Glant et al. 2014;
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Sattar and McInnes 2005; Silman and Pearson 2002; Tanoue
1998). Leukocytes are one of the main immune cells involved
in development of autoimmune reactions, probably transmit-
ting complex signals between different tissue compartments
involved in disease development (Mayadas et al. 2009).

Recent genome-wide association (GWAS) and
epigenome-wide association (EWAS) studies of RA have
tagged more than one hundred genetic risk loci and ten
putative differentially methylated positions (DMPs) (Liu
et al. 2013; Okada et al. 2014; Padyukov et al. 2011;
Raychaudhuri et al. 2012; Stahl et al. 2010). In RA, genetic
and epigenetic modifications can influence disease devel-
opment and disease risk variation jointly (Glant et al. 2014).
Other studies have shown that integration of multiple omics
data can improve predictions for complex traits and diseases
(e.g., Yuan et al. (2014), Vazquez et al. (2016), and
Wheeler et al. (2014)).

Use of candidate loci discovered through GWAS typi-
cally does not improve prediction of complex diseases
enough to be useful in personalized medicine (Li and Meyre
2014). In addition, EWAS have not produced robust asso-
ciations between methylation sites and common diseases
(Liu et al. 2013). On the other hand, fitting whole-genome
molecular markers simultaneously into a regression model
(Meuwissen et al. 2001) has been used successfully in
animal and plant breeding (de los Campos et al. 2013a;
Gianola and Rosa 2015) and also in human disease risk
prediction (de los Campos et al. 2013b; Moser et al. 2015;
Speed and Balding 2014). It is known that a much larger
proportion of genetic variance can be accounted for in
prediction models that use all single nucleotide poly-
morphisms (SNPs) simultaneously than when fitting only
significant SNPs according to GWAS (de los Campos et al.
2010; Yang et al. 2010). Many studies have focused on
genetic aspects of RA (Hao et al. 2014; Kapitany et al.
2005; Padyukov et al. 2011; Raychaudhuri et al. 2012; Stahl
et al. 2010), but other reports have indicated the importance
of environmental factors and epigenetic regulation on
pathogenesis (Di Giuseppe et al. 2014; Glant et al. 2014;
Goronzy et al. 2010). Most previous studies have mainly
focused on pathogenesis (Choy 2012), epidemiology (Sil-
man and Pearson 2002), and GWAS or EWAS (Liu et al.
2013; Padyukov et al. 2011; Raychaudhuri et al. 2012).

With the increasing availability of data from multiple
omics layers using next-generation DNA sequencing and
other high-throughput technologies, prediction of complex
traits and diseases can be improved drastically. Improve-
ments in prediction accuracy of complex traits by combin-
ing different sources of omics data (e.g., methylation
patterns and gene expression patterns) in statistical models
have been reported (Hu et al. 2019; Vazquez et al. 2016;
Wheeler et al. 2014; Yuan et al. 2014). In a study on sur-
vival from breast cancer, a gain in prediction accuracy was

achieved when layers including gene expression and DNA
methylation data were added to SNP-based models (Vaz-
quez et al. 2016). More recently, Hu et al. (2019) reported a
significant improvement in prediction accuracy in rice traits
by integrating transcriptome and metabolome combined
with genomic data. It appears that inclusion of epigenetic
data in prediction models is beneficial for improving pre-
diction accuracy. Although the causes of RA remain
unknown, genetic and epigenetic bases for the disease have
been suggested (Choy 2012; Liu et al. 2013). Use of
additional sources of omics data (e.g., epigenetic variants)
may be helpful to increase accuracy of classification of RA
inserting into cases or controls.

This study was carried out to evaluate the use of mul-
tiomics data for classifying RA cases from controls.
Methylation and genotyping data collected from 689 sam-
ples (354 cases and 335 controls) were used. Classification
accuracies were estimated for genomic and methylome
layers separately, and then jointly. Effects of different
approaches of preselection of predictor variables were
assessed. We provide insights on how much multiomics
data integration can improve classification accuracy of RA.
Finally, we carried out a pathway analysis for the SNPs and
methylation sites with the strongest effects, to assess their
connection to RA.

Subjects and methods

Subjects

Data sets were obtained from the Epidemiological Investi-
gation of Rheumatoid Arthritis (EIRA) study involving
cases of RA in Sweden. In our study, after excluding two
control samples due to the lack of information for smoking
status, 354 anti-CCP positive RA cases and 333 controls
were used. Details of data collection are in previous studies
(Liu et al. 2013; Padyukov et al. 2011). All case and control
subjects were selected from the same study by matching for
age, gender, smoking, and residential area at the time of
diagnosis (for more details see Supplementary Table 1 in
Liu et al. (2013)).

Genotyping

The EIRA sample was genotyped with the Illumina plat-
form using Hap370CNVduo as described previously
(Padyukov et al. 2011). Genotypic data were obtained with
permission from EIRA investigators. A total of 301,282
autosomal SNPs were used before quality control (QC). The
QC of markers was performed on all genotyped samples
using the PLINK software (Purcell et al. 2007), and
monomorphic SNPs, a p value from Hardy–Weinberg
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equilibrium ≤ 5.0 × 10−5, minor allele frequency ≤ 0.05, or
call-rates ≥ 95% were removed. After applying such QC
filters, 292,836 SNPs (pg) remained for subsequent analysis.
To quantify and control for population stratification, we
used a principal components approach using the R package
SNPRelate (Zheng et al. 2012) from the Bioconductor open
source software (http://www.bioconductor.org/) but there
was no evidence of population stratification (Supplementary
Information, Fig. S1).

Methylation data

DNA extraction, preparation procedures, and methylation
measurement were described in Liu et al. (2013). Briefly,
after bisulfate converting of DNA, the Illumina Infinium
HD Methylation Assay (Illumina) was used for measuring
methylation levels in more than 485,000 sites per sample
using the Infinium HumanMethylation450 BeadChips
(Bibikova et al. 2011). The methylation data are available
in Gene Expression Omnibus (GEO) with accession num-
ber “GSE42861”. For normalization of methylation data, a
quantile normalization algorithm (Fortin et al. 2014) was
used to remove unwanted technical variation using Illu-
mina’s control probes. A total of 17,541 probes containing
SNPs in their sequences were also removed from the final
data. All methylation values with a detection p value ≥ 0.01
were set as missing. Samples and probes were checked for
missing values, and 1456 probes with >5% missing values
were removed from the data. All samples had <5% of
missing values and were then kept for further analyses. The
missing Beta-values were imputed using the R package
impute with ten nearest neighbor averaging (Troyanskaya
et al. 2001). After data preprocessing, 466,515 (pm)
methylation sites were available for the analyses. Methy-
lated and unmethylated signals (M and U, respectively)
were converted to Beta-values with a scale between 0 and 1
using the M/(M+U+ 100) formula. All methylation array
data preprocessing was conducted with the R package minfi
(Aryee et al. 2014).

Prediction methods

Three modeling strategies were considered for classifying
RA subjects using genomic or/and methylome data: (i) Only
genomic information used for whole-genome prediction
(WGP); (ii) only methylome data used for whole-
methylome prediction (WMP); and (iii) genomic and
methylome data jointly used for whole-genome/methylome
prediction (WGMP). Several Bayesian prediction models
were applied: Bayesian ridge regression (BRR) with a
Gaussian prior density (de los Campos et al. 2013a); Bayes-
C, a spike-slab model with a Gaussian prior density and a
null-state for variable selection (Habier et al. 2011); Bayes-

A with scaled-t prior density; Bayes-B, a spike-slab model
with a scaled-t prior and a null-state for variable selection
(Meuwissen et al. 2001); and the Bayesian LASSO (BL)
which was a double-exponential (Park and Casella 2008).

Whole-genome prediction

The matrix of genomic predictor variables was G= {gij}
with i= 1,…, n, j= 1,…, pg. Each element of the response
vector y= {yi} had two possible values, i.e., presence yi= 1
or absence yi= 0 of RA for the ith individual. We used a
probit link function P(yi= 1|Gi)=Φ(ηi), where Φ is a
standard normal cumulative distribution function and ηi is a
linear predictor given by

ηi ¼ μþ
Xpg

1

gijαj:

Above, µ is an intercept, gij is the genotype of the ith
individual at the jth marker, and αj is the jth marker
effect. The probit link assumed a latent normally dis-
tributed variable li = ηi + εi liability (Gianola and Foulley
1983); and a measurement model yi= 0 if li < γ, and 1
otherwise, where γ is a threshold parameter; and εi is an
independent normal model residual with mean zero and
with variance set equal to one. The density of the pos-
terior distribution was

p θgjy; ωg

� � / p yjθg
� �

p θgjωg

� �
;

where p(θg|y, ωg) is the conditional posterior density of
parameters θg ¼ μ; σ2e ; α

� �
, including the residual variance

(σ2e ), which was assigned a scaled-inverse χ2 prior
distribution; µ was assigned a flat prior distribution, and
the marker effects (α) were assigned independent and
identically distributed informative priors, depending on the
model; ωg represents the genomic hyperparameters index-
ing the prior density of marker effects. ωg for BRR is the
variance of SNP effects (σ2α), for BL is the regularization
parameter (λ2) and σ2α, for Bayes-A is the degrees of
freedom d.f.α and scale parameter Sα, for Bayes-B is d.f.α, Sα
and a mixture proportion (π), and for Bayes-C is π and σ2α,
where π is the probability of a null effect of markers. The

expression p yjθg
� � ¼ Qn

1 Φ ηið Þ½ �yi 1�Φ ηið Þ½ �1�yi
n o

is the

conditional distribution of the phenotypes given the linear
predictor, and p θgjωg

� � / p αjjωg

� �
p σ2e
� �

is the joint prior
distribution of model unknowns, given the hyperpara-
meters. The prior density of marker effects, p αjjωg

� �
,

defines the specification of the various Bayesian methods
inducing shrinkage and variable selection (Bayes-B and
Bayes-C) or shrinkage only (Bayes-A, BRR, and BL with
scaled-t, Gaussian, and Laplace priors, respectively). For
more details, see de los Campos et al. (2013a).
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Whole-methylome prediction

To regress disease status on methylation covariates, M=
{mil} with l= 1,…, pm, we adopted the following linear
predictor for WMP:

τi ¼ μþ
Xpm

1

milβl;

where mil is the methylotype of the ith individual at the lth
methylome probe, and βl is the lth probe effect. The
Bayesian model used for WMP, had a similar structure to
the WGP model, as follows:

p θmjy;ωmð Þ / p yjθmð Þ p θmjωmð Þ
/ Qn

1
Φ τið Þ½ �yi 1�Φ τið Þ½ �1�yi

n o
p βljωmð Þ p σ2e

� � ;

where θm is the vector of unknown methylomic parameters;
and ωm contains the methylomic hyperparameters indexing
the prior density of methylation effects. ωm for BRR is the
variance of methylation effects (σ2β); for BL it implies the
regularization parameter (λ2) and σ2β; for Bayes-A is the
degrees of freedom (d.f.β) and scale parameter Sβ; for
Bayes-B is d.f.β, Sβ, and the mixture proportion (π), and for
Bayes-C it is π and σ2β.

Integrated genome/methylome prediction

For WGMP, G and M data were the two input layers as
described earlier. The linear predictor was given by

ϕi ¼ μþ
Xpg

1

gijαj þ
Xpm

1

milβl;

where notations were as in WGP and WMP. The posterior
distribution of the model unknowns was

p θg; θm y;ωg;ωm

��� � / p yjθg; θm
� �

p θg; θm ωg;ωm

��� �

/ Qn

1
Φ ϕið Þ½ �yi 1�Φ ϕið Þ½ �1�yi

n o
p α; β ωg;ωm

��� �
p σ2e
� �

;

where α= {αj} and β= {βj} are the vectors of marker and
methylation effects, respectively; p(θg, θm|y, ωg, ωm) is the
posterior density of unknown genomic and methylomic
parameters (θg, θm); p(y|θg, θm) is the conditional distribu-
tion of the phenotype given the linear predictor; and p(θg,
θm|ωg, ωm)= p(θg|ωg)p(θm|ωm) is the joint prior distribution
of model unknowns given the sets of layer-specific
regularization hyperparameters for genomic (i.e., σ2β, λ2,
d.f.α, Sα, and π) and methylomic (i.e., σ2β, λ

2, d.f.β, Sβ, and π)
data. Note that whole-genome and whole-methylome
effects were assigned independent prior distribution.

All Bayesian analyses were implemented using a Markov
chain Monte Carlo (MCMC) approach, Gibbs sampling. In
each cross-validation (CV) and for each model, the number of
iterations of the Gibbs sampler was 200,000, with the first
100,000 samples discarded as burn in. A thinning interval of
20 was used. Thus, 5000 posterior samples were used for
inferring features of the posterior distribution. We diagnosed
convergence using a criterion of accuracy of estimation of a
quantile using the R package coda (Plummer et al. 2006).
Plots of posterior densities for variance parameters and latent
effects from the best model in WGP, WMP, and WGMP are
shown in Supplementary file, Fig. S2.

Treating the most significant rheumatoid arthritis
risk locus as a fixed effect

In WGP, the main assumption is that quantitative traits are
controlled by an infinite number of loci and each locus has
an infinitely small effect (Fisher 1918). This assumption is
violated if a genetic variant has a large effect. In Bayesian
approaches, effects of all SNPs can be estimated jointly
either without performing marker selection or by using both
variable selection and shrinkage of estimates (Gianola et al.
2003; Meuwissen et al. 2001). The various methods use
different prior densities to deal with different real distribu-
tions of marker effects to model different genetic scenarios.
However, some prior densities may not be able to perform
appropriate when phenotype is influenced by a genetic
variant with a large effect.

To check for signals of major variants, we performed a
logistic regression GWAS, SNP by SNP. Plink software
was used to obtain p values of association tests (Purcell
et al. 2007). The Manhattan plot of p values for the genomic
data is shown in Fig. 1. There is a major locus on chro-
mosome 6 with a significant effect on the disease, which is
in agreement with previous studies (Plenge et al. 2007;
Stahl et al. 2010; Walsh et al. 2016). Hence, the most sig-
nificantly associated SNP was considered as a fixed effect
(flat prior) and all other SNPs were random effects in each
CV for the WGP. In all GWAS conducted within the
training sets of CVs, SNP rs660895 presented the lowest p
value, except in two cases in which SNP rs2395175 was the
most significant, where it was the second significant marker.
Nonetheless, there is a strong linkage disequilibrium (LD)
between rs660895 and rs2395175, with r2 > 0.7. To exclude
SNPs that were in LD with the top SNP, we calculated r2

between rs660895 and all SNPs located 1000 kb up- and
downstream, and removed 14 SNPs with r2 > 0.2.

Subset selection

The number of predictor variables available (466,515
methylation sites and 292,836 SNPs) was large, making
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the analyses computationally taxing. As an alternative, a
subset selection approach was applied, where the number
of predictors was reduced to 50% (146,418 SNPs and
233,258 methylation sites), 10% (with 29,284 SNPs and
46,652 methylation sites), and 1% (2928 SNPs and 4665
methylation sites) of the total number of predictors. Four
different methods were used for subset selection on both
SNP and methylation sites: random, evenly spaced,
lowest p value (GWAS or EWAS), and the strongest
estimated effects from a BRR model. Each subset selec-
tion method was performed in each CV analysis, so that
both variable selection and parameter estimation were
performed without using information from the test set
samples.

LD-based SNP pruning

Since high levels of pairwise LD in SNP data may impair
performance of genomic prediction models (Calus et al.
2016), it could be useful to generate a pruned subset of
mutually uncorrelated SNPs. To evaluate effect of high LD
between SNPs on our models, we produced pruned subsets
of SNPs that were in approximate LD with each other via
the PLINK software. SNPs were pruned based on variance
inflation factor (VIF) thresholds of 2, 1.25, 1.11, and 1.01, a
sliding window of 50 SNPs, and shifted forward in steps of
10% of the window size, i.e., with 5. VIFs of 2, 1.25, 1.11,
and 1.01 imply multiple correlation coefficients of 0.5, 0.2,
0.1, and 0.01, respectively, for an SNP regressed on all
other SNPs in each window simultaneously. These para-
meters allowed a pairwise comparison to remove SNPs
from low (VIF= 1.01) to high LD (VIF= 2). After LD-
pruning, 97,201, 57,932, 41,673, and 14,242 SNPs retained

for VIF of 2, 1.25, 1.11, and 1.01, respectively, for further
analysis.

Correcting methylation signatures for potential
confounders

As DNA samples for methylation analysis were generally
derived from a large number of individuals with distinct
cellular heterogeneity, age, gender, and smoking status, we
attempted to adjust for these confounders in two scenarios,
i.e., correcting for cellular heterogeneity, and correcting for
all available potential confounders.

Correcting methylation signatures for cellular
heterogeneity

Whole blood samples are a heterogeneous mixture of cell
types. A recent study showed that differential DNA methyla-
tion signatures in whole blood samples can be affected by the
proportion of white blood cell types in each sample (Reinius
et al. 2012). Since variation in white blood cell frequencies
may affect accuracy of prediction, adjusted or nonadjusted
methylation measurements for cell proportion were compared.
The proportion of the major cell type in blood for each sample
was estimated using an algorithm in which an external vali-
dation set consisting of signatures from purified cell samples
was applied (Houseman et al. 2012). A total of six different
cell types including two types of T cells (CD8T and CD4T),
NK cells, B cells, monocytes, and granulocytes were used for
adjustment. Cell proportions for each sample were estimated
with the R package minfi. Sample-specific estimates of dif-
ferential cell counts were used to adjust the methylation sig-
natures using a linear regression model (adjusted-cell).

Fig. 1 Manhattan plot of p values for the genome-wide association study of rheumatoid arthritis. The red and blue lines represent genome-
wide significance (5 × 10−8) and suggestive (1 × 10−5) thresholds, respectively.
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Correcting methylation signatures for all available
potential confounders

It is shown that methylation level may also be modified by
environmental factors such as cigarette smoking status or by
gender and age (Breitling et al. 2011; Hannum et al. 2013).
To control for such factors, methylation changes due to age,
gender, smoking status, and cell type proportion were
accounted by fitting a linear model for each DMP. The
residuals from this model were used as new adjusted
methylation signatures (adjusted-all).

Cross-validation and prediction accuracy assessment

A tenfold CV was used to assess prediction accuracy. The
dataset was randomly split into ten mutually exclusive
subsets. One subsample was considered as the validation
data for testing the models and the other nine subsamples
were considered as training data. This was repeated for all
subsets until each of the ten subsamples was used exactly
once as the validation data. The ten results were averaged to
produce a single estimation. This whole process was repe-
ated 20 times, which resulted in a total of 20 CV predic-
tions. A receiver operating characteristics (ROC) was used
for evaluating predicting accuracy of the models (Fawcett
2006). The CV-area under the ROC curve (CV-AUC) was
used to evaluate predictive ability of each model. Therefore,
20 estimates of CV-AUC were calculated for each model.
Standard deviations of the CV-AUC for each model across
the 20 CVs were calculated. The average of these 20 esti-
mates was used to compare performance of the various
models.

Functional annotation for top ten SNPs and
methylation sites with the strongest effect

SNPs and methylation effects were estimated from the
WGP, WMP, and WGMP in the context of CV. For each
SNP and methylation effect, the average across the 20 CV
results was obtained. Then, the top ten SNPs and methy-
lation sites with the largest absolute effects were selected
for pathway analysis, to find connections to the disease.
First, we used the R package rsnps to retrieve SNPs
information by sending queries to public databases. For
methylation sites, the R package minfi was used to access
annotation for each position. Second, the nearest neigh-
boring genes to SNPs and methylation sites were found
employing BioMart web services through the R package
biomaRt (Durinck et al. 2009). Gene lists retrieved from
each prediction method were uploaded to DAVID (Huang
da et al. 2009), a web-accessible program, to link them to
associated diseases.

Results

Prediction accuracy using whole-genome models

The prediction accuracy obtained by fitting either all SNPs
as random (Random) or rs660895 as a fixed effect plus the
other SNPs as random (Fixed+Random), using different
Bayesian methods is shown in Table 1. Here we presented
the average of CV-AUCs exhibited in testing sets. The
model with a scaled-t prior density and variable selection
(i.e., Bayes-B), had the highest accuracy of prediction in the
testing set (≈0.73). Other models with priors other than
Student-t density (Bayes-C, BL, and BRR) had the lowest
accuracy when the major locus, rs660895, was not fitted as
a fixed effect (Random model). Overall, fitting rs660895 as
a fixed effect (Fixed+ Random model) increased prediction
accuracy, especially in Bayes-C, BL, and BRR. In contrast,
Random or Fixed+Random model did not differ for either
Bayes-A and Bayes-B. Therefore, the Fixed+ Random
fitting was used for subsequent analyses.

Genome prediction accuracy using subsets of SNP
markers

Estimates of prediction accuracy from subsets of SNPs
based on random, evenly spaced, GWAS p value and
strongest BRR effects across the five Bayesian models are
shown in Fig. 2a–d, respectively. Among these preselection
SNP methods, 50% random SNP selection had the highest
CV-AUC with an average of 0.742. When SNPs selection
levels were reduced to 10 and 1%, the evenly spaced
selection method using Bayes-B (0.716 ± 0.054) and Bayes-
A (0.717 ± 0.052) models exhibited the highest accuracies.
For SNPs selected based on GWAS p value (Fig. 2c), when
the proportion selection decreased, accuracy decreased as
well. For instance, 50% SNP selection obtained a higher
accuracy than 10 and 1% SNP selection across models.

Table 1 Genomic prediction accuracy (standard errors) from the
average of cross-validation AUC using SNP markers in different
Bayesian methods: Bayes-A, Bayes-B, Bayes-C, Bayesian LASSO
(BL), and Bayesian ridge regression (BRR).

Model Testing sets

Random Fixed+ Random

Bayes-A 0.718 (0.062)a 0.719 (0.061)a

Bayes-B 0.731 (0.054)b 0.737 (0.057)b

Bayes-C 0.592 (0.064)c 0.704 (0.056)d

BL 0.592 (0.064)c 0.705 (0.056)d

BRR 0.592 (0.063)c 0.704 (0.056)d

Average AUCs in testing population with different superscript(s) are
significantly different from each other (p value < 0.05).
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A clear difference in prediction accuracy was observed
between Bayesian models when a subset of SNPs selected
based on BRR estimates was used for predictors. Models
that used a scaled-t prior density (Bayes-A and Bayes-B)
produced significantly higher prediction accuracies than
those that assumed a normal (BRR and Bayes-C) or Laplace
(BL) prior density. The higher prediction accuracies
observed for Bayes-A and Bayes-B may be due to ability of
these methods to estimate SNP effects better for markers
linked to large-effect QTL.

Figure 3 shows the estimates of prediction accuracy for
subsets of SNPs selected based on LD-pruning. In this case,
Bayes-B delivered the highest prediction accuracy when a
VIF of 1.11 was used to remove SNPs with LD (0.756 ±
0.057). These results suggest that reduction in levels of
pairwise LD among SNPs could improve the accuracy of
genomic prediction models.

Methylome prediction accuracy using all
methylation sites

Table 2 shows the methylome prediction accuracy in
training and testing sets using adjusted-cell, adjusted-all,
and nonadjusted methylation data with different Bayesian
methods. In the adjusted-cell approach, the methylation

signatures were adjusted for varying proportions of white
blood cell types, whereas in the adjusted-all correction, the
methylation signatures were adjusted for blood cell

Fig. 2 Genomic prediction accuracy of three levels of selected
SNPs (1, 10, and 50% of all markers) using Bayes-A, Bayes-B,
Bayes-C, Bayes LASSO (BL), and Bayesian ridge regression
(BRR) models and different approaches to SNP selection.

Randomly (a), evenly spaced (b), GWAS p value (c), and strongest
BRR effects (d). AUCs with different superscript(s) are significantly
different from each other (p value < 0.05).

Fig. 3 Genomic prediction accuracy of selected SNPs based on LD-
pruning using Bayes-A, Bayes-B, Bayes-C, Bayes LASSO (BL),
and Bayesian ridge regression (BRR) models. A different range of
variance inflation factor (VIF) including 2, 1.25, 1.11, and 1.01 were
used to imply multiple correlation coefficients of 0.5, 0.2, 0.1, and
0.01, respectively. AUCs with different superscript(s) are significantly
different from each other (p value < 0.05).
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proportion and other available explanatory variables
including age, sex, and smoking status. Nonadjusted
methylation inputs delivered higher estimates of prediction
accuracy than when adjusted-cell or adjusted-all methyla-
tion data. When nonadjusted methylation data were used,
model goodness of fit was better than with adjusted
methylation data. Estimated accuracy was similar across the
five Bayesian models.

Prediction accuracy using subsets of methylation
sites

The prediction accuracies of the various subsets of methy-
lation sites used in five Bayesian models are shown in Fig.
4. When methylation sites were selected randomly or evenly
spaced (Fig. 4a, b, respectively), there were no significant
differences among the three levels of selected methylation
sites (p > 0.05). However, when methylation sites were
selected based on their estimated effects, there was a clear
difference between the levels of selected. BRR subset
selection was the most efficient method for selection of
methylation sites, and the highest prediction accuracy was
achieved when 1% of the methylation sites was selected
using this method, regardless of the model used for pre-
diction (Fig. 4d).

Prediction accuracy using integrated methylome
and genomic data

Four different combinations of omics data were used and
compared in terms of prediction accuracy. As Bayes-B
performed better than other models on both methylation and
SNP data, it was the model chosen for the integrated ana-
lysis of methylome and genomic data. First, 1% of the
methylation data (using BRR as selection method) were

integrated either with all of the SNP data as random effects
(Random in WGP), or with all SNP effects fitted as random
except for SNP rs660895 fitted as fixed (Fixed+ Random
method in WGP). Second, 1% of the methylation data and
pruned SNPs based on LD were used jointly. Lastly, 1% of
the methylation data and rs660895 as fixed were included in
the model. The results of these four analyses (Table 3)
showed that integrating methylation and SNP data increased
prediction accuracy relative to models where SNP and
methylation data were fitted separately (WGP and WMP).

Estimated SNPs effects using WGP and WGMP

SNPs effects were estimated using the average from the 20
CV results. It has been shown theoretically that SNPs
effects are highly dependent on the prior distribution
assumed (Gianola 2013). We verified such expectation on
empirically and it was joint with estimation of allelic sub-
stitution varied over the prior adopted (Supplementary
Information, Figs. S3 and S4). When Bayes-A and Bayes-B
were used, the distribution of SNP effects from WGP
showed a few SNPs with a major effect, whereas other
SNPs had small effects (Supplementary Information, Fig.
S3). The SNPs with large effects were found on chromo-
somes 3, 6, 12, and 14. Estimated effects of top SNPs other
than those in chromosome 6 could also be due to sampling
error. By fitting methylation data and SNPs information
simultaneously with Bayes-B, no major SNP effect was
detected (Fig. 5a, b). The correlation between SNP effect
estimates using the WGMP and WGP was very low with
0.07 (Fig. 5c). This phenomenon is due to exacerbation of
the n < p problem when methylation sites are added to the
SNP data. However, when 20 outliers based on χ2 scores in
WGP were removed, the correlation increased drastically to
0.68.

The top ten SNPs with the strongest estimated effects in
WGP are shown in Table 4. The SNP with the strongest effect
on RA was located on chromosome 12, at 91 Kb distance
from the nearest neighboring gene, which is a long noncoding
RNA (lncRNA). Six SNPs were located within or nearby four
genes that were previously shown to have direct or indirect
significant association with RA (Hao et al. 2014; Hirota et al.
2011; Kapitany et al. 2005; Orozco et al. 2005). More detailed
functional annotations of genes related to the disease are in
Supplementary Information Table S1. Butyrophilin-like 2
(BTNL2) is one of the genes listed which showed an indirect
association through its strong LD with a mutation in the major
histocompatibility complex, class II, DQ beta 1 (HLA-
DRB1), which can increase RA risk (Orozco et al. 2005). The
other three genes, including chromosome 6 open reading
frame 10 (C6orf10), major histocompatibility complex, class
II, DQ alpha 1(HLA-DQA1), and major histocompatibility
complex, class II, DR alpha (HLA-DRA) showed a direct

Table 2 Prediction accuracy (standard errors) from the average of
cross-validation AUC using all methylation data in different methods:
Bayes-A, Bayes-B, Bayes-C, Bayesian LASSO (BL), and Bayesian
ridge regression (BRR).

Model Testing population

Nonadjusted Adjusted-cell1 Adjusted-all2

Bayes-A 0.868 (0.044)a 0.821 (0.050)b 0.657 (0.057)c

Bayes-B 0.868 (0.043)a 0.821 (0.051)b 0.659 (0.057)c

Bayes-C 0.867 (0.044)a 0.820 (0.050)b 0.660 (0.058)c

BL 0.865 (0.044)a 0.821 (0.048)b 0.662 (0.058)c

BRR 0.867 (0.044)a 0.820 (0.050)b 0.658 (0.057)c

1Methylation signatures adjusted for cell proportions only.
2Methylation signatures were adjusted for all available confounders
including cell proportions, age, sex, and smoking status. Average
AUCs in testing populations with different superscript(s) are
significantly different (p value < 0.05).
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association with RA (Hao et al. 2014; Hirota et al. 2011;
Kapitany et al. 2005). The second top SNP is located in
vestigial-like 4 (VGLL4), which acts as a tumor suppressor
(Jiang et al. 2015). To our knowledge, there are no studies
indicating a connection between VGLL4 and RA disease risk.
As this gene may play a significant role in apoptotic pathways
(Jin et al. 2011), it may affect the disease risk of RA indirectly
through programmed cell death (Liu and Pope 2003). The

most significant SNP detected in the GWAS, rs660895, was
ranked third based on SNP effects, and it is 19 Kb away from
HLA-DQA1.

Five top SNPs with the strongest effect from WGMP were
located nearby different classes of noncoding RNAs
(ncRNA), whose functions remain to be understood (Table 5).
Other top SNPs in WGMP are located close to coding genes
including KHNYN, VGLL4, HLA-DRA, an uncategorized
gene with ensemble code ID “ENSG00000279427” and
sapiens roundabout guidance receptor 2 (ROBO2). Three
of these genes, KHNYN, VGLL4, HLA-DRA appear in
Table 4 for WGP. Previous studies suggest an association
between a mutation in ROBO2 and risk of vesicoureteral
reflux (Lu et al. 2007) and probably an effect of the
expression level of the gene on prostate cancers (Choi
et al. 2014); however, there are no reports on connection
between ROBO2 and RA disease. In this list of top ten
SNPs, only rs2395175 was connected to RA within an
upstream location of HLA-DRA. The pathway analysis
showed that terms associated with celiac disease, cholesterol
level, and tobacco use disorder were enriched among can-
didate genes (see Supplementary Information, Table S2).

Fig. 4 Prediction accuracy of three levels of selected methylation
sites (1, 10, and 50%) using Bayes-A, Bayes-B, Bayes-C, Bayesian
LASSO (BL), and Bayesian ridge regression (BRR) models with

different approaches to subsetting. Randomly (a), evenly spaced (b),
EWA p value (c), and BRR effects (d). Bars with different letters
indicate significant differences in average AUCs (p value < 0.05).

Table 3 Prediction accuracy from the average of cross-validation AUC
using SNPs and methylation data simultaneously.

Integrated data Prediction accuracy

1% of methylation selected based on BRR method

+All SNPs as random effects except rs660895
as fixed

0.927 (0.032)b

+All SNPs as random effects 0.924 (0.034)b

+Subset of 41,673 LD-pruned SNPs
+ rs660895 as fixed

0.975 (0.014)a

+rs660895 as fixed 0.906 (0.037)c

Average AUCs with different superscript(s) are significantly different
(p value < 0.05).
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Fig. 5 Comparison of estimated SNP effects using two methods
including whole-genome prediction (WGP) and whole-genome/
methylome prediction (WGMP). Histogram of estimated SNP effects

using WGP (a) and WGMP (b). c Scatter plot between estimated SNP
effects using WGP and WGMP. The inset panels show SNPs with
large (top panel) and small effect (below panel).

Table 4 Top ten SNPs with the strongest effects from whole-genome prediction using Bayes-B method fitting all SNPs as random effects.

SNP name Chromosome:
base pair

Alleles Major allele MAFa Gene nameb Distance
from gene

Effect

rs11179382 12: 72820377 C/T T 0.269 A lncRNA with ensemble code ID
ENSG00000258235

91 Kb
downstream

−0.26015

rs2077507 3: 11576994 A/G A 0.287 Vestigial-like family member 4 (VGLL4) Body −0.25294

rs660895 6: 32609603 A/G A 0.198 Major histocompatibility complex, class II,
DQ alpha 1 (HLA-DQA1)

19 Kb upstream −0.16400

rs2395175 6: 32437249 A/G G 0.098 Major histocompatibility complex, class II,
DR alpha (HLA-DRA)

2.6 Kb upstream −0.10898

rs2395163 6: 32420032 C/T T 0.153 Butyrophilin-like 2 (BTNL2) 13 Kb
downstream

−0.09879

rs1004664 14: 24424005 G/T T 0.376 KH and NYN domain containing (KHNYN) Body −0.08766

rs3763309 6: 32408196 A/C C 0.150 Butyrophilin-like 2 (BTNL2) Body −0.07728

rs2395157 6: 32380368 A/G A 0.208 A ncRNA LOC101929163 (uncharacterized) Body −0.06514

rs3817963 6: 32400310 A/G A 0.257 Butyrophilin-like 2 (BTNL2) Body −0.05923

rs6910071 6: 32315077 A/G A 0.105 Chromosome 6 open reading frame 10
(C6orf10)

Body −0.05694

aMAF minor allele frequency.
bncRNA noncoding RNA, lncRNA long noncoding RNA.
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Estimated methylation effects based on the training
population using WMP and WGMP

Methylation site effects were also estimated from the
average of 20 CV results. In general, results suggested the
estimated methylation effects in all different Bayesian
model specifications normally distributed (Supplementary
Information, Fig. S5). The distribution of estimated
methylation effects using Bayes-B and 1% of selected
methylation sites based on BRR are shown in Fig. 6a, b for
WMP and WGMP, respectively. The correlation between
methylation site effects estimated in WMP and WGMP was
0.73, which was much higher than the correlation between
estimated average SNP effects from WGP and WGMP
(Fig. 6c).

The top ten methylation sites with the strongest effect in
1% of selected subset based on BRR results for WMP are
shown in Table 6 (Beta-value pattern of these methylation
sites is also shown in Supplementary Information, Fig. S6).
According to the pathway analysis, only two methylation
sites were connected to RA (Supplementary Information,
Table S3), including the cg24147543 site, which is located
in major histocompatibility complex, class II, DR beta 1
(HLA-DRB1) and was on the top of our list. Several allelic
variants in this gene have shown a significant association
with RA (Weyand and Goronzy 2000). The ninth methy-
lation site, cg18858739, which is located within the CD247
molecule was suggested to be involved in RA risk (Stahl
et al. 2010). The second methylation site in the list,
cg10132543, is located in the Carnitine palmitoyltransfer-
ase 1A (CPT1A) gene, which encodes an enzyme that
regulates the production of reactive oxygen species (ROS)
within mitochondria (Rosca et al. 2012). The ROS roles in
the pathogenesis of inflammatory chronic arthropathies
such as RA have been demonstrated previously (Filippin
et al. 2008). Three of the listed methylation sites
(cg26572452, cg04362887, and cg09717927) are located
far from annotated genes. For instance, cg26572452 is
located 129 kb from any gene, while sites cg04362887 and
cg09717927 are 91 and 112 Kb away from the closest gene,
respectively. There was no evidence for connectedness
between three nearest genes, forkhead box F1 (FOXF1),
Chromosome 14 Open Reading Frame 70 (C14orf7) and
member RAS oncogene family (RAB28), to the top
methylation sites and RA disease risk. Catenin beta 1
(CTNNB1), a mediator of the Wnt signal and also a
component of E-cadherin complexes at the intercellular
adhering junction, was another listed gene, which expres-
sion in synovial lining cells of the RA samples has been
shown to be high (Xiao et al. 2011).

After fitting WGMP, four listed genes in top methy-
lation sites in WMP (CPT1A, HLA-DRB1, CD247, and
LINC00977) remained in the top ten list in WGMPTa
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(Table 7). Diseases that are associated with some of the
listed genes are shown in Supplementary Information
(Table S4). Box-plots of the Beta-values for these
methylation sites for cases and controls are shown sepa-
rately in the Supplementary Information (Fig. S7). To our
knowledge, there is a limited number of studies showing
a relationship between the five listed genes including XK
related 9 (XKR9), sequence similarity 189-member B
(FAM189B), MORN repeat containing 1 (MORN1),
caldesmon 1 (CALD1), and peptidylprolyl isomerase like
4 (PPIL4) and RA. An association between one of the
listed genes in the HLA locus, complex, class II, DR beta
1 (HLA-DRB1), and RA was reported (Okamoto et al.
2003). A previous study demonstrated that level of tri-
methylation of lysine 4 on histone H3 (H3K4me3) in
lactamase beta 2 (LACTB2) was significantly higher in
peripheral blood mononuclear cells in patients with RA
(Dai et al. 2010). It is accepted that the DNA and histone
lysine methylation systems are related mechanistically
(Rose and Klose 2014). Consequently, methylation in
this site may have some connection with H3K4me3
modification and increase RA disease risk.

Discussion

This study investigated alternative modeling approaches for
prediction of RA using SNP and methylation data, includ-
ing the effect of correcting methylation signatures for cel-
lular heterogeneity, the integration of genome and
methylome data, and different strategies of preselection of
predictors. Overall, the importance of multiomics data for
prediction of disease risk was indicated.

Our results indicated that classification of RA subjects
using SNPs chip data is a promising tool. Moreover, such
classification can be even more efficient when methylation
information is incorporated. Here, we compared predictive
models using these two sources of omics information (SNP
markers and methylation sites), either separately or jointly
in a single model.

The accuracy of WGP depends on the number of loci and
on the distribution of their effects (Li et al. 2012; Momen
et al. 2018). Riedelsheimer et al. (2012) and Momen et al.
(2018) reported small differences among some parametric
and semiparametric WGP models using traits with drasti-
cally different genetic architectures. They found that

Fig. 6 Comparison of estimated methylation site effects using two
methods including whole-methylome prediction (WMP) and
whole-genome/methylome prediction (WGMP). Histogram of

estimated methylation site effects using WMP (a) and WGMP (b). c
Plot of estimated effects for methylation sites from WMP and WGMP.
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selecting a WGP model that contemplates genetic archi-
tecture can result in a small gain in accuracy. We found that
Bayes-B was the model producing the highest accuracy of
prediction. Fitting SNPs with major signals as fixed effects
can reduce discrepancy between models with different prior
assumptions. The choice of prior distributions can have
large impacts on prediction accuracy and model fitting
(Table 1). Bayesian models that utilize a scaled-t prior
density result in a heavy-tailed prior for the random effects
and may estimate SNP effects that are linked to a large-
effect QTL better. Thus, the scaled-t prior used as slab in
Bayes-B perhaps better captures the underlying architecture
of RA compared with other approaches. For methylation
analysis, only minor differences were observed in classifi-
cation accuracy among models evaluated.

There are some reports showing association between
DNA methylation and diseases, including RA (Liu et al.
2013), cancer (Shenker et al. 2013; Teschendorff et al.
2009), and type 1 diabetes (Rakyan et al. 2011). A previous
study with this dataset found a robust association between
methylome modifications and risk of RA (Liu et al. 2013).
Another EWAS on B lymphocytes with three different
cohorts showed validated associations between RA risk and
two CpGs located near the MHC class I-like glycoprotein,
CD1C, and a cytokine that belongs to the TNF ligand
family, TNFSF10 (Julià et al. 2017). It also showed that
adjustment for cellular heterogeneity can reduce the con-
founding effect due to of cell type heterogeneity on
methylation profiles in EWAS. Although this adjustment is
recommended when methylation data are derived from
whole blood samples (Jaffe and Irizarry 2014), our results
indicated that the use of nonadjusted methylation profile can
result in a higher classification accuracy. Our WMP analysis
also showed detrimental effects on prediction accuracy from
adjusting for cell heterogeneity and for other confounders
such as gender, age, and smoking status. However, there are
other possible confounder effects (e.g., lifestyle, nutrition,
and environmental stress), which were not accounted for in
our adjustment for methylation signatures. Previous epide-
miological studies have identified smoking, gender, and age
as important risk factors for RA (Di Giuseppe et al. 2014;
Goronzy et al. 2010; Linos et al. 1980), and methylation of
DNA may also be modified by these factors (Breitling et al.
2011; Hannum et al. 2013). It has been shown that the
proportion of white blood cells in patients with RA can
differ from that in healthy controls (Takeshita et al. 2019).
We found that blood cell type proportions in RA cases can
differ from controls (Supplementary Information, Table S5).
This change may produce distinct methylation of DNA in
cases and controls, leading to a more efficient separation
when using unadjusted values. It is accepted that cell het-
erogeneity can produce false discoveries in EWAS, and
many such studies have highlighted the importance of cell

type correction (Liu et al. 2013). However, here we found a
decrease in prediction accuracy from using the adjusted-all
methylation data related to what was attained with non-
adjusted methylation data.

Use of multiomics data for WGP of disease risk has
increased in recent years. Choosing a tissue that can
represent epigenetic modifications closely connected to the
disease is important and difficult. RA is a complex disease,
dependent on genetic and environmental factors (Liu et al.
2013), and our results indicated that leukocytes, one of the
main classes of cells involved in the disease, can effectively
represent its epigenetic regulation. Another important issue
that affects prediction accuracy is the selection of the best
combination of omics data. In breast cancer, for example,
combining whole-genome gene expression profiles and
whole-genome methylation profiles produced good pre-
dictive ability (Vazquez et al. 2016). Another comprehen-
sive study on various types of the cancer (ovarian, renal,
glioblastoma multiform, and lung squamous cell carcinoma)
using omics data and clinical covariates, found that com-
bination of molecular data with clinical variables sig-
nificantly improved predictive ability for three of the
diseases (Yuan et al. 2014). Our analyses also showed that
consigned of two layers of omics, methylation and SNP
data, can provide a higher accuracy than a single layer alone
for classification of RA. Our research hints at the impor-
tance of methylation information for RA. A higher classi-
fication accuracy from using methylation data than from
genotype information would suggest that epigenetic reg-
ulation is more relevant for clinical assessment of RA dis-
ease pathology.

Difficulties are present when the number of recorded
individuals is smaller than the number of predictors from
multilayer omics data. For fitting these models, some type
of variable selection or shrinkage estimation procedure is
needed (de los Campos et al. 2013a). As Bayesian methods
can handle the problem of a larger number of the predictors
than of samples, but choosing an appropriate method for
preselection of predictors (LD-based pruning and BRR
subset selection for SNPs and methylation sites, respec-
tively) may assist in improving prediction ability. For
instance, when 1% of the methylation sites was selected
based on their effects estimated with BRR, the AUC had a
significant increase of up to 2.8 points over the model fitted
using all methylation signatures, and of 2.6 points over the
model fitted using 1% randomly selected methylation sites.
The improvement of predictive ability was limited probably
due to the small sample size used. Although accuracy of
prediction was reasonable, additional investigations using a
larger sample could provide extra insights regarding the
potential prediction ability of different subset selection
methods of SNP markers and methylation sites. Accuracies
across different layers of omics data, prediction models and
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subset selection methods suggested that using Bayes-B with
subset of SNPs following LD-pruning with methylation
sites selected with BRR had the best classification perfor-
mance. This approach can be used to effectively predict the
risk of RA and identify cases in early stages to prevent or
alter disease progression and potentially lead to drug-free
remission.

Our pathway analysis of the top ten SNPs showed that
six were connected to the disease through genes shown to
have an association with RA in previous studies. One of the
genes we found both with WGP and WGMP, VGLL4, has
not been shown to have an association with RA in earlier
studies. The effect of VGLL4, if real, could be due to its
role in apoptotic pathways (Jin et al. 2011), as insufficient
apoptosis of inflammatory cells was found in the RA joint
(Pope 2002). HLA-DRB1 and CD247 genes have also been
shown to have a significant association with RA (Stahl et al.
2010; Weyand and Goronzy 2000), and were included in
our list when methylation data were used for prediction
(WMP and WGMP). These two genes might be linked to
RA through epigenetic regulations other than through SNP
variation. The CpG site with the strongest estimated effect
from WGMP analyses, cg10132543, was located within
promoter sequences of CPT1A gene. This gene is involved
in producing ROS, which may enhance disease risk through
altering the pathogenesis of inflammatory chronic arthro-
pathies (Filippin et al. 2008; Rosca et al. 2012). We suggest
that this gene be investigated for its potential role in RA in
future studies.

Our results showed that one of the methylation sites with
the strongest effect was close to LACTB2, which showed
an increase in level of H3K4me3 in RA. This suggests a
connection between methylation and H3K4me3 modifica-
tion in RA to increase disease risk.

Visscher et al. (2017) showed that, to reach an adequate
power from detecting association, some factors such as
genotyping method, sample size, allele frequency, and
effect size are important. For example, for case-control
studies of disease with an allele effect size of 0.01, 0.1, and
1 phenotypic standard deviations, and a minor allele fre-
quency of 0.01, sample size with more than 10 million, 100
thousands, and 1000 individuals, respectively, are needed.
These sample sizes were calculated based on unselected
population samples and for highly ascertained cases, similar
to the samples of our study, power could be increased.
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