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Abstract
An increasing number of field studies have shown that the phenotype of an individual plant depends not only on its genotype
but also on those of neighboring plants; however, this fact is not taken into consideration in genome-wide association studies
(GWAS). Based on the Ising model of ferromagnetism, we incorporated neighbor genotypic identity into a regression model,
named “Neighbor GWAS”. Our simulations showed that the effective range of neighbor effects could be estimated using an
observed phenotype when the proportion of phenotypic variation explained (PVE) by neighbor effects peaked. The spatial
scale of the first nearest neighbors gave the maximum power to detect the causal variants responsible for neighbor effects,
unless their effective range was too broad. However, if the effective range of the neighbor effects was broad and minor allele
frequencies were low, there was collinearity between the self and neighbor effects. To suppress the false positive detection of
neighbor effects, the fixed effect and variance components involved in the neighbor effects should be tested in comparison
with a standard GWAS model. We applied neighbor GWAS to field herbivory data from 199 accessions of Arabidopsis
thaliana and found that neighbor effects explained 8% more of the PVE of the observed damage than standard GWAS. The
neighbor GWAS method provides a novel tool that could facilitate the analysis of complex traits in spatially structured
environments and is available as an R package at CRAN (https://cran.rproject.org/package=rNeighborGWAS).

Introduction

Plants are immobile and thus cannot escape their neighbors. In
natural and agricultural systems, individual phenotypes
depend not only on the plants’ own genotype but also on the
genotypes of other neighboring plants (Tahvanainen and Root
1972; Barbosa et al. 2009; Underwood et al. 2014). This
phenomenon has been termed neighbor effects or associational
effects in plant ecology (Barbosa et al. 2009; Underwood et al.
2014; Sato 2018). Such neighbor effects were initially repor-
ted as a form of interspecific interaction among different plant
species (Tahvanainen and Root 1972), but many studies have
illustrated that neighbor effects occur among different geno-
types within a plant species with respect to: (i) herbivory
(Schuman et al. 2015; Sato 2018; Ida et al. 2018), (ii)
pathogen infections (Mundt 2002; Zeller et al. 2012), and (iii)
pollinator visitations (Underwood et al. 2020). Although
neighbor effects are of considerable interest in plant science
(Dicke and Baldwin 2010; Erb 2018) and agriculture (Zeller
et al. 2012; Dahlin et al. 2018), they are often not considered
in quantitative genetic analyses of field-grown plants.

Complex mechanisms underlie neighbor effects through
direct competition (Weiner 1990), herbivore and pollinator
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movement (Bergvall et al. 2006; Verschut et al. 2016;
Underwood et al. 2020), and volatile communication among
plants (Schuman et al. 2015; Dahlin et al. 2018). For
example, lipoxygenase (LOX) genes govern jasmonate-
mediated volatile emissions in wild tobacco (Nicotiana
attenuata) that induce defenses of neighboring plants
(Schuman et al. 2015). Even if direct plant–plant commu-
nications are absent, herbivores can mediate indirect inter-
actions between plant genotypes (Sato and Kudoh 2017; Ida
et al. 2018). For example, the GLABRA1 gene is known to
determine hairy or glabrous phenotypes in Arabidopsis
plants (Hauser et al. 2001), and the flightless leaf beetle
(Phaedon brassicae) is known to prefer glabrous plants to
hairy ones (Sato et al. 2017). Consequently, hairy plants
escape herbivory when surrounded by glabrous plants
(Sato and Kudoh 2017). Yet, there are few hypothesis-free
approaches currently available for the identification of the
key genetic variants responsible for plant neighborhood
effects.

Genome-wide association studies (GWAS) have been
increasingly adopted to resolve the genetic architecture of
complex traits in the model plant, Arabidopsis thaliana
(Atwell et al. 2010; Seren et al. 2017; Togninalli et al.
2018), and crop species (Hamblin et al. 2011). The inter-
actions of plants with herbivores (Brachi et al. 2015; Nallu
et al. 2018), microbes (Horton et al. 2014; Wang et al.
2018), and other plant species (Frachon et al. 2019) are
examples of the complex traits that are investigated
through the lens of GWAS. To distinguish causal variants
from the genome structure, GWAS often employs a linear
mixed model with kinship considered as a random effect
(Kang et al. 2008; Korte and Farlow 2013). However,
because of combinatorial explosion, it is generally impos-
sible to test the full set of inter-genomic locus-by-locus
interactions (Gondro et al. 2013); thus, some feasible and
reasonable approach should be developed for the GWAS of
neighbor effects.

To incorporate neighbor effects into GWAS, we have
focused on a theoretical model of neighbor effects in
magnetic fields, known as the Ising model (Ising 1925;
McCoy and Maillard 2012), which has been applied to
forest gap dynamics (Kizaki and Katori 1999; Schlicht and
Iwasa 2004) and community assembly (Azaele et al. 2010)
in plant ecology. Using the Ising analogy, we compare
individual plants to a magnet: the two alleles at each locus
correspond to the north and south dipoles, and genome-
wide multiple testing across all loci is analogous to a
number of parallel two-dimensional layers. The Ising model
has a clear advantage in its interpretability, such that: (i) the
optimization problem for a population sum of trait values
can be regarded as an inverse problem of a simple linear
model, (ii) the sign of neighbor effects determines the
model’s trend with regard to the generation of a clustered or

checkered spatial pattern of the two states, and (iii) the self-
genotypic effect determines the general tendency to favor
one allele over another (Fig. 1).

In this study, we proposed a new methodology inte-
grating GWAS and the Ising model, named “neighbor
GWAS.” The method was applied to simulated phenotypes
and actual data of field herbivory on A. thaliana. We
addressed two specific questions: (i) what spatial and
genetic factors influenced the power to detect causal var-
iants? and (ii) were neighbor effects significant sources of
leaf damage variation in field-grown A. thaliana? Based on
the simulation and application, we determined the feasibility
of our approach to detect neighbor effects in field-grown
plants.

Materials and methods

Neighbor GWAS

Basic model

We analyzed neighbor effects in GWAS as an inverse
problem of the two-dimensional Ising model, named
“neighbor GWAS” hereafter (Fig. 1). We considered a
situation where a plant accession has one of two alleles at
each locus, and a number of accessions occupied a finite set
of field sites, in a two-dimensional lattice. The allelic status
at each locus was represented by x, and so the allelic status
at each locus of the ith focal plant and the jth neighboring
plants was designated as xi(j)∈{−1, +1}. Based on a two-
dimensional Ising model, we defined a phenotype value for
the ith focal individual plant yias:

yi ¼ β1xi þ β2
X
<i;j>

xixj ð1Þ

where β1 and β2 denoted self-genotype and neighbor effects,
respectively. If two neighboring plants shared the same
allele at a given locus, the product xixj turned into (−1) ×
(−1)=+1 or (+1) × (+1)=+1. If two neighbors had
different alleles, the product xixj became (−1) × (+1)=−1
or (+1) × (−1)=−1. Accordingly, the effects of neighbor
genotypic identity on a particular phenotype depended on
the coefficient β2 and the number of the two alleles in a
neighborhood. If the numbers of identical and different
alleles were the same near a focal plant, these neighbors
offset the sum of the products between the focal plant i and
all j neighbors

P
<i;j> xixj and exerted no effects on a

phenotype. When we summed up the phenotype values for
the total number of plants n and replaced it as E=−β2,
H=−β1 and εI= Σyi, Eq. 1 could be transformed into
ϵI ¼ �E

P
<i;j> xixj � H

P
xi, which defined the interaction

energy of a two-dimensional ferromagnetic Ising model
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(McCoy and Maillard 2012). The neighbor effect β2 and
self-genotype effect β1 were interpreted as the energy
coefficient E and external magnetic effects H, respectively.
An individual plant represented a spin and the two
allelic states of each locus corresponded to a north or south
dipole. The positive or negative value of Σxixj indicated a
ferromagnetism or paramagnetism, respectively. In this
study, we did not consider the effects of allele dominance
because this model was applied to inbred plants. However,
heterozygotes could be processed if the neighbor covariate
xixj was weighted by an estimated degree of dominance in
the self-genotypic effects on a phenotype.

Association tests

For association mapping, we needed to determine β1 and β2
from the observed phenotypes and considered a confound-
ing sample structure as advocated by previous GWAS (e.g.,
Kang et al. 2008; Korte and Farlow 2013). Extending the
basic model (Eq. (1)), we described a linear mixed model at
an individual level as:

yi ¼ β0 þ β1xi þ
β2
L

XL
<i;j>

xix
ðsÞ
j þ ui þ ei ð2Þ

where β0 indicated the intercept; the term β1xi represented
fixed self-genotype effects as tested in standard GWAS; and

β2 was the coefficient of fixed neighbor effects. The
neighbor covariate

PL
<i;j> xix

ðsÞ
j indicated a sum of products

for all combinations between the ith focal plant and the jth
neighbor at the sth spatial scale from the focal plant i, and
was scaled by the number of neighboring plants, L. The
number of neighboring plants L was dependent on the
spatial scale s to be referred. Variance components
due to the sample structure of self and neighbor
effects were modeled by a random effect ui 2 u and
u � Normð0; σ21K1 þ σ22K2Þ. The residual was expressed as
ei 2 e and e � Normð0; σ2eIÞ, where I represented an
identity matrix.

Variation partitioning

To estimate the proportion of phenotypic variation
explained (PVE) by the self and neighbor effects, we uti-
lized variance component parameters in linear mixed
models. The n × n variance-covariance matrices repre-
sented the similarity in self-genotypes (i.e., kinship)
and neighbor covariates among n individual plants as K1 ¼
1

q�1X
T
1X1 and K2 ¼ 1

q�1X
T
2X2, where the elements of

n plants × q markers matrix X1 and X2 consisted of expla-
natory variables for the self and neighbor effects as X1=

(xi) and X2 ¼ ð
PL

<i;j>
xix

ðsÞ
j

L Þ. As we defined xiðjÞ 2{+1, −1},
the elements of the kinship matrix K1 were scaled to

inverse problem

post hoc simulation2-D Ising model

Neighbor GWAS
(linear mixed model)

(a) β2 = 0.2, β1 = 0.0 (b) β2 = -0.2, β1 = 0.0 (c) β2 = -0.2, β1 = 0.05

∑ = ∑ + ∑ ,

= 0 + +
∑ ,

( )

+ +

Fig. 1 Relationship between the neighbor GWAS and Ising model.
Upper panels show the spatial arrangements expected by a 2-D Ising
model

P
yi ¼ β1

P
xi þ β2

P
<i;j> xixj. a If β2 > 0, mixed patterns give

the argument of the minimum for a population sum of phenotype
values Σyi. b If β2 < 0, clustered patterns give the argument of the
minimum for Σyi. c In addition, β1 determines the overall patterns
favoring −1 or +1 states. The figures show outcomes from a random
100 × 100 lattice after 1000 iterations of simulated annealing. Con-
versely, the neighbor GWAS was implemented as an inverse problem

of the 2-D Ising model, where genotypes and its spatial arrangement,
xi and xixj, were given while the coefficients β1 and β2 were to be
estimated from the observed phenotypes yi. In addition, the variance
component due to self and neighbor effects was considered a
random effect in a linear mixed model, such that ui 2 u and
u � Normð0; σ21K1 þ σ22K2Þ. Once β1 and β2 were determined,
we could simulate a genotype distribution that maximizes or mini-
mizes Σyi.
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represent the proportion of marker loci shared among n × n

plants such that K1 ¼ kij þ 1
2

� �
;σ21and σ22 indicated variance

component parameters for the self and neighbor effects.

The individual-level formula Eq. (2) could also be con-
verted into a conventional matrix form as:

y ¼ Xβþ Zuþ e ð3Þ
where y was an n × 1 vector of the phenotypes; X was a
matrix of fixed effects, including a unit vector, self-

genotype xi, neighbor covariate ðPL
<i;j> xix

ðsÞ
j Þ=L, and other

confounding covariates for n plants; β was a vector that
represents the coefficients of the fixed effects; Z was a
design matrix allocating individuals to a genotype, and
became an identity matrix if all plants were different
accessions; u was the random effect with Var(u) =
σ21K1 þ σ22K2; and e was residual as Var(e)= σ2eI.

Because our objective was to test for neighbor effects,
we needed to avoid the detection of false positive neighbor
effects. The self-genotype value xi and neighbor genotypic

identity
PL

<i;j> xix
ðsÞ
j would become correlated explanatory

variables in a single regression model (sensu colinear) due
to the minor allele frequency (MAF) and the spatial scale of

s. When MAF is low, neighbors xðsÞj are unlikely to vary in

space and most plants will have similar values for neighbor

identity
PL

<i;j> xix
ðsÞ
j . Furthermore, if the neighbor effects

range was broad enough to encompass an entire field (i.e.,
s→∞), the neighbor covariate and self-genotype xiwould
become colinear according to the equation:PL

<i;j> xix
ðsÞ
j

� �
=L ¼ xi

PL
j¼1 x

sð Þ
j

� �
=L ¼ xixj, where xj indi-

cates a population-mean of neighbor genotypes and corre-
sponds to a population-mean of self-genotype values xi, if
s→∞. The standard GWAS is a subset of the neighbor
GWAS and these two models become equivalent at s= 0
and σ22 = 0. When testing the self-genotype effect β1, we
recommend that the neighbor effects and its variance
component σ22 should be excluded; otherwise, the standard
GWAS fails to correct a sample structure because of the
additional variance component at σ22 ≠ 0. To obtain a con-
servative conclusion, the significance of β2 and σ22 should be
compared using the standard GWAS model based on self-
effects alone.

Given the potential collinearity between the self and
neighbor effects, we defined different metrics for the pro-
portion of phenotypic variation explained (PVE) based on
self or neighbor effects. Using a single-random effect
model, we calculated PVE for either the self or neighbor
effects as follows:

‘single’ PVEself= σ21=ðσ21 þ σ2eÞwhen s and σ22 were set
at 0, or

‘single’ PVEnei= σ22=ðσ22 þ σ2eÞwhen σ21 was set at 0.

Using a two-random effect model, we could focus on one
variable while considering relationships between two vari-
ables (sensu partial out) for either of the two variance
components. We defined such a partial PVE as:

‘partial’ PVEself= σ21=ðσ21 þ σ22 þ σ2eÞ and
‘partial’ PVEnei= σ22=ðσ21 þ σ22 þ σ2eÞ.
As the partial PVEself was equivalent to the single PVEself

when s was set at 0, the net contribution of neighbor effects
at s ≠ 0 was given as

‘net’ PVEnei= (partial PVEself+ partial PVEnei)− single
PVEself,
which indicated the proportion of phenotypic variation that
could be explained by neighbor effects, but not by the self-
genotype effects.

Simulation

To examine the model performance, we applied the
neighbor GWAS to simulated phenotypes. Phenotypes
were simulated using a subset of the actual A. thaliana
genotypes. To evaluate the performance of the simple
linear model, we assumed a complex ecological form of
neighbor effects with multiple variance components con-
trolled. The model performance was evaluated in terms of
the causal variant detection and accuracy of estimates. All
analyses were performed using R version 3.6.0 (R Core
Team 2019).

Genotype data

To consider a realistic genetic structure in the simulation,
we used part of the A. thaliana RegMap panel (Horton
et al. 2012). The genotype data for 1307 accessions were
downloaded from the Joy Bergelson laboratory website
(http://bergelson.uchicago.edu/?page_id=790 accessed on
February 9, 2017). We extracted data for chromosomes 1
and 2 with MAF at >0.1, yielding a matrix of 1307 plants
with 65,226 single nucleotide polymorphisms (SNPs).
Pairwise linkage disequilibrium (LD) among the loci was
r2= 0.003 [0.00–0.06: median with upper and lower 95
percentiles]. Before generating a phenotype, genotype
values at each locus were standardized to a mean of zero
and a variance of 1. Subsequently, we randomly selected
1,296 accessions (= 36 × 36 accessions) without any
replacements for each iteration and placed them in a 36 ×
72 checkered space, following the Arabidopsis experi-
mental settings (see Fig. S1).

Phenotype simulation

To address ecological issues specific to plant neighbor-
hood effects, we considered two extensions, namely
asymmetric neighbor effects and spatial scales. Previous
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studies have shown that plant–plant interactions between
accessions are sometimes asymmetric under herbivory
(e.g., Bergvall et al. 2006; Verschut et al. 2016; Sato and
Kudoh 2017) and height competition (Weiner 1990);
where one focal genotype is influenced by neighboring
genotypes, while another receives no neighbor effects.
Such asymmetric neighbor effects can be tested by statis-
tical interaction terms in a linear model (Bergvall et al.
2006; Sato and Kudoh 2017). Several studies have also
shown that the strength of neighbor effects depends on
spatial scales (Hambäck et al. 2014), and that the scale of
neighbors to be analyzed relies on the dispersal ability of
the causative organisms (see Hambäck et al. 2009; Sato
and Kudoh 2015; Verschut et al. 2016; Ida et al. 2018 for
insect and mammal herbivores; Rieux et al. 2014 for
pathogen dispersal) or the size of the competing plants
(Weiner 1990). We assumed the distance decay at the sth
sites from a focal individual i with the decay coefficient α
as w s; αð Þ ¼ e�αðs�1Þ, since such an exponential distance
decay has been widely adopted in empirical studies
(Devaux et al. 2007; Carrasco et al. 2010; Rieux et al.
2014; Ida et al. 2018). Therefore, we assumed a more
complex model for simulated phenotypes than the model
for neighbor GWAS as follows:

yi ¼ β0 þ β1xi þ
β2
L

XL
<i;j>

wðs; αÞxixðsÞj

þβ12
xi
L

XL
<i;j>

wðs; αÞxixðsÞj þ ui þ ei

ð4Þ

where β12 was the coefficient for asymmetry in neighbor
effects. By incorporating an asymmetry coefficient, the
model (Eq. (4)) can deal with cases where neighbor
effects are one-sided or occur irrespective of a focal
genotype (Fig. 2). Total variance components resulting
from three background effects (i.e., the self, neighbor,
and self-by-neighbor effects) were defined as ui 2 u and
u � Normð0; σ21K1 þ σ22K2 þ σ212K12Þ. The three variance
component parameters σ21, σ

2
2, and σ212, determined the

relative importance of the self-genotype, neighbor,
and asymmetric neighbor effects in ui. Given the
elements of n plants × q marker explanatory matrix
with X12 ¼ ðxiL

PL
<i;j> wðs; αÞxixðsÞj Þ, the similarity in

asymmetric neighbor effects was calculated as
K12 ¼ 1

q�1X
T
12X12. To control phenotypic variations, we

further partitioned the proportion of phenotypic varia-
tion into those explained by the major-effect genes and
variance components PVEβ + PVEu, major-effect genes
alone PVEβ, and residual error PVEe, where PVEβ +
PVEu + PVEe = 1. The optimize function in R was used
to adjust the simulated phenotypes to the given amounts
of PVE.

Parameter setting

Ten phenotypes were simulated with varying combination
of the following parameters, including the distance decay
coefficient α, the proportion of phenotypic variation
explained by the major-effect genes PVEβ, the proportion
of phenotypic variation explained by major-effect genes
and variance components PVEβ+ PVEu, and the relative
contributions of self, symmetric neighbor, and asymmetric
neighbor effects, i.e., PVEself:PVEnei:PVEs×n. We ran the
simulation with different combinations, including α=
0.01, 1.0, or 3.0; PVEself:PVEnei:PVEs×n= 8:1:1, 5:4:1, or
1:8:1; and PVEβ and PVEβ+ PVEu= 0.1 and 0.4, 0.3 and
0.4, 0.3 and 0.8, or 0.6 and 0.8. The maximum reference
scale was fixed at s= 3. The line of simulations was
repeated for 10, 50, or 300 causal SNPs to examine cases
of oligogenic and polygenic control of a trait. The non-
zero coefficients (i.e., signals) for the causal SNPs were
randomly sampled from −1 or 1 digit and then assigned,
as some causal SNPs were responsible for both the self
and neighbor effects. Of the total number of causal SNPs,
15% had self, neighbor, and asymmetric neighbor effects
(i.e.,β1 ≠ 0 and β2 ≠ 0 and β12 ≠ 0); another 15% had both
the self and neighbor effects, but no asymmetry in the
neighbor effects (β1 ≠ 0 and β2 ≠ 0 and β12 ≠ 0); another
35% had self-genotypic effects only (β1 ≠ 0); and the
remaining 35% had neighbor effects alone (β2 ≠ 0). Given
its biological significance, we assumed that some loci
having neighbor signals possessed asymmetric interac-
tions between the neighbors (β2 ≠ 0 and β12 ≠ 0), while the
others had symmetric interactions (β2 ≠ 0 and β12 ≠ 0).
Therefore, the number of causal SNPs in β12 was smaller
than that in the main neighbor effects β2. According to this
assumption, the variance component σ212 was also assumed
to be smaller than σ22. To examine extreme conditions and
strong asymmetry in neighbor effects, we additionally
analyzed the cases with PVEself:PVEnei:PVEs×n = 1:0:0,
0:1:0, or 1:1:8.

Summary statistics

The simulated phenotypes were fitted by Eq. (2) to test the
significance of coefficients β1 and β2, and to estimate
single or partial PVEself and PVEnei. To deal with potential
collinearity between xi and neighbor genotypic identityPL

<i;j> xix
ðsÞ
j , we performed likelihood ratio tests between

the self-genotype effect model and the model with both
self and neighbor effects, which resulted in conservative
tests of significance for β2 and σ22. The simulated pheno-
type values were standardized to have a mean of zero and
a variance of 1, where true β was expected to match
the estimated coefficients β̂ when multiplied by the stan-
dard deviation of non-standardized phenotype values.
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The likelihood ratio was calculated as the difference in
deviance, i.e., −2 × log-likelihood, which is asymptoti-
cally χ2 distributed with one degree of freedom. The
variance components, σ21 and σ22, were estimated using a
linear mixed model without any fixed effects. To solve the
mixed model with the two random effects, we used the
average information restricted maximum likelihood (AI-
REML) algorithm implemented in the lmm.aireml func-
tion in the gaston package of R (Perdry and Dandine-
Roulland 2018). Subsequently, we replaced the two var-
iance parameters σ21 and σ22 in Eq. (2) with their estimates
σ̂21 and σ̂22 from the AI-REML, and performed association
tests by solving a linear mixed model with a fast
approximation, using eigenvalue decomposition (imple-
mented in the lmm.diago function: Perdry and Dandine-
Roulland 2018). The model likelihood was computed
using the lmm.diago.profile.likelihood function. We
evaluated the self and neighbor effects for association
mapping based on the forward selection of the two fixed
effects, β1 and β2, as described below:

1. Computed the null likelihood with σ21 ≠ 0 and σ22 ¼ 0
in Eq. (2).

2. Tested the self-effect, β1, by comparing with the null
likelihood.

3. Computed the self-likelihood with σ̂21, σ̂
2
2, and β1 using

Eq. (2).

4. Tested the neighbor effects, β2, by comparing with the
self-likelihood.

We also calculated PVE using the mixed model (Eq. (3))
without β1 and β2 as follows:

1. Calculated single PVEself or single PVEnei by setting
either σ21 or σ22 at 0.

2. Tested the single PVEself or single PVEnei using the
likelihood ratio between the null and one-random
effect model.

3. Calculated the partial PVEself and partial PVEnei by
estimating σ21 and σ22 simultaneously.

4. Tested the partial PVEself and partial PVEnei using the
likelihood ratio between the two- and one-random
effect model.

We inspected the model performance based on causal
variant detection, PVE estimates, and effect size estimates.
The true or false positive rates between the causal and non-
causal SNPs were evaluated using ROC curves and area
under the ROC curves (AUC) (Gage et al. 2018). An AUC
of 0.5 would indicate that the GWAS has no power to detect
true signals, while an AUC of 1.0 would indicate that all the
top signals predicted by the GWAS agree with the true
signals. In addition, the sensitivity to distinguish self or
neighbor signals (i.e., either β1 ≠ 0 or β2 ≠ 0) was evaluated
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Fig. 2 Numerical examples of the symmetric and asymmetric
neighbor effects. The intercept, distance decay, random effects, and
residual errors are neglected, to simplify this scheme. a Symmetric
neighbor effects represent how neighbor genotype similarity (or dis-
similarity) affects the trait value of a focal individual yi regardless of its
own genotype. b Asymmetric neighbor effects can represent a case in

which one genotype experiences neighbor effects while the other does
not (b) and a case in which the direction of the neighbor effects
depends on the genotypes of a focal individual (c). The case b was
considered in our simulation as it has been empirically reported (e.g.,
Bergvall et al. 2006; Verschut et al. 2016; Sato & Kudoh 2017).
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using the true positive rate of the ROC curves (i.e., y-axis of
the ROC curve) at a stringent specificity level, where the
false positive rate (x-axis of the ROC curve)= 0.05. The roc
function in the pROC package (Robin et al. 2011) was used
to calculate the ROC and AUC from −log10(p value).
Factors affecting the AUC or sensitivity were tested by
analysis-of-variance (ANOVA) for the self or neighbor
effects (AUCself or AUCnei; self or neighbor sensitivity).
The AUC and PVE were calculated from s= 1 (the first
nearest neighbors) to s= 3 (up to the third nearest neigh-
bors) cases. The AUC was also calculated using standard
linear models without any random effects, to examine
whether the linear mixed models were superior to the linear
models. We also tested the neighbor GWAS model incor-
porating the neighbor phenotype yðsÞj instead of xðsÞj . The
accuracy of the total PVE estimates was defined as PVE
accuracy= (estimated total PVE− true total PVE) / true
total PVE. The accuracy of the effect size estimates was
evaluated using mean absolute errors (MAE) between the
true and estimated β1 or β2 for the self and neighbor effects
(MAEself and MAEnei). Factors affecting the accuracy of
PVE and effect size estimates were also tested using
ANOVA. Misclassifications between self and neighbor
signals were further evaluated by comparing p value scores
between zero and non-zero coefficients. If −log10(p value)
scores of zero β are the same or larger than non-zero β, it
infers a risk of misspecification of the true signals.

Arabidopsis herbivory data

We applied the neighbor GWAS to field data of Arabi-
dopsis herbivory. The procedure for this field experiment
followed that of our previous experiment (Sato et al. 2019).
We selected 199 worldwide accessions (Table S1) from
2029 accessions sequenced by the RegMap (Horton et al.
2012) and 1001 Genomes project (Alonso-Blanco et al.
2016). Of the 199 accessions, most were overlapped with a
previous GWAS of biotic interactions (Horton et al. 2014)
and half were included by a GWAS of glucosinolates (Chan
et al. 2010). Eight replicates of each of the 199 accessions
were first prepared in a laboratory and then transferred to
the outdoor garden at the Center for Ecological Research,
Kyoto University, Japan (Otsu, Japan: 35°06′N, 134°56′E,
alt. ca. 200 m: Fig. S1a). Seeds were sown on Jiffy-seven
pots (33-mm diameter) and stratified at a temperature of
4 °C for a week. Seedlings were cultivated for 1.5 months
under a short-day condition (8 h light: 16 h dark, 20 °C).
Plants were then separately potted in plastic pots (6 cm in
diameter) filled with mixed soil of agricultural compost
(Metro-mix 350, SunGro Co., USA) and perlite at a 3:1
ratio. Potted plants were set in plastic trays (10 × 40 cells) in
a checkered pattern (Fig. S1b). In the field setting, a set of
199 accessions and an additional Col-0 accession were

randomly assigned to each block without replacement
(Fig. S1c). Eight replicates of these blocks were set >2 m
apart from each other (Fig. S1c). Potted plants were
exposed to the field environment for 3 weeks in June 2017.
At the end of the experiment, the percentage of foliage eaten
was scored as: 0 for no visible damage, 1 for ≤10%, 2 for
>10% and ≤25%, 3 for >25% and ≤50%, 4 for >50% and
≤75%, and 5 for >75%. All plants were scored by a single
person to avoid observer bias. The most predominant her-
bivore in this field trial was the diamond back moth
(Plutella xylostella), followed by the small white butterfly
(Pieris rapae). We also recorded the initial plant size and
the presence of inflorescence to incorporate them as cov-
ariates. Initial plant size was evaluated by the length of the
largest rosette leaf (mm) at the beginning of the field
experiment and the presence of inflorescence was recorded
2 weeks after transplanting.

We estimated the variance components and performed
the association tests for the leaf damage score with the
neighbor covariate at s= 1 and 2. These two scales corre-
sponded to L= 4 (the nearest four neighbors) and L= 12
(up to the second nearest neighbors), respectively, in the
Arabidopsis dataset. The variation partitioning and asso-
ciation tests were performed using the gaston package, as
mentioned above. To determine the significance of the
variance component parameters, we compared the like-
lihood between mixed models with one or two random
effects. For the genotype data, we used an imputed SNP
matrix of the 2029 accessions studied by the RegMap
(Horton et al. 2012) and 1001 Genomes project (Alonso-
Blanco et al. 2016). Missing genotypes were imputed using
BEAGLE (Browning and Browning 2009), as described
by Togninalli et al. (2018) and updated on the AraGWAS
Catalog (https://aragwas.1001genomes.org). Of the
10,709,466 SNPs from the full imputed matrix, we used
1,242,128 SNPs with MAF at >0.05 and LD of adjacent
SNPs at r2 < 0.8. We considered the initial plant size, pre-
sence of inflorescence, experimental blocks, and the edge or
center within a block as fixed covariates; these factors
explained 12.5% of the leaf damage variation (1.2% by
initial plant size, Wald test, Z= 3.53, p value < 0.001; 2.4%
by the presence of inflorescence, Z=−5.69, p value < 10−8;
8.3% by the experimental blocks, likelihood ratio test,
χ2= 152.8, df= 7, p value < 10−28; 0.5% by the edge or
center, Z= 3.11, p value= 0.002). After the association
mapping, we searched candidate genes within ~10 kb
around the target SNPs, based on the Araport11 gene model
with the latest annotation of The Arabidopsis Information
Resource (TAIR) (accessed on 7 September 2019). Gene-
set enrichment analysis was performed using the Gowinda
algorithm that enables unbiased analysis of the GWAS
results (Kofler and Schlotterer 2012). We tested the SNPs
with the top 0.1% −log10(p value) scores, with the option
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“--gene-definition undownstream10000,” “--min-genes 20,”
and “--mode gene.” The GO.db package (Carlson 2018) and
the latest TAIR AGI code annotation were used to
build input files for gene ontologies (GOs). The R source
codes, accession list, and phenotype data are available
at the GitHub repository (https://github.com/naganolab/
NeighborGWAS).

R package, “rNeighborGWAS”

To increase the availability of the new method, we have
developed the neighbor GWAS into an R package, which
is referred to as “rNeighborGWAS”. In addition to the
genotype and phenotype data, the package requires a
spatial map indicating the positions of individuals across a
space. In this package, we generalized the discrete space
example into a continuous two-dimensional space, allow-
ing it to handle any spatial distribution along the x- and y-
axes. Based on the three input files, the rNeighborGWAS
package estimates the effective range of neighbor effects
by calculating partial PVEnei and performs association
mapping of the neighbor effects using the linear mixed
models described earlier. Details and usage are described
in the help files and vignette of the rNeighborGWAS
package available via CRAN at https://cran.r-project.org/
package=rNeighborGWAS.

To assess its implementation, we performed standard
GWAS using GEMMA version 0.98 (Zhou and Stephens
2012) and the rNeighborGWAS. The test phenotype data
were the leaf damage scores for the 199 accessions descri-
bed above or flowering time under long-day conditions for
1057 accessions (“FT16” phenotype collected by Atwell
et al. 2010 and Alonso-Blanco et al. 2016). The flowering
time phenotype was downloaded from the AraPheno
database (https://arapheno.1001genomes.org/: Seren et al.
2017). The full imputed genotype data were compiled for
1057 accessions, whose genotypes and flowering time
phenotype were both available. The cut-off value of the
MAF was set at 5%, yielding 1,814,755 SNPs for the 1057
accessions. The same kinship matrix defined by K1 above
was prepared as an input file. We calculated p values using
likelihood ratio tests in the GEMMA program, because the
rNeighborGWAS adopted likelihood ratio tests.

Results

Simulation

We conducted simulations to test the capability of the
neighbor GWAS to estimate PVE and marker-effects. As
expected by the model and data structure, correlation was
detected between the self-genotypic variable xi and the

neighbor variable Σxixj/L in the simulated genotypes
(Fig. S2). The level of Pearson’s correlation coefficient
r varied from a slight correlation to complete correlation as
the MAF became smaller, from 0.5 to 0.1 (Fig. S2). The
correlation was also more severe as the scale of s was
increased. For example, even at s= 2, we could cut off the
MAF at >0.4 to keep |r | below 0.6 for all SNPs. The
element-wise correlation between K1 and K2 indicated that
at least 60% of the variation was overlapping between the
two genome-wide variance-covariance matrices in the par-
tial genotype data used for this simulation (R2= 0.62 at
s= 1; R2= 0.79 at s= 2; R2= 0.84 at s= 3).

A set of phenotypes were then simulated from the real
genotype data following a complex model (Eq. (4), and then
fitted using a simplified model (Eq. (2). The accuracy of the
total PVE estimation was the most significantly affected by
the spatial scales of s (Table 1). The total PVE was
explained relatively well by the single PVEself that repre-
sented the additive polygenic effects of the self-genotypes
(Fig. 3 left). Inclusion of partial PVEnei accounted for the
rest of the true total PVE, which was considered the net
contribution of neighbor effects to phenotypic variation
(Fig. 3 right). The net PVEnei was largest when the effective
range of the neighbor effects was narrow (i.e., strong dis-
tance decay at α= 3) and the contribution of the partial
PVEnei was much larger than that of PVEself (the case of
α= 3 in Fig. 3 right). However, the sum of the single
PVEself (=partial PVEself at s= 0) and the partial PVEnei did
not match the true total PVE (Fig. 3 left), as expected by the
correlation between the self and neighbor effects (Fig. S2).
Due to such correlation, the single PVEself or single PVEnei

mostly overrepresented the actual amounts of PVEself or
PVEnei, respectively (Fig. S3). The overrepresentation of the
single PVEself and single PVEnei was observed even when
either the self or neighbor effects were absent in the simu-
lation (Fig. S4). These results indicate that (i) single PVEnei

should not be used, (ii) partial PVEnei suffered from its
collinearity with the single PVEself, and (iii) net PVEnei

provides a conservative estimate for the genome-wide
contribution of neighbor effects to phenotypic variation.

Although the partial PVEnei could not be used to quantify
the net contribution of the neighbor effects, this metric
inferred spatial scales at which neighbor effects remained
effective. If the distance decay was weak (small value of
decay coefficient α) and thus the effective range of the
neighbor effects was broad, partial PVEnei increased linearly
as the reference spatial scale was broadened (the case of α
= 0.01 in Fig. 3 left). On the other hand, if the distance
decay was strong (large value of decay coefficient α) and
thus the effective scale of the neighbor effects was narrow,
partial PVEnei decreased as the reference spatial scale was
broadened or saturated at the scale of the first nearest
neighbors (the case of α= 3 in Fig. 3 left). Considering the
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spatial dependency of the partial PVEnei, we could
estimate the effective spatial scales by ΔPVEnei= partial
PVEnei,s+1− partial PVEnei,s and by the scale that resulted in
the maximum ΔPVEnei as s= arg max ΔPVEnei (Fig. S5).

The spatial scale that yielded the maximum AUC for
neighbor signals (AUCnei) coincided with the patterns of the
partial PVEnei across the range of s. If the distance decay
was weak (α= 0.01) and thus the effective range of the
neighbor effects was broad, the AUCnei increased linearly as
the reference spatial scale was broadened (the case of α=
0.01 in Fig. 4). If the distance decay was strong (large value
of decay coefficient α) and thus the effective scale of the
neighbor effects was narrow, the AUCnei did not increase
even when the reference spatial scale was broadened (the
case of α= 3 in Fig. 4). Thus, the first nearest scale was
enough to detect neighbor signals, unless the distance decay
was very weak.

In terms of the AUC, we also found that the number of
causal SNPs, the amount of PVE by neighbor effects
(controlled by the total PVE= PVEβ+ PVEu; and ratio of
PVEself:PVEnei), and the distance decay coefficient α were
significant factors affecting the power to detect neighbor
signals (AUCnei: Table 1). The power to detect self-
genotype signals (AUCself) depended on the number of

Table 1 Factors affecting variance estimation and causal variant
detection in the simulated phenotypes.

Response Factors df SS F p value

PVE
accuracy

No. of
causal SNPs

1 0.00 0.0 0.95

PVEβ 1 0.01 0.6 0.44

PVEβ+ PVEu 1 0.02 0.61 0.43

PVEself:PVEnei:
PVEsxn

2 0.25 4.95 0.007

α 1 0.96 38.46 6.1e−10

s 1 8.49 341.0 <2.2e−16

Residuals 4312 107.34 NA NA

AUCself No. of
causal SNPs

1 13.12 2998.6 <2.2e−16

PVEβ 1 0.77 176.6 <2.2e−16

PVEβ+ PVEu 1 0.02 4.04 0.045

PVEself:PVEnei:
PVEsxn

2 8.08 923.54 <2.2e−16

α 1 0.01 2.19 0.14

Residuals 1073 4.69 NA NA

AUCnei No. of
causal SNPs

1 25.82 2225.1 <2.2e−16

PVEβ 1 2.30 198.1 <2.2e−16

PVEβ+ PVEu 1 0.03 2.24 0.14

PVEself:PVEnei:
PVEsxn

2 20.97 903.48 <2.2e−16

α 1 0.96 83.00 <2.2e−16

s 1 0.079 6.83 0.0090

Residuals 3232 37.50 NA NA

Self
sensitivity

No. of
causal SNPs

1 74.204 1317.15 <2.2e−16

PVEβ 1 2.236 39.69 4.0e−10

PVEβ+ PVEu 1 0.06 1.06 0.30

PVEself:PVEnei:
PVEsxn

2 11.955 106.10 <2.2e−16

α 1 0.089 1.57 0.21

Residuals 1073 60.449 NA NA

Neighbor
sensitivity

No. of
causal SNPs

1 98.052 1153.56 <2.2e−16

PVEβ 1 4.649 54.70 2.0e−13

PVEβ+ PVEu 1 0.016 0.19 0.67

PVEself:PVEnei:
PVEsxn

2 23.196 136.45 <2.2e−16

α 1 1.852 21.79 3.0e−06

s 1 0.096 1.13 0.29

Residuals 3232 274.72 NA NA

MAEself No. of
causal SNPs

1 105.32 323.44 <2.2e−16

PVEβ 1 1.80 5.54 0.02

PVEβ+ PVEu 1 0.14 0.44 0.51

PVEself:PVEnei:
PVEsxn

2 36.11 55.45 <2.2e−16

Table 1 (continued)

Response Factors df SS F p value

α 1 0.73 2.23 0.14

Residuals 1073 349.41 NA NA

MAEnei No. of
causal SNPs

1 2.73 15.06 1.0e−04

PVEβ 1 16.89 93.17 <2.2e−16

PVEβ+ PVEu 1 3.51 19.34 1.0e−05

PVEself:PVEnei:
PVEsxn

2 80.22 221.25 <2.2e−16

α 1 0.39 2.15 0.14

s 1 45.87 253.01 <2.2e−16

Residuals 3232 585.91 NA NA

The accuracy of the proportion of the phenotypic variation explained
(PVE) was defined as the PVE accuracy= (estimated total PVE− true
total PVE)/true total PVE. The power was represented by the area
under the ROC curve (AUC). The sensitivity to distinguish self or
neighbor signals (Self or neighbor sensitivity) was evaluated using the
true positive rate of the ROC curve, when the false positive rate=
0.05. The accuracy of the effect size estimates was evaluated using the
mean absolute errors (MAE) between the true and estimated fixed
effects. ANOVA tables show the degree of freedom (df), sum of
squares (SS), F-statistics, and p values. Explanatory factors are the
number of causal SNPs, proportion of phenotypic variation explained
(PVE) by major-effect genes (PVEβ), total PVE by major-effect genes
and variance components (PVEβ+ PVEu), relative contribution of self,
symmetric, and asymmetric neighbor effects (PVEself:PVEnei:PVEsxn),
and distance decay coefficient α. For the neighbor effects, the
difference of the reference spatial scales (s= 1–3) was also considered
an explanatory variable. NA means not available.
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causal SNPs and PVEβ but was not significantly influenced
by the distance decay coefficient of the neighbor effects (α)
(Table 1). The power to detect self-genotype signals chan-
ged from strong (AUCself > 0.9) to weak (AUCself < 0.6),

depending on the number of causal SNPs, the PVE by the
major-effect genes, and as the relative contribution from the
PVEself increased (Fig. S6 upper). Compared to the self-
genotype effects, it was relatively difficult to detect
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Fig. 3 Spatial scale dependence of PVE estimates in simulated
phenotypes. The broad, intermediate, and narrow effective range of
neighbor effects are represented by weak (α= 0.01), moderate (α= 1),
and strong (α= 3) distance decay coefficients, respectively. Partial
PVE (left) and the difference between the true and estimated total PVE
(right) are shown along the spatial scale from the first nearest (s= 1) to
the third nearest (s= 3) neighbors, with distinct relative contributions
of the self or neighbor effects to a phenotype (PVEself:PVEnei= 1:8 or
8:1; upper or middle panels) and pooled results among all parameter

conditions (All; lower panels). The difference between the true and
estimated total PVE (right) represents the accuracy of total PVE esti-
mates. Boxplots show center line: median, box limits: upper and lower
quartiles, whiskers: 1.5 × interquartile range, and points: outliers. In
the left panels, red boxes indicate partial PVEself at s= 0 (corre-
sponded to single PVEself), while blue boxes indicate partial PVEnei at
s ≠ 0. In the right panels, horizontal dashed lines indicate a perfect
match between the estimated and true total PVE.
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Fig. 4 Spatial scale dependence of the power to detect causal SNPs
in simulated phenotypes. The broad, intermediate, and narrow
effective range of neighbor effects are represented by weak (α= 0.01),
moderate (α= 1), and strong (α= 3) distance decay coefficients,
respectively. Receiver operating characteristic (ROC) curves (right)
and the area under the ROC curve (AUC) (left) are shown alongside
the spatial scales from the first nearest (s= 1) to the third nearest (s=
3) neighbors, with the distinct relative contributions of the self and
neighbor effects to a phenotype (PVEself:PVEnei= 1:8 or 8:1; upper or

middle panels) and pooled results among all parameter conditions (All;
lower panels). Red boxes and curves indicate self-effects, while blue
boxes indicate neighbor effects. The thickness of the blue curves
indicates reference spatial scales as follows: s= 1 (thick), 2 (medium),
or 3 (thin) for neighbor effects. The horizontal dashed lines in the left
panels indicates that the AUC= 0.5, i.e., no detection of causal var-
iants. The ROC curves in the right panels are depicted based on ten
iterations with 50 causal SNPs.
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neighbor signals (Fig. 4 right; Fig. S6 lower), ranging from
strong (AUCnei > 0.9) to little (AUCnei near to 0.5) power.
When the number of causal SNPs= 10, the power to detect
neighbor signals decreased from high (AUCnei > 0.9) to
moderate (AUCnei > 0.7) with the decreasing PVEβ and the
distance decay coefficient (Fig. S6 lower). There was almost
no power to detect neighbor signals (AUCnei near to 0.5)
when the number of causal SNPs= 50 and PVEnei had low
relative contributions (Fig. S6 lower). The result of the
simulations indicated that strong neighbor effects were
detectable when a target trait was governed by several major
genes and the range of neighbor effects was spatially lim-
ited. Additionally, linear mixed models outperformed
standard linear models as there were 8.8% and 1.4%
increases in their power to detect self and neighbor signals,
respectively (AUCself, paired t-test, mean of the difference
= 0.088, p value < 10−16; AUCnei, mean of the difference=
0.014, p value < 10−16). When the neighbor phenotype yðsÞj

was incorporated instead of the genotype xðsÞj , the power to
detect neighbor effects was very weak, such that the AUCnei

decreased to almost 0.5.
To examine misclassifications between the self and

neighbor signals, we compared the sensitivity, effect size
estimates, and p value scores among causal SNPs having
non-zero coefficients of the true β1 and β2. The sensitivity to
distinguish the self or neighbor signals was largely affected
by the number of causal SNPs, the amount of PVE by the
major-effect genes PVEβ, and the relative contribution of
the self and neighbor effects (controlled by PVEself:PVEnei)
(Table 1; Fig. S7). The mean absolute errors of the self-
effect estimates for β̂1 (MAEself) largely depended on the
number of causal SNPs and the relative contribution of the
variance components (Table 1; Fig. S8 upper), while those
of the neighbor effect estimates for β̂2 (MAEnei) were
dependent on the relative contribution of the variance
components and the spatial scales to be referred (Table 1;
Fig. S8 lower). Given that the self and neighbor signals
were sufficiently detected when the number of causal SNPs
was 50 (Fig. S6 middle column), p values under this con-
dition were compared between the causal and non-causal
SNPs. We observed that strong self-signals (β1 ≠ 0) were
unlikely to be detected as neighbor effects (Fig. 5 lower).
Causal SNPs responsible for both the self and neighbor
effects (β1 ≠ 0 and β2 ≠ 0) were better detected than the non-
causal SNPs (β1= 0 and β2= 0) (Fig. 5 right column). The
sensitivity to distinguish neighbor signals from self-signals
was large when the true contribution of the neighbor effects
was as large as PVEself:PVEnei= 1:8, but decreased when
the contribution of the self-effects was as large as PVEself:
PVEnei= 8:1 (Fig. S7 lower). In contrast, if the contribution
of the neighbor effects was relatively large (PVEself:PVEnei

= 1:8), the SNPs responsible for the neighbor effects alone
(β1= 0 and β2= 0) could also be detected as self-effects

(Fig. 5). As expected by the level of correlation (Fig. S2),
the false positive detection of the self-signals was more
likely when the distance decay coefficient was small and
thus the effective range of the neighbor effects was broad
(the case of α= 0.01 and β1= 0 and β2 ≠ 0 in Fig. 5). This
coincided with the strength of the correlation (Fig. S2), as
the false positive detection of self-signals and false negative
detection of neighbor signals are more likely if the MAF
was small (Fig. S9). Consistent with the false positive
detection, the sensitivity to distinguish self-signals from
neighbor signals remained large, even when the contribu-
tion of the neighbor effects was far larger (the case of
PVEself:PVEnei= 1:8 in Fig. S7 upper). Strong self-effects
(p value < 10−5 for β̂1) and slight neighbor effects (p value
< 0.05 for β̂2 at s= 1 and α= 3) remained when asymmetric
neighbor effects were strong (β1 ≠ 0 and β2 ≠ 0 and β12 ≠ 0
and PVEself:PVEnei:PVEsxn= 1:1:8; Fig. S10). These results
indicate that (i) the collinearity may lead to the false posi-
tive detection of self-effects, yet is unlikely to result in the
false positive detection of neighbor effects, and that (ii)
smaller MAFs are more likely to cause the false positive
detection of self-effects and decrease the power to detect
true neighbor effects.

Arabidopsis herbivory data

To estimate PVEself and PVEnei, we applied a linear mixed
model (Eq. (3)) to the leaf damage score data for the field-
grown A. thaliana. The leaf damage variation was sig-
nificantly explained by the single PVEself that represented
additive genetic variation (single PVEself= 0.173, χ21 = 10.1,
p value= 0.005: Fig. 6a; Fig. S11 right). Variation parti-
tioning showed a significant contribution of neighbor effects
to the phenotypic variation in the leaf damage at the nearest
scale (partial PVEnei= 0.214, χ21 = 7.23, p value= 0.004 at
s= 1: Fig. S11 left). The proportion of phenotypic variation
explained by the neighbor effects did not increase when
the neighbor scale was referred up to the nearest and
second nearest individuals (partial PVEnei= 0.14, χ21 = 1.41,
p value= 0.166 at s= 2: Fig. S11 left); therefore, the
effective scale of the neighbor effects was estimated at s= 1
and variation partitioning was stopped at s= 2. These results
indicated that the effective scale of the neighbor effects on
the leaf damage was narrow (s= 1) and the net PVEnei at
s= 1 explained an additional 8% of the PVE compared to
the additive genetic variation attributable to the single
PVEself (Fig. 6a). The genotype data had moderate to strong
element-wise correlation between K1 and K2 in these ana-
lyses (r= 0.60 and 0.78 at s= 1 and 2 among 199 acces-
sions with eight replicates). We additionally incorporated the
neighbor phenotype yðsÞj instead of the neighbor genotype
xðsÞj in Eq. (2), but the partial PVEnei did not increase (partial
PVEnei= 0.066 and 0.068 at s= 1 and 2, respectively).
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The standard GWAS of the self-genotype effects on the
leaf damage detected the SNPs with the second and third
largest −log10(p values) scores, on the first chromosome
(chr1), though they were not above the threshold for Bon-
ferroni correction (Fig. 6b; Table S2). The second SNP at
chr1-21694386 was located within ~10 kb of the three loci
encoding a disease resistance protein (CC-NBS-LRR class)
family. The third SNP at chr1-23149476 was located within
~10 kb of the AT1G62540 locus that encodes a flavin-
monooxygenase glucosinolate S-oxygenase 2 (FMO GS-
OX2). No GOs were significantly enriched for the self-
effects on herbivory (false discovery rate > 0.08). A QQ-
plot did not exhibit an inflation of p values for the self-
genotype effects (Fig. S12a).

Regarding the neighbor effects on leaf damage, we found
non-significant but weak peaks on the second and third
chromosomes (Fig. 6c; Table S2). The second chromosomal
region had higher association scores than those predicted by
the QQ-plot (Fig. S12b). A locus encoding FAD-binding
Berberine family protein (AT2G34810 named BBE16),
which is known to be up-regulated by methyl jasmonate
(Devoto et al. 2005), was located within the ~10 kb window
near SNPs with the top eleven −log10(p values) scores on
the second chromosome. Three transposable elements and a

pseudogene of lysyl-tRNA synthetase 1 were located near
the most significant SNP on the third chromosome. No GOs
were significantly enriched for the self-effects on herbivory
(false discovery rate > 0.9). We additionally tested the
asymmetric neighbor effects of β12 in the real dataset on
field herbivory, but the top 0.1% of the SNPs for the
neighbor effects for β2, did not overlap with those of the
asymmetric neighbor effects β12 (Table S2).

Based on the estimated coefficients β̂1 and β̂2, we ran a
post hoc simulation to infer a spatial arrangement that
minimizes a population sum of the leaf damageP

yi ¼ β1
P

xi þ β2
P

<i;j> xixj. The constant intercept β0,
the variance component ui, and residual ei were not con-
sidered because they were not involved in the deterministic
dynamics of the model. Figure 7 shows three representa-
tives and a neutral expectation. For example, a mixture of a
dimorphism was expected to decrease the total leaf damage
for an SNP at chr2-14679190 near the BBE16 locus (β̂2>0:
Fig. 7a). On the other hand, a clustered distribution of a
dimorphism was expected to decrease the total damage for
an SNP at chr2-9422409 near the AT2G22170 locus
encoding a lipase/lipooxygenase PLAT/LH2 family protein
(β̂1 � 0; β̂2 < 0: Fig. 7b). Furthermore, a near monomorph-
ism was expected to decrease the leaf damage for an SNP at
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SNPs responsible for both self
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distributions among the
iterations for the self and
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chr5-19121831 near the AT5G47075 and AT5G47077 loci
encoding low-molecular cysteine-rich proteins, LCR20 and
LCR6 (β̂1 > 0; β̂2 < 0: Fig. 7c). If the self and neighbor
coefficients had no effects, we would observe a random
distribution and no mitigation of damage i.e.,

P
yi � 0

(Fig. 7d). These post hoc simulations suggested a potential
application for neighbor GWAS for the optimization of the
spatial arrangements in field cultivation.

Comparing self p values between the neighbor
GWAS and GEMMA

To ascertain whether the self-genotype effects in the
neighbor GWAS agree with those of a standard GWAS, we
compared the p value scores between the rNeighborGWAS
package and the commonly used GEMMA program
(Fig. S13). For the leaf damage score, the neighbor GWAS
yielded almost the same −log10(p values) scores for the
self-effects as the GEMMA program (r= 0.9999 among all
the 1,242,128 SNPs: Fig. S13a). The standard GWAS,
using the flowering time phenotype, also yielded the con-
sistent −log10(p values) scores between the neighbor
GWAS and GEMMA (r= 0.9999 among all the 1,814,755
SNPs: Fig. S13b). Both the flowering time GWAS using the
neighbor GWAS and GEMMA found two significant SNPs
above the genome-wide Bonferroni threshold on chromo-
some 5 (chr5-18590741 and chr5-18590743, MAF= 0.49

and 0.49, −log10(p value)= 7.797 and 7.797 for the
neighbor GWAS; chr5-18590741 and chr5-18590743,
MAF= 0.49 and 0.49, −log10(p value)= 7.798 and 7.798
for GEMMA), which were located within the Delay of
Germination 1 (DOG1) locus, that was reported previously
by Alonso-Blanco et al. (2016). Another significant SNP
was observed at the top of chromosome 4 (chr4-317979,
MAF= 0.12, −log10(p value)= 7.787 and 7.933 for the
neighbor GWAS and GEMMA), which was previously
identified as a quantitative trait locus underlying flowering
time in long-day conditions (Aranzana et al. 2005).

Discussion

Spatial and genetic factors underlying simulated
phenotypes

Benchmark tests using simulated phenotypes revealed that
appropriate spatial scales could be estimated using the
partial PVEnei of the observed phenotypes. When the scale
of the neighbor effects was narrow or moderate (α= 1.0 or
3.0), the scale of the first nearest neighbors would be
optimum for increasing the AUC to detect neighbor signals.
In terms of the neighbor effects in the context of plant
defense, mobile animals (e.g., mammalian browsers and
flying insects) often select a cluster of plant individuals
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Fig. 6 Pilot GWAS of leaf damage scores on field-grown Arabi-
dopsis thaliana. a Proportion of phenotypic variation explained (PVE)
by the self-genotype (red) or neighbor effects (blue). The PVEself was
represented by the single PVEself that represented additive genetic
variance, while the net contribution of the neighbor effects was eval-
uated using the net PVEnei= total PVE− single PVEself. Asterisks
highlight a significant fraction with stepwise likelihood ratio tests,
from simpler to complex models: **p value < 0.01. b, c Manhattan

plots for the self or neighbor effects. The first to fifth chromosomes are
differently colored, where lighter plots indicate smaller MAF. Hor-
izontal dashed lines indicate the threshold after Bonferroni correction
at p value < 0.05. The red vertical line in panel b indicates an SNP
position near the GS-OX2 locus, while the three circles highlighted by
a black outline in panel c indicates the variants subject to the post hoc
simulation (Fig. 7). Results of the self and neighbor effects are shown
at s= 0 (i.e., standard GWAS) and s= 1, respectively.
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(e.g., Bergvall et al. 2006; Hambäck et al. 2009; Sato and
Kudoh 2015; Verschut et al. 2016). In this case, the
neighbor effects could not be observed among individual
plants within a cluster (Sato and Kudoh 2015). The expo-
nential distance decay at α= 0.01 represented situations in
which the effective range of the neighbor effects was too
broad to be detected; only in such situations should more
than the nearest neighbors be referred to, to gain the power to
detect neighbor effects. We also considered the asymmetric
neighbor effects where the neighbor genotype similarity had
significant effects on one genotype, but not on another gen-
otype. In this situation, strong self-effects could be observed
when the symmetric neighbor effects were weakened. This
additional result suggests that asymmetric neighbor effects
should be tested if strong self-effects and weak symmetric
neighbor effects are both detected at a single locus.

Neighbor effects are more likely to contribute to phe-
notypic variation when its effective range becomes narrow
due to a strong distance decay (α= 3), as suggested by the
net PVEnei. However, the total phenotypic variation was
explained relatively well by the single PVEself that repre-
sented additive polygenic effects. Previous studies showed
that genetic interactions could lead to an overrepresentation

of narrow-sense heritability in GWAS (e.g., Zuk et al. 2012;
Young and Durbin 2014). This occurs because the SNP
heritability is represented by the genetic similarity between
individuals, and thereby covariance of the kinship matrix
helps to fit the phenotypic variance attributable to gene-by-
gene interactions (Young and Durbin 2014; Schrauf et al.
2020). This problem is also observed in the neighbor
GWAS that models pairwise interactions at a focal locus
among neighboring individuals. Given the difficulty in
distinguishing the kinship and genetic interactions, we
conclude that the non-independence of the self and neighbor
effects is an intrinsic feature of the neighbor GWAS, and
that the difference of the PVE between a standard and
neighbor GWAS i.e., net PVEnei should be used as a con-
servative estimate of PVEnei.

Neighbor GWAS of the field herbivory on
Arabidopsis

Our genetic analysis of the neighbor effects is of ecological
interest, as the question of how host plant genotypes
shape variations in plant–herbivore interactions, is a long-
standing question in population ecology (e.g., Karban 1992;
Underwood and Rausher 2000; Utsumi et al. 2011). Despite
the low PVE and several confounding factors under field
conditions, the present study illustrated the significant
contribution of neighbor genotypic identity to the spatial
variation of the herbivory on A. thaliana. Although the
additional fraction explained by the neighbor effects was
8%, this amount was plausible in the GWAS of complex
traits. For example, the variance components of epistasis
explained 10–14% PVE on average for 46 traits in yeast
(Young and Durbin 2014). Even when heritability is high,
the significant variants have often explained a small fraction
of PVE, which is known as the missing heritability problem
in plants and animals (Brachi et al. 2011; López-Cortegano
and Caballero 2019).

Regarding the self-genotype effects, we detected GS-OX2
near the third top-scoring SNP on the first chromosome. GS-
OX2 catalyzes the conversion of methylthioalkyl to
methylsulfinylalkyl glucosinolates (Li et al. 2008) and is up-
regulated in response to feeding by the larvae of the large
white butterfly (Pieris brassicae) (Geiselhardt et al. 2013).
On the other hand, the second top-scoring SNP of the
neighbor effects was located near the BBE16 locus,
responsive to methyl jasmonate, a volatile organic chemical
that is emitted from damaged tissue and elicits the defense
responses of other plants (Reymond and Farmer 1998; van
Poecke 2007). However, because none of the associations
were significant above a genome-wide Bonferroni threshold,
they should be interpreted cautiously. Nearby genes should
only be considered candidates, and further work is necessary
to confirm that they exert any neighbor effects on herbivory.

(d) No effects: β1 = 10-6, β2 = 10-6, Σyi = 10-4

(a) Chr 2, Position 14679190: β1 = 0.19, β2 = 0.31, Σyi = -237.2

(b) Chr 2, Position 9422409: β1 = -0.001, β2 = -0.18, Σyi = -296.2

(c) Chr 5, Position 19121831: β1 = 0.12, β2 = -0.22, Σyi = -593.8

Fig. 7 Post hoc simulations exemplifying a spatial arrangement of
the two alleles expected by the estimated self and neighbor effects,
β̂1 and β̂2, on the leaf damage score of Arabidopsis thaliana. The
population sum of the leaf damage

P
yi ¼ β1

P
xi þ β2

P
<i;j> xixj was

minimized using 1000 iterations of simulated annealing from a random
distribution of two alleles in a 10 × 40 space.
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Potential limitation

Despite many improvements, it is more difficult for GWAS
to capture rare causal variants than common ones (Lee et al.
2014; Auer, Lettre 2015; Bomba et al. 2017). This problem
is more severe in neighbor GWAS, because smaller MAFs
result in stronger collinearity between the self-genotype
effects xi and the neighbor genotypic identity

PL
<i;j> xix

ðsÞ
j .

Our simulations showed that the rare variants responsible
for the neighbor effects might be misclassified as self-
effects, though the opposite was not found, i.e., the mis-
classification of self-signals into neighbor effects could be
suppressed. In GWAS, genotype data usually contain minor
alleles and possess kinship structures to some extent,
making collinearity unavoidable. To anticipate false posi-
tive detection of neighbor effects, the significance of var-
iance components and marker effects involving neighbor
effects should always be compared using the standard
GWAS model.

The present neighbor GWAS focused on single-locus
effects and did not incorporate locus-by-locus interactions.
Although it is challenging to integrate all the association
tests for epistasis into GWAS (Gondro et al. 2013; Young
and Durbin 2014), it is possible that multiple combinations
among different variants govern neighbor effects. For
example, neighbor effects on insect herbivory may occur
due to the joint action of volatile-mediated signaling and the
accumulation of secondary metabolites (Dicke and Baldwin
2010; Erb 2018). The linear mixed model could be extended
as exemplified by the asymmetric neighbor effects; how-
ever, we need to reconcile multiple criteria including the
collinearity of explanatory variables, inflation of p values,
and computational costs. Further customization is warranted
when analyzing more complex forms of neighbor effects.

Conclusion

Based on the newly proposed methodology, we suggest that
neighbor effects are an overlooked source of phenotypic
variation in field-grown plants. GWAS have often been
applied to crop plants (Jannink et al. 2010; Hamblin et al.
2011), where genotypes are known, and individuals are
evenly transplanted in space. Considering this outlook for
agriculture, we provided an example of neighbor GWAS
across a lattice space in this study. However, wild plant
populations sometimes exhibit more complex spatial pat-
terns than those expected by the Ising model (e.g., Kizaki
and Katori 1999; Schlicht and Iwasa 2004). In the
rNeighborGWAS package, we allowed neighbor GWAS for
a continuous two-dimensional space. While its application
has now been limited to experimental populations, neighbor
GWAS has the potential for compatibility with the

emerging discipline of landscape genomics (Bragg et al.
2015). In this context, the additional R package could help
future studies to test self and neighbor effects using a wide
variety of plant species.

Neighbor GWAS may also have the potential to help
determine optimal spatial arrangements for plant cultiva-
tion, as suggested by the post hoc simulation. Genome-wide
polymorphism data are useful not only for identifying
causal variants in GWAS, but also for predicting the
breeding values of crop plants for genomic selection (e.g.,
Jannink et al. 2010; Hamblin et al. 2011; Yamamoto et al.
2017). Given that the neighbor GWAS consists of a marker-
based regression, this methodology could also be expanded
as a genomic selection tool to help predict population-level
phenotypes in spatially structured environments.

Data availability

The leaf damage data on A. thaliana are included in the
supporting information (Table S1). The simulation code and
R script used in this study are available at the GitHub
repository (https://github.com/naganolab/NeighborGWAS).
R package version of the neighbor GWAS method is
available at CRAN (https://cran.r-project.org/package=
rNeighborGWAS).
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