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Abstract
Manganese (Mn) is an essential trace element for plants and commonly contributes to human health; however, the
understanding of the genes controlling natural variation in Mn in crop plants is limited. Here, the integration of two of
genome-wide association study approaches was used to increase the identification of valuable quantitative trait loci (QTL)
and candidate genes responsible for the concentration of grain Mn across 389 diverse rice cultivars grown in Arkansas and
Texas, USA, in multiple years. Single-trait analysis was initially performed using three different SNP datasets. As a result,
significant loci could be detected using the high-density SNP dataset. Based on the 5.2 M SNP dataset, major QTLs were
located on chromosomes 3 and 7 for Mn containing six candidate genes. In addition, the phenotypic data of grain Mn
concentration were combined from three flooded-field experiments from the two sites and 3 years using multi-experiment
analysis based on the 5.2 M SNP dataset. Two previous QTLs on chromosome 3 were identified across experiments,
whereas new Mn QTLs were identified that were not found in individual experiments, on chromosomes 3, 4, 9 and 11.
OsMTP8.1 was identified in both approaches and is a good candidate gene that could be controlling grain Mn concentration.
This work demonstrates the utilisation of multi-experiment analysis to identify constitutive QTLs and candidate genes
associated with the grain Mn concentration. Hence, the approach should be advantageous to facilitate genomic breeding
programmes in rice and other crops considering QTLs and genes associated with complex traits in natural populations.

Introduction

Genome-wide association (GWA) mapping is a powerful
approach to identify genetic loci associated with complex
traits in natural populations. The approach has been suc-
cessfully applied in plants such as Arabidopsis thaliana
(Atwell et al. 2010; Baxter et al. 2010), maize (Kump et al.
2011) and rice (Huang et al. 2010, 2012; Zhao et al. 2011;
Norton et al. 2014; McCouch et al. 2016; Bettembourg et al.
2017) for identifying important agronomic, disease resis-
tance and ionomic (the elemental composition of biological
samples) loci. GWA mapping for ionomic traits in plants
has been commonly used to perform QTL analysis related
on a single trait in individual experiments (Atwell et al.
2010; Baxter et al. 2010; Li et al. 2010; Norton et al.
2014, 2018; Dimkpa et al. 2016; Yang et al. 2018). How-
ever, these studies have not always identified QTLs for a
trait from several experiments. There are several reasons
why a number of ionomic QTLs have not been consistently
detected, including a different range of phenotypic values in
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experiments due to large environmental effects such as
different geographic locations and climate data (temperature
and humidity) (Pinson et al. 2015; Huang and Salt 2016),
and complex genetic architecture such as distributed allelic
variants, each of which have small effects (Korte and Far-
low 2013). These reasons may reduce the power of statis-
tical association tests in GWA mapping using single-trait
analysis in only one experiment.

Recently, multi-trait approaches have been developed to
improve QTL detection by increasing the statistical power
with correlated traits and multiple experiments (Korte et al.
2012; Lippert et al. 2014; Zhou and Stephens 2014; Loh et al.
2015). Zhou and Stephens (2014) developed a genome-wide
efficient mixed-model association (GEMMA) software for
testing multiple traits for each single genetic marker with a
multivariate linear mixed model (mvLMM), which controls
population stratification and accounts for relatedness between
individuals. It was developed from the efficient mixed-model
association (EMMA) algorithm for single-trait analysis (Kang
et al. 2008) with which identified QTLs could be compared
with multi-trait analysis based on the EMMA algorithm.

Central to effective GWA mapping is the population that
is used. The Rice Diversity Panel 1 (RDP1) is a rice panel
representing the broad range of rice varieties from >70
countries (Eizenga et al. 2014). This panel was initially
genotyped using 44,100 SNPs (Zhao et al. 2011), subse-
quently it was genotyped with 700,000 SNPs (McCouch
et al. 2016) and in the latest iteration 5,231,435 SNPs have
been imputed on this panel by comparing the 700,000 SNPs
with whole-genome sequence data of the 3000 sequenced
rice cultivars (Wang et al. 2018).

Manganese (Mn) is an essential trace element for plants
and humans. It is an important cofactor or activator of many
enzymes, and is involved in photosynthesis in plants
(Marschner 1995; Soetan et al. 2010). Mn deficiency in
plants can cause a reduction in growth and yield (Marschner
1995; Hebbern et al. 2005), whereas if the Mn concentration
is elevated, it can become toxic to plants (Ducic and Polle
2005; Millaleo et al. 2010). Mn homoeostasis in the embryo
is required for efficient seed germination (Eroglu et al.
2017). Mn deficiency in humans is rare; however, it can
lead to a range of health impacts, including severe birth
defects, impaired reproductive functions, skeletal defects
and asthma (Bashir et al. 2013), while overexposure can
lead to neurological disorders (Crossgrove and Zheng 2004;
O’Neal and Zheng 2015). The recommended daily intake of
Mn for an adult is 2.3 mg day−1, while the recommended
tolerable levels are 11 mg day−1 (Institute of Medicine
2001). Rice grain concentrations of Mn are variable, but a
recent dietary study of rice consumers in West Bengal,
India, demonstrated that rice alone can contribute between
0.82 and 4.21 mg day−1 for an adult, 35.7–183% of the
recommend daily amount of Mn (Halder et al. 2020).

The mechanisms of Mn uptake, transport, accumulation
and detoxification have been studied in plants (Ducic and
Polle 2005; Millaleo et al. 2010; Socha and Guerinot 2014).
For rice, a number of Mn-transporter genes have been
identified such as natural resistance-associated macrophage
protein 3 (OsNRAMP3), OsNRAMP5 and OsNRAMP6
(Ishimaru et al. 2012; Sasaki et al. 2012; Yang et al.
2013, 2014; Peris-Peris et al. 2017), yellow stripe-like pro-
tein 2 (OsYSL2) and OsYSL6 (Koike et al. 2004; Ishimaru
et al. 2010; Sasaki et al. 2011) and cation diffusion facil-
itator/metal tolerance protein 8.1 (OsMTP8.1), OsMTP8.2,
OsMTP9 and OsMTP11 (Chen et al. 2013, 2016; Ueno et al.
2015; Takemoto et al. 2017; Zhang and Liu 2017; Ma et al.
2018). In addition to these genes, a number of studies have
identified QTLs of grain Mn concentration in rice grains
based on biparental mapping (Stangoulis et al. 2007; Lu
et al. 2008; Ishikawa et al. 2010; Norton et al. 2010, 2012a;
Du et al. 2013; Zhang et al. 2014). For example, QTLs have
been detected on chromosomes 1 (Stangoulis et al. 2007; Lu
et al. 2008), 1, 2, 7 and 12 (Ishikawa et al. 2010), 10 and 11
(Norton et al. 2010), 3, 5, 7, 8 and 9 (Norton et al. 2012a), 3,
6, 8 and 9 (Du et al. 2013) and 2, 3, 4, 6, 7, 8, 11 and 12
(Zhang et al. 2014).

Knowledge of natural genetic variation that regulates Mn
concentration in grains among rice landraces and cultivars is
limited. To address this, we conducted GWA mapping of
grain Mn concentration in the RDP1 from four-field
experiments in Arkansas and Texas, USA. The aims of
this study were (1) to compare the impact of increasing
marker density on detecting loci in GWA mapping for grain
Mn concentration, and (2) to identify QTLs and candidate
genes associated with grain Mn concentration across
experiments in multiple locations and years using both
single-trait and multi-experiment GWA analyses.

Materials and methods

Sample data

A total of 389 rice accessions from the RDP1 (Zhao et al.
2011; McCouch et al. 2016) consisting of 57 aus (AUS), 78
indica (IND), 100 temperate japonica (TEJ), 96 tropical
japonica (TRJ) and 14 aromatic (ARO) as well as 44
admixtures were used in this study (Supplementary Table
S1). There were two major varietal groups, Indica (AUS
and IND) and Japonica (TEJ, TRJ and ARO) (McCouch
et al. 2016).

The experimental design, planting methods and rice
growth conditions were described in Norton et al. (2012b).
Briefly, the RDP1 was grown in two locations under either
flooded or unflooded cultivation. The locations were Stuttgart,
Arkansas (USDA-ARS Dale Bumpers National Rice
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Research Center) and Beaumont, Texas (Texas A&M Agri-
Life Research Center), USA. In Arkansas, the rice cultivars
were grown in the same location using nearby fields in 2006
and 2007, the field layout in both years was a randomised
complete block design (RCBD) with two replications, with
identical field management practices wherein fields were
flooded when plants were at the five-leaf stage then drained
before harvest (datasets referred to as ArFl06 and ArFl07,
respectively). Seeds of each cultivar were sown with a seed
drill to ~2-cm depth in a single row 5-m long with spacing of
25 cm between the plants and 50 cm between the rows. Fields
were flush-irrigated twice before a permanent flood was
applied to the fields ~2–3 weeks after seedling emergence. In
Texas, three replications of the RDP1 accessions were grown
in 2009 using two different water-treatment conditions: floo-
ded and unflooded (datasets referred to as TxFl09 and
TxUnfl09, respectively), with all other field management
practices remaining the same. The experiment was set up in a
RCBD. Five seeds per cultivar were drill-seeded 2-cm deep
into 13-cm length lines, hereafter called hillplots. Five hill-
plots were planted per row with 61 cm between hillplots
within each field row, and 25 cm between rows.

Accessions were represented by one hillplot per repli-
cation. The 10-cm depth flood was applied when the aver-
age plant height was ~18 cm and maintained until harvest,
whereas the unflooded treatment received regular flush
irrigations (once or twice a week) to keep the root zone
damp but aerated.

For the Arkansas field experiments, rice grains for three
plants per row for each of the two replications were col-
lected. Seed collection was done by hand and threshed with
an Almaco small-bundle thresher to obtain the seeds for the
grain Mn determination. For the Texas field experiment, 20
fully mature seeds per hillplot were dehulled, from which
three seeds were randomly selected for analysis of grain Mn.

The concentrations of Mn were determined in the har-
vested grains using inductively coupled plasma mass spec-
trometry (ICP-MS) described in Norton et al. (2012b, 2014)
and Pinson et al. (2015). In brief, three whole grains of
dehusked rice (c. 0.05 g) were digested with 1.0 ml of con-
centrated nitric acid and heated. The temperature was
ramped up from ambient to 110 °C over a period of 12 h. An
internal standard of indium (final concentration of 20 µg l−1)
was added to each sample. Samples were diluted to 10.0 ml
and analysed on a PerkinElmer (Waltham, MA, USA) Elan
DRCe ICP-MS for Mn. To control for drift, the samples
were combined and used as a matrix-matched standard and
measured every nine samples.

Phenotypic analysis

Phenotypic variances for Mn concentrations were calculated
and parsed using two-way ANOVA conducted in R (version

3.3.0) (R Core Team 2016). Across the two field locations
(Arkansas and Texas), four-field experiments were conducted,
designated as ArFl06, ArFl07, TxFl09 and TxUnfl09. Across
the Arkansas experiments (ArFl06 and ArFl07), the pheno-
typic variance was parsed into proportions estimated by
genotypes, years, and interaction between genotype and year.
For the Texas experiments (TxFl09 and TxUnfl09), the phe-
notypic variance was parsed into genotypes, water treatments
and genotype-by-water-treatment interaction effects.

The average Mn concentration (Supplementary Table
S1) of each accession per experiment and treatment was
used for the GWA mapping. Prior to GWA mapping, the
trait data were visualised to assess normality.

Genotypic data and analysis

The rice accessions in the RDP1 have three publicly
available SNP datasets consisting of 36,901 (44 K) SNPs
(Zhao et al. 2011), 700,000 (700 K) SNPs (McCouch et al.
2016) and 5,231,435 (5.2 M) SNPs (Wang et al. 2018). The
44 K and 700 K SNP datasets were generated by geno-
typing using 44 K SNP array and High-Density Rice Array
(HDRA), respectively (Zhao et al. 2011; McCouch et al.
2016), whereas the 5.2 M SNP dataset, which contains no
missing data, was generated by imputing from the set of the
intersection of 700 K and 18 M SNPs (missing data <5%
and minor allele frequency (MAF) > 1%) with 4.8M SNPs
of the 3000 Rice Genome Project (Wang et al. 2018).

The SNPs in each dataset were initially filtered using
PLINK version 1.9 (Chang et al. 2015), whereby SNPs
were removed when the percentage of missing genotype
data for a single SNP exceeded 20% (the 5.2 M SNP dataset
had no missing data, due to being imputed) and MAF was
less than 5%.

GWA mapping with single-trait analysis

GWA mapping was performed using the three SNP datasets
based on LMMs from EMMAX (version beta-7Mar2010)
(Kang et al. 2010) using the PIQUE (Parallel Identification
of QTLs using EMMAX) pipeline (https://github.com/tony-
travis/PIQUE). Phenotype–genotype association was ana-
lysed for all accessions (ALL) and four subpopulations
(AUS, IND, TEJ and TRJ) in the four-field experiments.
Due to low accession numbers (<30) from the aromatic
(ARO) subpopulation and the mixed genetic background of
admixtures, these accessions were not analysed as separate
subpopulations. Population structure was estimated by
performing a principal component analysis on the infor-
mative SNP data and the eigenvectors for the first four
principal components were included in the model as fixed
effects for the analysis of the whole (ALL) population
(Price et al. 2010) (note: population structure was not
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included in the analysis of the subpopulations). Relatedness
(K matrix) between accessions was estimated by calculating
pairwise identity-by-state (IBS) using the SNP data and was
included in the models as random effects. For the ALL
population GWA analyses, relatedness was estimated using
the accessions that had phenotype data in each experiment.
For the subpopulation analyses, relatedness was estimated
using accessions from each subpopulation for which phe-
notype data were collected. The significance threshold for
the association between SNP and traits was set at P value <
0.0001, a value previously used for this population (Famoso
et al. 2011; Norton et al. 2014). To further filter these SNPs
for false-discovery rates (FDR), the P values calculated by
the GWA mapping analysis were adjusted using the
Benjamini-Hochberg method (Benjamini and Hochberg
1995). To be reported as a SNP significantly associated with
the trait, the SNP had to both meet the P value < 0.0001 and
meet the criteria of a 5% FDR. Manhattan plots were used
to visualise SNP positions on chromosomes with –log10(P)
and Q–Q plots were used to visualise observed versus
expected value probabilities using the qqman package in R
version 3.3.0 (Turner 2014).

GWA mapping with multi-experiment analysis

Multi-experiment analysis of GWA mapping for grain Mn
concentration for the three flooded-field experiments
(ArFl06, ArFl07 and TxFl09) was performed. For this
analysis, each environment was viewed as one trait. A total
of 303 rice accessions (all accessions common among the
three experiments) were used for the analysis with the
3,430,260 filtered SNPs (MAF > 0.05%) using the mvLMM
in the GEMMA version 0.97 (Zhou and Stephens 2014).
The mvLMM accounts for both population stratification and
relatedness among samples to control confounding factors.
The eigenvectors of the first four principal components were
calculated using the smartpca programme in EIGENSOFT
(Patterson et al. 2006) and included in the model as fixed
effects. One eigen decomposition of the centred relatedness
matrix (the n-by-n relatedness matrix; n= the number of
samples) for random effects was computed from all filtered
SNPs using the relatedness matrix function in GEMMA.
The null hypothesis is that SNP effects of a single SNP in
all experiments are zero, whereas the alternative hypothesis
is nonzero effects of at least one SNP tested by a Wald test.
P values of all association tests were presented with Man-
hattan plots and observed P values against expected
P values were presented by Q–Q plots using the qqman
package in R (Turner 2014). The guideline of reliability for
significant SNPs was 0.0001 (Famoso et al. 2011; Norton
et al. 2014). SNPs were also tested to a 5% FDR based on
the Benjamini-Hochberg procedure (Benjamini and Hoch-
berg 1995), as previously described.

Clustering significant SNPs and comparing QTLs on
rice chromosomes

The grouping function CLUMP was used in PLINK to
define candidate regions in the ALL analysis based on the
5.2 M SNP. Index SNPs were identified with P value <
0.0001 (Norton et al. 2014) and neighbouring SNPs were
clumped with P value < 0.01 (default value) and squared
allele frequency correlation (r2) >0.5 (applying the criteria
from Butardo et al. (2017) based on the 700 K SNP dataset)
with the index SNPs of each peak within 500 kb, which was
the LD-decay average of all accessions in the RDP1 (Zhao
et al. 2011). The candidate regions/QTLs were then mapped
and compared with previously reported QTLs based on
physical genome positions on the 12 rice chromosomes.

Local linkage disequilibrium decay analysis

To determine LD blocks in subpopulations that supported
the significant peaks in the ALL analysis, a subset of the
5.2 M SNP data surrounding (1 Mbp) a significant peak was
extracted using PLINK. Two methods were used: (1) local
LD decay was estimated at r2= 0.2, where r2 values were
calculated using PLINK and estimated by binning the
average r2 values of 10-kb windows (Biscarini et al. 2016;
Norton et al. 2018); (2) r2 values in each SNP pair in each
region 500 kb upstream and downstream were calculated
and visualised as a local Manhattan plot against a LD
heatmap using the LD.heatmap package in R version 3.3.0
(Shin et al. 2006), and then LD blocks were estimated using
r2 ≥ 0.6 (high LD) (Ripke et al. 2014; Yano et al. 2016).

Candidate gene identification

Within each candidate region, positional genes were iden-
tified based on genes identified in the Rice Genome
Annotation Project (version 7, http://rice.plantbiology.msu.
edu). Retrotransposons and transposon genes were exclu-
ded. Genes located within candidate regions were examined
and used to identify potential positional functional candi-
date genes, e.g., genes involved in the uptake, transport and
accumulation of elements, associated with Mn. In addition,
protein sequences (http://rice.plantbiology.msu.edu) of the
list of candidate genes that were not matched with genes
previously related to Mn were compared with protein
database using BLASTp (https://blast.ncbi.nlm.nih.gov) to
investigate gene-sequence homology with other species, in
which genes were reported and characterised with functions
involving Mn. In addition to gene validation, the gene
expression profiles across a range of rice organs and tissues
of all identified candidate genes obtained from RiceXPro
(http://ricexpro.dna.affrc.go.jp, Sakai et al. 2013) were used
to confirm the validity of candidate genes.

508 P. Ruang-areerate et al.

http://rice.plantbiology.msu.edu
http://rice.plantbiology.msu.edu
http://rice.plantbiology.msu.edu
https://blast.ncbi.nlm.nih.gov
http://ricexpro.dna.affrc.go.jp


Differential gene expression of candidate genes was
determined based on the gene expression analysis con-
ducted by Campbell et al. (2020). This dataset is tran-
scriptomic data from shoots of young plants from 91
accessions from the RDP1. Initially, the data were screened
to identify which of the proposed candidate genes were
expressed. Low- and high-grain Mn accessions were iden-
tified based on being in the highest 20% and lowest 20% for
grain Mn concentration, for the three flooded experiments.
Then only low- or high-grain Mn concentration accessions
were selected for further analysis if they were low or high in
at least two of the experiments. A total of 14 accessions
were identified as high and 18 identified as low-grain Mn
accessions for which transcript data were available (Sup-
plementary Table S2). The expression of candidate genes
was examined for evidence of differential expression based
on this grouping. An ANOVA was used to determine if the
gene expression was different between the two groups.

Estimation of phenotypic variance explained by
significant SNPs

To determine the effect size of the QTLs, two approaches
were taken. Either the smallest P-value/index SNPs or the
most significant SNP located in candidate genes based on the
5.2M SNP dataset was analysed. The proportion of pheno-

typic variance explained by each SNP was estimated using
linear models, correcting for population structure and con-
trasting with the population-structure effects for all accessions
(Zhao et al. 2011). ANOVA was used to contrast the linear
models. For subpopulations, the phenotypic variance dis-
tribution of a significant SNP was estimated using a simple
linear model without correcting for population structure.

Effect sizes by index SNPs in multi-experiment
analysis

Effect sizes in each index SNP of QTLs newly identified in
multi-experiment analysis were observed in the individual
experiments estimated by the mvLMM model.

Results

Variation of grain Mn concentration in the RDP1

In Arkansas, grain Mn concentration for the accessions in
2006 and 2007 ranged from 21.4 to 62.7 mg kg−1 and from
20.6 to 68.5mg kg−1, with means of 34.6 and 40.8 mg kg−1,
respectively (Fig. 1a and Table 1). There were significant
differences (P < 2 × 10−16, df= 321) in grain Mn concentra-
tion among genotypes, years and a significant interaction

Fig. 1 Grain Mn distributions in all rice accessions. a Distribution of grain Mn concentration in Arkansas under flooded condition in 2006 and
2007. b Distribution of grain Mn concentration in Texas under flooded and unflooded conditions in 2009.

Table 1 Grain Mn concentration
(mg kg−1) in the RDP1
accessions at each field
experiment.

Site Year Condition No. of accessions Range Mean SD CV (%)

Arkansas 2006 Flooded 342 21.4–62.7 34.6 6.2 17.8

2007 Flooded 349 20.6–68.5 40.8 8.6 21.1

Texas 2009 Flooded 373 10.6–33.5 20.9 4.3 20.7

2009 Unflooded 370 16.4–63.8 34.8 8.4 24.2

SD standard deviation, CV coefficient of variation
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between years and genotypes that explained 39, 15 and 16%
of the phenotypic variance, respectively. In Texas, grain Mn
concentration for the accessions in 2009 under flooded and
unflooded conditions ranges from 10.6 to 33.5 mg kg−1 and
from 16.4 to 63.8mg kg−1, with means of 20.9 and 34.8 mg
kg−1, respectively (Fig. 1b and Table 1). The grain Mn con-
centration under the unflooded condition was significantly
higher (1.7 times, P < 2 × 10−16, df= 367) than the con-
centration under the flooded condition. The rice grain Mn
concentrations were affected by genotypes, water treatments
and their interaction, which explained 14%, 61% and 11% of
the phenotypic variance, respectively.

To compare the grain Mn accumulation among sub-
populations, only those subpopulations with at least 30
accessions (AUS, IND, TEJ and TRJ) were studied. There
was a significant difference in grain Mn concentration
among the subpopulations (Fig. 2). In the three flooded-field
experiments, the Japonica (TEJ and TRJ) subgroups had
higher average grain Mn concentration than the Indica
(AUS and IND) subgroups. In contrast, the TRJ sub-
population had the lowest average grain Mn concentration
in TxUnfl09.

The accessions screen at these field sites are known to
vary in the length of time to heading (Norton et al.
2012b); therefore, a correlation analysis was conducted to
determine if there was a relationship between heading
date and grain manganese concentration. For Arkansas
2007 and flooded experiment in Texas, there was no
correlation between flowering time and grain Mn con-
centration. However, at the Arkansas 2006 experiment,
there was a significant weak positive correlation (r=
0.235, P < 0.001) between grain manganese and flower-
ing time, while at the Texas unflooded field site, there
was a significant weak negative correlation (r=−0.278,

P < 0.001) between grain manganese concentration and
flowering time.

Density of SNPs among all accessions and
subpopulations

To obtain high-quality SNPs in each SNP dataset, SNPs
were filtered with genotype missing >20% and MAF < 0.05
(Supplementary Table S3). After SNP filtering, for example,
average SNP density of 11.40, 0.99 and 0.11 kb per SNP
was observed for the 44 K, 700 K and 5.2 M SNP datasets,
respectively, for the ArFl06 dataset.

For subpopulations, it is noteworthy that the final number
of filtered SNPs was lower in the TEJ and TRJ sub-
populations compared to the AUS and IND subpopulations
(Supplementary Table S3). For example, the SNP density in
the TEJ subpopulation was 1 SNP per 0.41 kb, whereas the
SNP density in the IND subpopulation was 1 SNP per
0.17 kb, when using the 5.2 M SNP dataset.

Single-trait GWA mapping for grain Mn
concentration

Using the three SNP datasets, GWA mapping for grain Mn
concentration was performed for all accessions (Fig. 3a and
Supplementary Figs. S1–S3) and for the four subpopula-
tions using the 5.2 M SNP dataset only (Supplementary
Figs. S4–S7) in the four-field experiments.

Increasing the SNP density increased the number of
significant SNPs associated with the trait in analyses of all
accessions and in subpopulation analysis (Fig. 3a, Supple-
mentary Figs. S1–S7 and Supplementary Table S4). For
example, no significant SNPs for grain Mn in the ALL
analysis in ArFl06 were identified using the 44 K dataset,

Fig. 2 Distribution of grain Mn concentration in rice in four subpopulations in four-field experiments. The horizontal black bar is the median
of grain Mn concentration.
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while 6 and 16 SNPs were significant using the 700 K and
5.2 M SNP datasets, respectively (Supplementary Table
S4). In addition, there were no significant SNPs associated

with Mn accumulation in several subpopulations based on
the 44 K SNP dataset, whereas a number of significant
SNPs were identified based on the 700 K and 5.2 M SNP
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datasets. For example, in the TEJ subpopulation in ArFl07,
no significant SNPs were detected using the 44 K SNP
dataset, while 6 and 11 significant SNPs for grain Mn were
detected using the 700 K and 5.2 M SNP datasets, respec-
tively (Supplementary Table S4).

Identification of grain Mn QTLs and candidate genes
based on single-trait analysis

Based on the high-density SNP dataset (5.2 M SNPs), a
number of candidate regions/QTLs in the four experiments
(Supplementary Table S5) were mapped on rice chromosomes
and compared with previously reported QTLs (Fig. 3b). QTLs
were further focused on when SNPs within QTLs passed the
5% FDR (Table 2). Consequently, there were three QTLs on
chromosome 3 and two QTLs on chromosome 7 that were
significantly associated with grain Mn concentration
under flooded and unflooded conditions that met the criteria
(Table 2). Based on overlap regions from the CLUMP ana-
lysis in experiments, these QTLs on chromosome 3 were at
5.33–6.14, 6.39–7.23 and 7.02–7.87 Mbp. For two of these
QTL regions, there are a number of candidate genes, including
LOC_Os03g11010 (OsNRAMP2), LOC_Os03g11734
(OsFRDL1) and LOC_Os03g12530 (OsMTP8.1). On chro-
mosome 7, the two overlapping QTL regions were at
7.21–8.06 and 7.78–8.57 Mbp. For the first of the two QTL
regions, there was a good candidate gene: LOC_Os07g12900
(OsHMA3) but this gene is outside the candidate region for the
second. The expression profiles of all candidate genes under
normal growth conditions were obtained from the RiceXPro
database (Supplementary Figs. S8–S11).

All four candidate genes mentioned above were identi-
fied as being expressed in shoots (Campbell et al. 2020). Of
these four genes, two of the candidate genes (OsMTP8.1
and OsHMA3) were found to be differentially expressed
between the low-grain Mn and high-grain Mn accessions
(Supplementary Fig. S12a, b). The expression of

Fig. 3 Genome-wide association-mapping results for grain Mn
concentration in rice using single-trait analysis in all accessions
grown in Arkansas under flooded condition in 2006. a Manhattan
(left) and Q–Q (right) plots are presented for the 44 K, 700 K and
5.2M SNP datasets. The blue horizontal line represents the –log10(P)
threshold at 4. The red dot indicates SNP loci that passed 5% FDR.
b Location of QTLs associated with grain Mn concentration in rice for
four-field experiments based on the 5.2 M SNP dataset using single-
trait analysis and previously reported QTLs. The four-field experi-
ments are ArFl06—light blue, ArFl07—blue, TxFl09—orange and
TxUnfl09—brown. Previous reported QTLs are displayed in purple
with the letter indicating the study they were detected in; a= Stan-
goulis et al. (2007), b= Lu et al. (2008), c=Norton et al. (2010), d=
Ishikawa et al. (2010), e=Norton et al. (2012a), f=Du et al. (2013)
and g= Zhang et al. (2014). Known Mn-transporter locations are
indicated by horizontal black lines, whereas the locations of candidate
genes are indicated by horizontal red lines.
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LOC_Os03g12530 (OsMTP8.1) was higher in the acces-
sions with low-grain Mn compared to the accessions with
high-grain Mn, while the expression of LOC_Os07g12900
(OsHMA3) was higher in the accessions identified as having
high-grain Mn compared to the low-grain Mn accessions.

Identification of grain Mn QTLs in subpopulations
and candidate genes based on single-trait analysis

Due to the complex population structure in the RDP1, the
estimation of linkage disequilibrium (LD) decay for single
QTL across the whole panel is difficult. Therefore, to esti-
mate the size of QTL regions based on LD, QTL analysis
was conducted in the individual subpopulations (AUS, IND,
TEJ and TRJ). In QTLs that were detected for the whole
population and one of the subpopulations, the subpopula-
tion analysis was used to estimate local LD.

For grain Mn QTLs in subpopulations, one significant
QTL on chromosome 7 was identified in only the TEJ
subpopulation based on the 5.2 M SNP dataset (Fig. 4a,
Supplementary Figs. S4–S7 and Supplementary Table S6)
that was concordant with significant SNPs on chromosome
7 in all analyses at the 5% FDR. To determine the accurate
genomic position of the QTLs, local LD was analysed with
two approaches, LD decay and LD heatmap. The QTL was
identified at ~8.26 Mbp in the TEJ subpopulation (Fig. 4a).
The average local LD decay between 7 and 9 Mbp on
chromosome 7 was high at >1 Mbp (r2 > 0.2) (Fig. 4b). The
result was concordant with LD heatmap that showed a large
LD block at approximately 1.23 Mbp from 7.64 to 8.87
Mbp (r2 ≈ 0.6) (Fig. 4c). One candidate gene, OsNRAMP5
(~8.87 Mbp), was found to be located within the QTL.
OsHMA3 at 7.40 Mbp, which was identified as a candidate
gene for the QTL detected here in the ALL analysis, is just
before this block, while OsNRAMP1, which is at 8.97 Mbp,
is just after it (Fig. 4c). In this QTL, the significant SNP
mlid0048878287 (8.78 Mbp, P= 8.11E−07), which located
close to OsNRAMP5 and OsNRAMP1, explained approxi-
mately 8 and 29% of phenotypic variance in ALL and TEJ,
respectively. Rice accessions with the TT genotype at this
SNP had high Mn accumulation in grains compared to the
rice accessions with the CT and CC genotypes (Fig. 4d).
The expression profile of OsNRAMP5 and OsNRAMP1
under normal growth conditions was obtained from the
RiceXPro database (Supplementary Figs. S13, S14). Both
OsNRAMP5 and OsNRAMP1 were identified as being
expressed in shoots of rice plants (Campbell et al. 2020). Of
these two genes, OsNRAMP1 was found to be differentially
expressed between the low-grain Mn and high-grain Mn
accessions (Supplementary Fig. S12c). The expression of
LOC_Os07g15460 (OsNRAMP1) was higher in the acces-
sions identified as having grain Mn compared to the low-
grain Mn accessions.

Multi-experiment GWA mapping for grain Mn
concentration and candidate genes

To increase the power of GWA mapping, a single GWA
mapping was conducted for grain Mn concentration of 303
accessions for the three flooded-field experiments (ArFl06,
ArFl07 and TxFl09) based on the 5.2 M SNP dataset (MAF
> 0.05, 3,430,260 filtered SNPs) using the mvLMM in the
GEMMA software. A total of 64 SNPs were significantly
associated with grain Mn concentration. Eight QTLs across
the 12 rice chromosomes were identified (Fig. 5a and
Supplementary Table S7). Two of these QTLs on chro-
mosome 3, 5.97–6.95 and 6.63–7.51 Mbp, including
OsFRDL1 and OsMTP8.1 (Figs. 3b, 5b and Supplementary
Table S7), were consistent with the QTLs identified based
on single-trait analysis. However, a total of 6 QTLs for
grain Mn not detected by single-trait analysis were identi-
fied using multi-experiment analysis (Fig. 5 and Supple-
mentary Table S7). The six QTLs of interest were at
1.16–1.38 Mbp on chromosome 3, 2.40–3.33 and 3.41–4.27
Mbp on chromosome 4, 0.39–1.00 Mbp on chromosome 9
and 11.39–12.30 and 25.61–25.62 Mbp on chromosome 11.
All of these QTLs were novel for grain Mn concentration.

Comparison of the effect sizes of index SNPs for the
putative QTLs in each experiment estimated by the
mvLMM showed that they were various (Table 3). For
example, the QTL on chromosome 3 had similar small
positive SNP effects in all experiments, whereas the two
QTLs on chromosome 4 had negative SNP effects in
ArFl07 compared to other experiments.

Discussion

This study has identified QTLs for grain Mn in rice. Some
of those co-localise with previously identified QTLs and
known genes involved in Mn accumulation in rice, while
some are novel putative QTLs. One of the key objectives of
QTL mapping is the identification of stable QTLs (e.g.,
those are detected in multiple environments). Using a multi-
experiment GWA mapping approach, we have been able to
identify these stable QTLs.

The environmental factors (different years, locations and
water-management treatments) and genetic composition of
the accessions affected the concentration of Mn in rice
grains. In Arkansas, the average grain Mn concentrations
between 2006 and 2007 were significantly different and
year explained ~15% of the phenotypic variance. In Texas,
the Mn concentration in grains under non-flooded condition
significantly increased when compared to the rice cultiva-
tion under flooded condition with flooding explaining ~61%
of the variation. This is in agreement with Pinson et al.
(2015) who reported that water-treatment effects had a
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higher impact for element accumulation in rice grains than
year effects, and the average grain Mn concentration under
unflooded condition was greater than the average grain Mn
concentration under flooded condition among 1763 rice
accessions grown in Texas in 2007 and 2008. Senewiratne

and Mikkelsen (1961) found that Mn concentration in rice
leaves was 7.7-fold higher under unflooded condition as
compared with flooded condition. One genetic factor that
could have an influence on grain element concentrations is
flowering time. As this population comprised a wide range

Fig. 4 Genome-wide association-mapping results for grain Mn
concentration in the temperate japonica subpopulation based on
the 5.2M SNP dataset, as well as local linkage disequilibrium
analysis and SNP allele effects. a Manhattan (left) and Q–Q (right)
plots are presented in four-field experiments as ArFl06: Arkansas
flooded 2006, ArFl07: Arkansas flooded 2007, TxFl09: Texas flooded
2009 and TxUnfl09: Texas unflooded 2009. The blue horizontal line
represents the –log10(P) threshold at 4. The red dot indicates SNP loci

that passed 5% FDR. b LD decay and c local Manhattan plot (top), as
well as LD heatmap (bottom) for grain Mn concentration in ArFl07 on
chromosome 7 at 7–9 Mbp and 6.5–9.5 Mbp, respectively. d The
effect of SNP alleles on grain Mn concentration for the QTL on
chromosome 7 with the SNP mlid0048878287 (8,781,883 bp) in all
accessions (left) and the temperate japonica subpopulation (right) in
ArFl07.
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of different accessions, the flowering window (the time
from the first accession flowering to the last) is quite large
(Norton et al. 2012b). During this time, the environmental
conditions can change, which may affect the availability
and therefore the accumulation of manganese. However, in
this study, only at two sites were relationships between
flowering time and grain manganese concentration over-
served, and in both cases, the relationships explained only a
small component of the variation.

The genetic differences among subpopulations also
affected grain Mn concentrations such as higher grain Mn
concentration in the TEJ and TRJ subpopulations grown
under flooded conditions compared with the AUS and IND
subpopulations (Fig. 2). In another study under flooded
conditions, Japonica subgroup accessions had higher Mn
concentrations in their rice grains than Indica subgroup
accessions (Yang et al. 2018). Pinson et al. (2015) have
shown that although water-management treatments had a

Fig. 5 Genome-wide association-mapping results for grain Mn
concentration in rice based on the 5.2M SNP dataset using multi-
experiment analysis. a Manhattan (left) and Q–Q (right) plots are
presented. The blue horizontal line represents the –log10(P) threshold
at 4. The red dot indicates SNP loci that passed 5% FDR. The blue
arrows point to new QTLs based on multi-experiment analysis.
b Location of QTLs associated with grain Mn concentration in rice
based on the 5.2M SNP dataset using multi-experiment analysis and

previously reported QTLs. QTLs in ArFl06–ArFl07–TxFl09 are pre-
sented in red. Previous reported QTLs are displayed in purple with the
letter indicating the study they were detected in; a= Stangoulis et al.
(2007), b= Lu et al. (2008), c=Norton et al. (2010), d= Ishikawa
et al. (2010), e=Norton et al. (2012a), f=Du et al. (2013) and g=
Zhang et al. (2014). Known Mn-transporter locations are indicated by
horizontal black lines, whereas the locations of candidate genes are
indicated by horizontal red lines.
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high impact, genetic backgrounds in the 1763 rice acces-
sions were a major factor for grain element accumulation in
both flooded (average broad-sense heritability (H2) of 16
elements: 0.49, Mn: 0.58) and unflooded (average H2: 0.57,
Mn: 0.70) conditions.

The efficiency of GWA mapping depends on several
factors such as the proportion of variation explained by
genotype (heritability), the underlying population structure
within the panel, sample size and marker density. McCouch
et al. (2016) suggested that increasing SNP density increa-
ses the ability to detect genetic loci. In this study, we tested
the impact of marker density while using the same rice
accessions, the same phenotype data and the same statistical
modelling approach to account for population structure and
kinship (Kang et al. 2010). We demonstrated that the
number of markers covering the genome affects the efficacy
of GWA mapping (Fig. 3a and Supplementary Figs. S1–
S3). Our results revealed that higher marker density
increases the number of significant loci associated with the
trait. A similar observation has been made in a recent study,
where GWA mapping for root cone angle in rice was
conducted using 15,000 and 300,000 SNPs (Bettembourg
et al. 2017). Wang et al. (2018) also showed that increasing
from 700 K to 4.8 M SNPs in GWA mapping for the grain
amylose content in 326 indica accessions provided
increased confidence in QTLs, as well as revealing new
ones. In the present study, increasing marker density
improved the identification of genetic loci using GWA
mapping. However, at this stage, it is unknown what the
optimal marker density for GWA mapping in rice is.

From single-trait analyses using 5.2 M SNPs, five QTLs
on chromosomes 3 and 7 were found to affect grain Mn
concentration, and the QTL sizes ranged from 789 to 852 kb
(Table 2). Some of these QTLs co-localise with QTLs
previously identified in rice (Fig. 3b). For example, Norton
et al. (2012a) detected grain Mn QTLs using the Bala ×
Azucena mapping population, located similarly with QTLs
detected in this study (chromosome 3 at approximately
3.49–6.65 Mbp and chromosome 7 at ~7.12–9.14 Mbp).
Zhang et al. (2014) detected QTLs for grain Mn under

flooded growing conditions in a TeQing-into-Lemont
backcross introgression population on chromosome 3 (4–6
Mbp) and chromosome 7 (10–14 Mbp), with the chromo-
some 7 QTL being identified also in an independent
population of Lemont × TeQing recombinant inbred lines.
To further narrow down a QTL on chromosome 7, Liu et al.
(2017) characterised a major QTL for grain Mn accumula-
tion in recombinant inbred lines from the cross of 93-11
(low-grain Mn) with PA64s (high-grain Mn) grown in two
environments. A major QTL located on the short arm of
chromosome 7 was fine-mapped between two markers
(L8857 and L8906), a 49.3-kb region encompassing the
known Mn transporter, OsNRAMP5 (Liu et al. 2017).
Recently, Shrestha et al. (2018) conducted GWA mapping
for shoot Mn toxicity in 271 RDP1 accessions based on the
700 K SNP dataset. Numerous significant SNPs were
identified in a large region on the top of chromosome 7.
Although they did not report an exact QTL size, both
OsNRAMP5 and OsNRAMP1 were identified as candidate
genes. These results reveal that our identified QTLs based
on GWA mapping with the high SNP density were smaller
than the comparable genomic regions when using other
mapping approaches. As a result, the identified QTLs con-
tained a smaller number of positional candidates, which
means the identification of genes underpinning the QTLs
should be easier.

Within the grain Mn QTLs on chromosomes 3 and 7, six
genes are proposed as contributing to the natural variation
observed in grain Mn concentration in the RDP1. The can-
didate genes were highly expressed in roots, shoots, repro-
ductive organs or embryo and endosperm tissues
(Supplementary Figs. S8–S11 and S13, S14). On chromo-
some 3, three candidate genes were identified as OsNRAMP2
(LOC_Os03g11010), OsFRDL1 (LOC_Os03g11734) and
OsMTP8.1 (LOC_Os03g12530). While the function of
OsNRAMP2 is unknown in rice, OsNRAMP2 has high
structural similarity with an Mn transporter from Eremo-
coccus coleocola (Mani and Sankaranarayanan 2018). OsN-
RAMP2 in rice is also an orthologous gene with AtNRAMP2
in Arabidopsis (Thomine et al. 2000) that is a trans-Golgi

Table 3 New putative QTLs for grain Mn concentration based on the 5.2M SNP dataset using multi-experiment analysis.

Allele effect

Chr. Index SNP id Position Minor/major allele MAF P value ArFl06 ArFl07 TxFl09 Estimated candidate region Clumped
size (kb)

3 mlid0017254736 1,253,009 T/C 0.24 3.43E–07 0.0066 0.0180 0.0075 1,164,504–1,377,789 213.29

4 mlid0025444660 2,891,380 T/C 0.17 1.03E–07 0.0043 −0.0262 0.0085 2,403,945–3,330,179 926.23

4 mlid0025744000 3,767,588 C/G 0.14 1.89E–08 0.0065 −0.0014 0.0105 3,411,664–4,267,559 855.90

9 mlid0060879641 504,844 A/G 0.40 6.17E–07 −0.0113 −0.0397 −0.0135 38,664–1,004,262 965.60

11 mlid0074604290 11,886,926 G/A 0.39 4.80E–07 0.0062 −0.0320 −0.0095 11,391,970–12,295,345 903.38

11 mlid0078299980 25,621,708 A/C 0.05 2.24E–07 0.0094 0.0340 −0.0026 25,619,048–25,621,708 2.76
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network-localised Mn transporter in roots under Mn defi-
ciency (Gao et al. 2018). OsFRDL1 is a good candidate gene
as a knockout of OsFRDL1 in rice resulted in lower leaf Fe
concentration, and higher accumulation of Zn and Mn in
leaves of rice (Yokosho et al. 2009). OsMTP8.1 has been
shown to be involved in Mn homoeostasis achieved by
sequestering excess Mn into vacuoles of rice (Chen et al.
2013, 2016), and to be an orthologous gene with AtMTP8
involving in the localisation of Mn and Fe in Arabidopsis
seeds (Chu et al. 2017). On chromosome 7, there were three
candidate genes: OsHMA3 (LOC_Os07g12900), OsNRAMP5
(LOC_Os07g15370) and OsNRAMP1 (LOC_Os07g15460).
OsHMA3 is a known tonoplast-localised transporter for Zn
and Cd in rice roots, but it is reported that the overexpression
of OsHMA3 affected Mn concentration in roots and shoots
(Sasaki et al. 2014). OsNRAMP5 is a major transporter for Mn
as well as for Fe and Cd in rice (Ishimaru et al. 2012; Sasaki
et al. 2012; Yang et al. 2014; Liu et al. 2017). Although
OsNRAMP1 is an Fe transporter that is involved in Cd
accumulations in rice (Takahashi et al. 2011), a phylogenetic
analysis of NRAMP sequences in plants showed that OsN-
RAMP1 was most similar to OsNRAMP5 (Vatansever et al.
2016). Sheartha et al. (2018) also identified a QTL for Mn
toxicity in rice using GWA mapping that encompassed both
OsNRAMP1 and OsNRAMP5. Therefore, OsNRAMP1 is
possibly involved in Mn transport or cross-talk between Fe
and Mn homoeostasis (Vatansever et al. 2016).

Due to genetic similarity within the TEJ subpopulation,
local LD for the identified QTL on chromosome 7 was
analysed and estimated to define their candidate regions.
The average LD decay from 7 to 9 Mbp in the TEJ sub-
population was high at >1Mbp with the threshold of r2=
0.2 (Fig. 4b). To determine if this large LD decay was
specific to the TEJ subpopulation, the LD decay in the other
subpopulations was determined (Supplementary Fig. S15).
The LD decays across the other subpopulations with only
the average LD decay in the IND subpopulation being
lower. In addition to LD heatmap, the estimated LD dis-
tance in the region (9017 SNPs at 6.5–9.5 Mbp) in the TEJ
subpopulation was 1.23 Mbp from 7.64 to 8.87 Mbp,
indicating few historical recombination events. It was
similar to a large LD block in the AUS (23,041 SNPs)
subpopulation, whereas several LD blocks in the IND
(13,731 SNPs) and TRJ (6513 SNPs) subpopulations were
observed (Supplementary Fig. S15).

For multi-experiment analysis, conducting GWA mapping
for grain Mn concentration with the phenotypic values of the
three flooded-field experiments (ArFl06, ArFl07 and TxFl09)
using the mvLMM, there were two QTLs that had previously
been detected in the single-site analysis and six newly
identified QTLs (Fig. 5). Similarly, Korte et al. (2012) rea-
nalysed the flowering time data of Li et al. (2010) in 459 A.
thaliana accessions grown over two seasons in each of two

different locations using MTMM (Multi-trait mixed model)
to reveal new QTLs. Three detected loci were involved in the
differential flowering response to different environments that
were not detected in the individual screens. Indeed, multi-trait
analysis is an efficient tool for detecting loci/QTLs associated
with multiple traits, because of the increased power obtained
from additional data from correlated traits or a single trait in
multiple experiments (Korte et al. 2012; Zhou and Stephens
2014). Thus, this approach should be used to identify stable
QTLs, and is potentially beneficial in terms of GWAS of
complex traits. The validation of the new QTLs could be
further studied for identification of candidate genes under-
lying these QTLs that may contribute to the ultimate grain
Mn concentration in rice.

While gene expression data were not collected for the
plants grown in this experiment, recently transcriptomic
analysis for 91 of the RDP1 accessions was conducted
(Campbell et al. 2020). This database consists of gene
expression data from shoots, and can be used to determine if
genes are differentially expressed between accessions. For
candidate genes discussed, all were found to be expressed in
shoots with OsMTP8.1, OsHMA3 and OsNRAMP1 differ-
entially expressed between the low- and high-grain Mn
accessions (Supplementary Fig. S12). Differential gene
expression means that these genes are very good candidates
for the trait as this expression difference could be driving
the QTLs. However, future analysis of gene expression
between low and high Mn-accumulating accessions during
grain filling will give a further insight into the role these
genes play in the Mn accumulation in the grain.

Conclusion

This study uses data from multiple field experiments
(locations, years and irrigation treatments) to conduct GWA
mapping for a grain elemental trait, Mn concentration, in
rice. We have demonstrated that multi-experiment analysis
has a number of potential benefits, including the identifi-
cation of QTLs not detected in individual analyses. Future
study would be required to validate these genes, and iden-
tify the alleles that are responsible for variation in Mn
accumulation in rice grains.
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