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Abstract
Genomic best linear-unbiased prediction (GBLUP) assumes equal variance for all marker effects, which is suitable for traits
that conform to the infinitesimal model. For traits controlled by major genes, Bayesian methods with shrinkage priors or
genome-wide association study (GWAS) methods can be used to identify causal variants effectively. The information from
Bayesian/GWAS methods can be used to construct the weighted genomic relationship matrix (G). However, it remains
unclear which methods perform best for traits varying in genetic architecture. Therefore, we developed several methods to
optimize the performance of weighted GBLUP and compare them with other available methods using simulated and real
data sets. First, two types of methods (marker effects with local shrinkage or normal prior) were used to obtain test statistics
and estimates for each marker effect. Second, three weighted G matrices were constructed based on the marker information
from the first step: (1) the genomic-feature-weighted G, (2) the estimated marker-variance-weighted G, and (3) the absolute
value of the estimated marker-effect-weighted G. Following the above process, six different weighted GBLUP methods
(local shrinkage/normal-prior GF/EV/AEWGBLUP) were proposed for genomic prediction. Analyses with both simulated
and real data demonstrated that these options offer flexibility for optimizing the weighted GBLUP for traits with a broad
spectrum of genetic architectures. The advantage of weighting methods over GBLUP in terms of accuracy was trait
dependant, ranging from 14.8% to marginal for simulated traits and from 44% to marginal for real traits. Local-shrinkage
prior EVWGBLUP is superior for traits mainly controlled by loci of a large effect. Normal-prior AEWGBLUP performs well
for traits mainly controlled by loci of moderate effect. For traits controlled by some loci with large effects (explain 25–50%
genetic variance) and a range of loci with small effects, GFWGBLUP has advantages. In conclusion, the optimal weighted
GBLUP method for genomic selection should take both the genetic architecture and number of QTLs of traits into
consideration carefully.

Introduction

With the application of genome-wide single-nucleotide
polymorphism (SNP) markers, genomic selection (GS) or
genomic prediction (GP) has emerged as a powerful method
for animal and plant breeding (Hayes et al. 2009; VanRaden
et al. 2009; Wolc et al. 2011; Garrick 2011). Effective
utilization of marker information is vital in GP methods to
accurately predict the genomic estimated breeding value
(GEBV). Although a large number of GP methods have
been proposed, the development of such methods is still
ongoing, and so far, there is no consensus on the best
approach (Misztal and Legarra 2017).

The methods available for GS can be classified broadly
into two groups. The first group of methods is termed as the
direct method (Zhang et al. 2011), in which markers
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covering the whole genome are used to derive the marker-
based relationship matrix among individuals; the genetic
merit is then predicted directly using the genomic best
linear-unbiased prediction (GBLUP) model (VanRaden
2008). The total genetic effects of individuals are treated as
random effects, with the variance structure defined by the
genomic relationship matrix (G). This model can also be
referred to as the breeding value model (Fernando et al.
2014). GBLUP has an equivalent relationship with ridge
regression BLUP (RRBLUP) (Meuwissen et al. 2001), in
which the marker effects are assumed to have a normal
distribution with the same variance for all markers (Strandén
and Garrick 2009; Meuwissen et al. 2001). Furthermore, a
single-step GBLUP (ssGBLUP) (Legarra et al. 2009)
approach has been developed, which can integrate all
available information into a single model. An extension of
the G matrix can be constructed in which genomic rela-
tionships are propagated to all individuals based on the
pedigree relationship, resulting in a combined relationship
matrix that can be used in a BLUP procedure (Legarra et al.
2009; Christensen and Lund 2010).

The second group of methods is termed as the indirect
method (Zhang et al. 2011), in which all available genetic
markers are fitted simultaneously as random effects to avoid
the problem of model overfitting (Meuwissen et al. 2001).
The estimates of all marker effects are then summed toge-
ther to estimate an individual’s total genetic value; this is
also called the marker-effect model (Fernando et al. 2014).
To account for unknown marker effects with different prior
distributions, various Bayesian methods have been devel-
oped, such as BayesA, B, Cπ, R, and LASSO, creating a
series of analysis options, known as the Bayesian alphabet
(Meuwissen et al. 2001; Habier et al. 2011; Gianola 2013).

In addition to Bayesian methods, genome-wide associa-
tion study (GWAS) methods focusing on detecting QTLs
can be used to estimate marker effects or to generate the test
statistics for each marker (Zhang et al. 2010a; Liu et al.
2016; Wang et al. 2016; Runcie and Crawford 2019).
Compared to GS methods, GWAS methods emphasize
much more statistical power of QTL detection. Due to
different purposes, GWAS and GS are often viewed as
different subjects, but interdisciplinary communication may
lead to unexpected and innovative outcomes (Marques et al.
2018); e.g., BayesC, a GS method, has been used in QTL
fine mapping (van den Berg et al. 2013).

Many studies have been conducted to compare the pre-
diction accuracy between Bayesian and GBLUP methods
(van den Berg et al. 2015; Hayes et al. 2010). In general,
Bayesian methods tend to perform better than GBLUP for
traits controlled by loci with large effects. Otherwise, GBLUP
has an advantage. This has been demonstrated in simulated
studies (Daetwyler et al. 2010; Clark et al. 2011) and con-
firmed in real population (Rolf et al. 2015; Lee et al. 2017;

Mehrban et al. 2017; Gao et al. 2015; Hayes et al. 2010).
Nonetheless, GBLUP has the advantage of easily integrating
into existing genetic evaluation infrastructure that uses pedi-
grees to derive the relationship matrix (Wang et al. 2018;
Karaman et al. 2018). Therefore, developing methods within
the BLUP framework for traits with various genetic archi-
tectures is highly desirable.

Various approaches have been used to combine the results
from GWAS/GP methods into the GBLUP model. (a) The
marker information from GWAS/GP methods was used to
weight the markers to produce weighted GBLUP, like the
BLUP|GA (Zhang et al. 2015) and the weighted ssGBLUP
used in many studies (Fragomeni et al. 2017; Zhang et al.
2016). (b) The VanRaden’s G matrix (VanRaden 2008) was
constructed with partial markers preselected by GWAS/GP
methods to produce simplified GBLUP (sGBLUP) (Wang
et al. 2018; Moser et al. 2010; Li et al. 2017; Veerkamp et al.
2016). (c) Markers were divided into genomic-feature (GF) set
or the remaining set based on GWAS/GP methods, and two
VanRaden’s G matrices were constructed with markers in the
GF set and the remaining set, respectively, to establish the
genomic-feature BLUP (GFBLUP) (Sarup et al. 2016).
However, the research on this aspect is insufficient. On the one
hand, the estimates of marker effects used in most studies were
obtained by Bayesian methods (Tiezzi and Maltecca 2015) or
RRBLUP (Zhang et al. 2015, 2016; Sarup et al. 2016), while
GWAS methods were rarely used. On the other hand, only one
weighted GBLUP method has been used to weight markers in
most published studies (Calus et al. 2014; Zhang et al.
2015, 2016; Sarup et al. 2016; Wang et al. 2018); therefore,
the most effective weighted GBLUP for a trait is not specified.

It can be assumed that the optimal weighting method for
integrating the marker information into the GBLUP model
can change with the genetic architecture of the trait being
analyzed, and the GWAS/GP methods used to obtain mar-
ker information may also affect the prediction ability. The
aim of (1) finding the most efficient weighted GBLUP
methods for a variety of traits, and (2) analyzing the factors
that affect the effectiveness of the various weighted
GBLUP. Twelve GP strategies of three weighted GBLUPs
by four different GWAS/GP methods were evaluated in
traits with a broad spectrum of genetic architectures.

Materials and methods

Real data

Three publicly available data sets from cattle, pig, and
loblolly pine were used in this study. The German dairy cattle
population data were provided by Vereinigte Informa-
tionssysteme Tierhaltung w.V and available at https://www.
g3journal.org/content/suppl/2015/02/09/g3.114.016261.DC1.
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This population comprises 5024 bulls, which were genotyped
with the Illumina Bovine SNP50Beadchip; after quality
control, 39,117 SNPs remained for our further analyses.
Highly reliable conventional estimated breeding values
(EBVs) of three traits were used in this study. The pig data set
contains 3534 genotyped individuals with phenotypes and
EBVs for five traits. The genotypes contain 45,385 SNPs
after quality control (Cleveland et al. 2012). The loblolly pine
data set includes 926 individuals genotyped with 4853 SNPs
and 17 deregressed phenotypes from three studies (Resende
et al. 2012).

Simulated data

We established a series of simulation studies to investigate
factors that influence the prediction ability of weighted
GBLUP methods. Phenotypes were simulated with different
heritability and different numbers of QTL. The real pig gen-
otypic information was used as a base for the simulations.
Simulations were carried out in nine scenarios, with herit-
ability of 0.15, 0.4, or 0.7 and 100, 500, or 1000 biallelic
QTLs. The locations of the simulated QTLs were determined
by random sampling of the existing SNPs in the real pig data
set. The phenotypic variance σ2P was set as 100. The genetic
variance of each QTL was drawn from a normal distribution
N (0, 1), and the sum variance of all the QTLs rescaled to be
equal to σ2P � h2. The allele substitution effect of the nth QTL
(an) was calculated as an ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2n=2pnð1� pnÞ

p
, where σ2n

represents the genetic variance explained by the nth QTL, and
pn is the frequency of a given allele of the nth QTL. The
simulated phenotype of an individual was calculated as the
sum of its QTL effects and an environmental effect drawn
from a normal distribution Nð0; ð1� h2Þσ2PÞ; each scenario
was simulated ten times.

According to the assumption of marker-effect variance
used in BayesR (Erbe et al. 2012), we divided the QTL into
three groups based on the phenotypic variance occupied by
the QTL, i.e., ≤0.09%, 0.09–0.45%, and ≥0.45%. We
termed these QTL as loci with small, moderate, and large
effects, respectively (Fig. S1).

General GBLUP

General GBLUP was used as a benchmark to evaluate the
weighted GBLUP presented in this study. The model
includes a single random genetic effect, and was expressed
as follows:

y ¼ μ þ Zgþ e; ð1Þ
where y is the vector of phenotypic observations, μ is a
vector of overall mean, g is a vector of individual genetic
values captured by all genetic markers, Z is the design

matrix of genetic values, and e is a vector of residuals.
The random genetic and the residual values are assumed
to be independent normally distributed values described
as g � Nð0;Gσ2gÞ and e � Nð0; Iσ2eÞ, σ2g and σ2e are the
additive genetic and residual variance, respectively. In
this study, all variance components were estimated using
the average information-restricted maximum likelihood
(AI-REML) algorithm in BLUPF90 (Misztal et al. 2002).

The additive G matrix, also called VanRaden’s G matrix
(VanRaden 2008), was constructed using all genetic markers:

G ¼ WW0
2
PK

k¼1 pk 1� pkð Þ ; ð2Þ

where W=M− 2P is the centered genotype matrix, M is
the genotype matrix with elements of 0, 1, and 2, P is a
matrix of 1 × pk in the kth column, and pk is the frequency of
a given allele of the kth marker. The solution of ĝ is equal to
ðZ0R�1ZþG�1Þ�1Z0R�1 y� μ̂ð Þ, where R ¼ Iσ2e is the
covariance matrix of residuals.

Genomic-feature BLUP

The GF set is a set of markers selected by the corresponding
test statistics of each GWAS/GP method. The posterior
probabilities, t statistics, and Wald test statistics for BayesC,
RRBLUP, and empirical Bayes (EB) were sorted in decreasing
order, and the P values from fixed and random models cir-
culating probability unification (FarmCPU) were sorted in
increasing order. The first 100, 500, 1000, 1500, 2000, 5000,
10,000, 20,000, and 30,000 markers were selected to construct
different GF set levels in the simulated study, and the residual
markers were included in the remaining sets. For the loblolly
pine data set, only the top 100, 500, 1000, and 2000 markers
were used to construct GF sets, and for the cattle and pig data
sets, only the top 100, 500, 1000, 2000, 5000, and 10,000
markers were used. The GFBLUP model originally proposed
by Sarup et al. (2016) includes two random genetic effects and
was expressed as follows:

y ¼ μ þ Zf þ Zrþ e; ð3Þ
where f is a vector of genetic values captured by genetic
markers in the GF set, r is a vector of genetic values
captured by the remaining genetic markers, Z is the same
as in Eq. (1), and e is a vector of residuals. The random
genetic effects and the residuals were assumed to be
independent and normally distributed with f � Nð0;Gfσ2f Þ,
r � Nð0;Grσ2r Þ, and e � Nð0; Iσ2eÞ, where Gf and Gr are
the VanRaden’s G matrices constructed with markers in the
GF set and the remaining set, respectively, and σ2f and σ2r
are the genetic variances captured by markers in the GF set
and the remaining set, respectively.
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The variance components σ2f , σ
2
r , and σ2e in Eq. (3) were

estimated using the AI-REML algorithm. The heritability
estimate is:

ĥ2GFBLUP ¼ σ̂2f þ σ̂2r
σ̂2f þ σ̂2r þ σ̂2e

and it can be partitioned into two ratios as ĥ2f ¼
σ̂2f

σ̂2f þσ̂2r
and

ĥ2r ¼ σ̂2r
σ̂2f þσ̂2r

, quantifying the genetic variances explained by

the genetic markers in the GF set and the remaining set,
respectively.

Methods for obtaining marker information

In this study, the marker information for constructing weighted
G matrices was obtained by four methods: BayesC (Habier
et al. 2011), EB (Wang et al. 2016), the FarmCPU (Liu et al.
2016), and RRBLUP (Meuwissen et al. 2001). The priors used
in BayesC and EB aimed to shrink small effects to zero and
maintain large effects, so we refer to them as local-shrinkage
prior methods (van Erp et al. 2019). For FarmCPU, the marker
effects were estimated by ordinary least squares (Liu et al.
2016), which is a ridge regression with the penalty parameter
equal to zero (van Erp et al. 2019). The Bayesian counterpart
of ridge regression is normal prior to marker effects. The
normal prior in Bayesian methods shrinks all the coefficients
to avoid model overfitting and is a global-shrinkage prior.
Since the FarmCPU does not involve shrinkage, we refer to
FarmCPU and RRBLUP as normal-prior methods. In these
methods, the BayesC and RRBLUP are GP methods, and the
EB and FarmCPU are GWAS methods; then the classification
of methods is shown in Table 1.

BayesC and RRBLUP

The estimation of marker effects based on BayesC or
RRBLUP methods is performed using the GS3 software
(http://snp.toulouse.inra.fr/~alegarra/manualgs3_last.pdf). The
statistical model of both methods can be expressed as follows:

yi ¼ μþ
XK
k¼1

zikak þ ei; ð4Þ

where yi is the phenotype for individual i, μ is the overall
mean, K is the number of markers, zik is the genotype of

individual i for marker k coded as 0, 1, or 2 depending on
the number of copies of a given marker allele the individual
carried, ak is the additive effect of the kth marker allele, and
ei is the random residual for individual i.

For BayesC, all unknown parameters were assigned prior
distributions and sampled with a Monte Carlo Markov chain
(MCMC) using Gibbs sampling. The MCMC was run for
200,000 iterations, with a burn-in of 20,000 iterations and
thin interval of 50. The prior used for ak was a mixture
distribution that was expressed as follows:

ak π; σ
2
a �

�� 0 with probility π;

Nð0; σ2aÞ with probability ð1� πÞ;
�

where σ2a is the marker-effect variance and 1− π is the prior
probability that the marker effect is nonzero. π was fixed at
0.95, 0.98, 0.99, or 0.995, respectively. The posterior
probability that the marker is retained in the BayesC model
was used to preselect markers to construct the GF set.

For RRBLUP, all the marker effects were assumed to have
the same prior variance and normally distributed. The t sta-
tistic for a single genetic marker was computed as follows:

tŝk ¼
ŝkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðŝkÞ
p ;

where ŝk is the estimate of the kth marker effect, VarðŝkÞ
is the error variance of ŝk , and tŝk was used to preselect
markers as the GF set.

EB

EB method proposed by Wang et al. (2016) can selectively
shrink marker effects and reduce the noise level to zero for
nonassociated markers. The Wald test statistics used in EB
method were computed as follows:

Wk ¼ γ̂2k
Varðγ̂kÞ

;

where γ̂k is the estimate of the marker effect of the kth
marker and Varðγ̂kÞ is the variance of the estimate, and Wk

was used to preselect markers as the GF set.

FarmCPU

FarmCPU divided the mixed linear model into two parts: a
fixed- and a random-effect item, and used them iteratively
(Liu et al. 2016). The population structure is represented by
three covariates, which were obtained by using the genome-
association and prediction-integrated tool (Lipka et al.
2012). The P value of each marker produced in the last
iteration was used as the test statistics to construct the
GF set.

Table 1 Methods used for QTL detection and marker-effect estimation.

Methods Normal prior (global-shrinkage prior) Local-shrinkage prior

GWAS FarmCPU EB

GP RRBLUP BayesC
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Weighted G matrices

The marker information obtained from GWAS/GP methods
was used to construct three different weighted G matrices:
(1) the genomic-feature-weighted G matrix (GFWG), (2)
the estimated marker-variance-weighted G matrix (EVWG),
and (3) the absolute value of the estimated marker-effect-
weighted G matrix (AEWG).

Weights in the GFWG matrix

The GFWG matrix was constructed based on the GFBLUP
model. The markers in the GF and the remaining set are
assigned different weights based on ĥ2f and ĥ2r , and the
weights for markers in the GF and the remaining set were
computed as follows:

wf ¼
Kĥ2f
Kf

and wr ¼ Kĥ2r
Kr

; ð5Þ

where wf and wr are the weights of markers in the GF and
remaining set, respectively, and K is the same as in Eq. (4);
Kf and Kr are the number of markers in the GF and the
remaining set, separately.

Weights in the EVWG matrix

The EVWG matrix is constructed based on the estimated
marker variance derived from the marker-effect estimates
and the corresponding marker allele frequency. The weight
for the kth marker is computed as follows:

wk ¼ K2pkð1� pkÞû2kPK
k¼1 2pkð1� pkÞû2k

¼ Kpkð1� pkÞû2kPK
k¼1 pkð1� pkÞû2k

; ð6Þ

where pk is the same as in Eq. (2), and ûk is the effect
estimate of the kth marker. 2pkð1� pkÞû2k is the estimated
genetic variance of the kth marker (Gianola et al. 2009;
Zhang et al. 2010a, b).

Weights in the AEWG matrix

Compared to the EVWG matrix, the AEWG matrix only
uses the absolute value of the marker-effect estimates to
obtain the weight of each marker with:

wk ¼ absðûkÞKPK
k¼1 absðûkÞ

; ð7Þ

where absðûkÞ is the absolute value of the estimated effect
for the kth marker.

Scaling factors

The K
Kf

(or K
Kr
), KPK

k¼1
pkð1�pkÞû2k

, and KPK

k¼1
absðûkÞ

used in Eqs.

(5–7) are scaling factors following the recommendation in
Gianola et al. (2020). Therefore, the sum of all weights is
equal to K. Using these scaling factors, the weighted G
matrices we proposed are similar to the additive genetic
relationship matrix (A) (Appendix).

Construction of the weighted G matrix

The weighted G matrix was constructed as follows:

Gw ¼ WDW0

2
PK

k¼1 pkð1� pkÞ
; ð8Þ

where D is a diagonal matrix with the diagonal elements
corresponding to the weights of markers, W and pk are the
same as in Eq. (2).

For VanRaden’s G matrix, all markers have the same
weight of one; therefore, D is an identity matrix. For a
specific trait, the genetic variance explained by each locus is
different from each other, and the D matrix should reflect
the genetic variance explained by each locus (Gianola et al.
2020). However, D may not be observable. For the EVWG
matrix, the estimates (scaled) of genetic variance for each
locus were used in the construction of the D matrix. For the
GFWG matrix, a larger genetic variance was assigned to the
loci in the GF set, and a smaller genetic variance was
assigned to the loci in the remaining set. For the AEWG
matrix, only the estimates of marker effect were used in the
construction of the D matrix.

Weighted GBLUPs

The difference between the weighted and general GBLUP is
that the weighted GBLUPs substitute VanRaden’s G matrix
with weighted G (GFWG, EVWG, or AEWG) matrices. We
also present an sGBLUP that only uses the markers in the
GF set to construct VanRaden’s G matrix.

Evaluation of the accuracy of GEBV

For simulated traits, the first 3034 individuals with geno-
types in the pedigree were used as the reference population
and the residual 500 genotyped individuals as the validation
population. The prediction accuracy is the average Pearson’s
correlation coefficient of the true breeding value and GEBV
of the validation individuals for ten repeats. For real data
sets, a tenfold cross-validation procedure was conducted to
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compare the prediction ability of different methods. For real
traits, the deregressed phenotypes of loblolly pine (Resende
et al. 2012) and EBVs of bulls (Zhang et al. 2015) and pigs
(Cleveland et al. 2012) were used to derive the GP. Marker
effects were estimated based only on individuals in the
reference group. The mean of the ten Pearson’s correlation
coefficients between GEBVs and deregressed phenotypes/
EBVs in the validation groups were used as prediction
accuracies. For each trait, a one-way ANOVA was applied
to determine whether there are any statistically significant
differences in prediction accuracies between weighted
GBLUPs; if the null hypothesis was rejected using the sig-
nificance level of 0.05, the multiple paired t-tests were
conducted between all GP methods, with P values adjusted
by Bonferroni correction.

Results

Simulated QTL effects

The percentages of genetic variance explained by QTLs in
different groups for simulated traits with different heritabilities
and QTL numbers are summarized in Table 2. The QTL
groups were defined by the classification criteria in Fig. S1.
According to these percentages, we divided the simulated traits
into five genetic architecture scenarios. Scenarios 1 and 2
correspond to traits mainly controlled by loci with large and
moderate effects, respectively. Scenarios 3 and 4 correspond to
traits controlled by loci with large and moderate effects
simultaneously, with the moderate loci accounting for most of
the genetic variance. However, the difference between these
two scenarios is that there are fewer QTLs in scenario 3 than in
scenario 4. Scenario 5 corresponds to traits mainly controlled
by loci with small effects. This classification converts the two
dimensions of genetic architecture (heritability and QTL
number) into one dimension (QTL effect), thus simplifying the
analysis of weighting methods. Scenario 5 is not shown in the
following analysis because no weighting method was found
superior to the general GBLUP in this scenario. The same
trend was observed for all traits in each scenario. So, only the
traits in the first row of scenarios 1–4 in Table 2 are presented
in subsequent analyses.

Marker information from different GWAS/GP
methods

Local-shrinkage (BayesC and EB) and normal-prior meth-
ods (RRBLUP and FarmCPU) were used in the estimation
of marker effects. Table 3 shows the correlations between
simulated and estimated QTL effects, which reflect the
accuracy of QTL-effect estimates. The superiority of dif-
ferent GWAS/GP methods in accuracy varied with the

change in genetic architectures. Local-shrinkage prior
methods were superior to the corresponding normal-prior
methods (i.e., EB was better than FarmCPU, and BayesC
was better than RRBLUP) for traits mainly controlled by
loci of the large effect (scenario 1). However, for traits
mainly controlled by loci of moderate effect (scenarios 2
and 3), the normal-prior methods yielded more accurate
estimates. For scenario 4, although there were only few loci
of large effect, the local-shrinkage prior methods still had
advantages. The estimates from GWAS methods were
generally more accurate than those of the corresponding GS
methods, i.e., FarmCPU was better than RRBLUP, and EB
was better than BayesC.

We also investigated the power of different methods in
QTL detection, and the results are presented in Fig. 1. The π
used in BayesC was 0.98. Overall, the local-shrinkage prior
methods were better than normal-prior methods, and
BayesC was the most powerful, followed by EB, RRBLUP,
and FarmCPU. However, the detection efficiency of the
methods varied with the scenarios analyzed. In scenario 1,
QTLs were effectively detected, and the differences
between the methods were obvious (Fig. 1a). In scenario 2,
the QTL detection efficiency of all GWAS and GP methods
was low (Fig. 1b). In scenario 3, all the GWAS and GP
methods had good QTL detection results (Fig. 1c). In sce-
nario 4, the differences between methods in QTL detection
were obvious, and the local-shrinkage prior methods were
better than normal-prior methods, except in the case of
many markers in the GF set, in which the RRBLUP out-
performed EB (Fig. 1d).

Performance of GFWGBLUP

The prediction accuracies by GFBLUP, GFWGBLUP, and
sGBLUP in different GF set levels are given in Fig. S2. The
marker number in the GF set had an impact on the pre-
diction accuracies of the three methods. When the number
of markers was less than 500, GFWGBLUP performed a bit
worse than GFBLUP, but better than sGBLUP. The poor
performance of sGBLUP may be due to the loss of genetic
variance caused by the simplified G matrix. GFWGBLUP
almost equaled GFBLUP when the marker number was
more than 500, and all three methods obtained similar
results when the marker number was more than 2000.
GFWGBLUP was superior or equal to the corresponding
sGBLUP in the simulated study. Therefore, only
GFWGBLUP was compared with other weighting methods.
We also investigated the influence of hyperparameter π on
the BayesC–GFWGBLUP (Fig. S3). Four different π values
(0.95, 0.98, 0.99, and 0.995) were used. We found that the
larger the π value, the better the prediction. Therefore, a
larger π value (0.995) was used in BayesC for subsequent
analyses.
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Table 2 The percentages of
genetic variance explained by
QTL in different groups for
simulated traits with different
heritabilities and QTL numbers.

Genetic architectures h2 QTL number QTL effecta

Large Moderate Small

Scenario 1 0.70 100 87.60 (0.36)b 11.84 (0.40) 0.57 (0.05)

0.40 100 67.42 (1.18) 30.73 (1.13) 1.85 (0.08)

Scenario 2 0.70 1000 – 58.95 (0.43) 41.05 (0.43)

0.40 500 – 67.19 (0.47) 32.81 (0.47)

Scenario 3 0.15 100 7.27 (1.83) 81.75 (2.00) 11.00 (0.50)

Scenario 4 0.70 500 4.22 (0.46) 83.30 (0.51) 12.48 (0.17)

Scenario 5 0.15 1000 – – 100.00 (0.00)

0.15 500 – 5.32 (0.35) 94.68 (0.35)

0.40 1000 – 20.24 (0.34) 79.76 (0.34)

aThe QTLs were divided into three groups based on the phenotypic variance explained by a single marker:
≦0.09%, 0.09–0.45%, and ≧0.45%. We termed the QTL in the corresponding groups as loci with small,
moderate, and large effects, respectively.
bThe mean (standard error) of the percentages from ten replicates.

Table 3 The correlations
between the simulated and
estimated QTL effects based on
different GWAS/GP methods
for simulated traits with different
genetic architectures.

Genetic architectures h2 QTL number Methods

EB BayesC FarmCPU RRBLUP

Scenario 1 0.7 100 0.82 (0.02)a 0.67 (0.03) 0.66 (0.05) 0.45 (0.03)

Scenario 2 0.4 500 0.31 (0.02) 0.17 (0.01) 0.36 (0.01) 0.25 (0.01)

Scenario 3 0.15 100 0.48 (0.02) 0.21 (0.03) 0.55 (0.03) 0.29 (0.03)

Scenario 4 0.7 500 0.52 (0.01) 0.32 (0.02) 0.40 (0.02) 0.30 (0.01)

aThe mean (standard error) of the Pearson correlations from ten replicates.

Fig. 1 The power to detect
QTLs based on four GWAS/
GP methods in different GF
set levels for simulated traits
with different genetic
architectures. The power
expressed as the percentage of
the detected number of QTL in
the GF set occupied the total
number of QTL.
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To optimize the GFWGBLUP method for traits with dif-
ferent genetic architectures, two factors that affect the pre-
diction accuracy of GFWGBLUP were investigated: the
number of markers and the methods used to construct the GF
set. Using the accuracy by GBLUP as a reference, the influ-
ences of these two factors varied under different scenarios of
genetic architecture (Fig. 2). In scenario 1, good results were
obtained by constructing a GF set with fewer top-ranked
markers (100–2000) (Fig. 2a). The BayesC–GFWGBLUP (π
equals to 0.995) achieved the best result (11.8% higher than
GBLUP), followed by EB, RRBLUP, and FarmCPU-based
GFWGBLUP. In scenario 2, normal-prior GFWGBLUP had
very limited advantages over GBLUP when a large number of
markers were included in the GF set (Fig. 2b). In scenario 3,
optimal normal-prior GFWGBLUP performed better than
GBLUP, and much better than local-shrinkage prior
GFWGBLUP (Fig. 2c). In scenario 4, GFWGBLUP had very
limited advantages over GBLUP (Fig. 2d).

Performance of EVWGBLUP and AEWGBLUP

In scenario 1, all the weighting methods outperformed the
general GBLUP significantly (Fig. 3a). While EVWGBLUPs
performed better than the corresponding AEWGBLUPs
(e.g., BayesC–EVWGBLUP was better than BayesC–
AEWGBLUP), local-shrinkage prior EVWGBLUPs performed
better than the corresponding normal-prior EVWGBLUPs

(i.e., BayesC–EVWGBLUP was better than RRBLUP–
EVWGBLUP and EB-EVWGBLUP was better than
FarmCPU–EVWGBLUP). Therefore, local-shrinkage prior
EVWGBLUPs were best suited for this scenario. Meanwhile,
BayesC–EVWGBLUP (14.8% higher than GBLUP) was better
than EB-EVWGBLUP (9.3% higher than GBLUP), which may
be due to the large π (0.995) used in BayesC. In fact, the
prediction accuracy of EB-GFWGBLUP was similar to that of
BayesC–GFWGBLUP when π was equal to 0.99. In scenario
2, AEWGBLUP was better than the corresponding
EVWGBLUP (e.g., BayesC–AEWGBLUP was better than
BayesC–EVWGBLUP), and normal-prior AEWGBLUPs per-
formed better than local-shrinkage prior AEWGBLUPs
(i.e., RRBLUP–AEWGBLUP was better than BayesC–
AEWGBLUP, and FarmCPU–AEWGBLUP was better than
EB-AEWGBLUP). Therefore, normal-prior AEWGBLUPs
were best suited for this scenario (Fig. 3b). In scenario 3,
FarmCPU–EVWGBLUP maximized the prediction accuracy
(3.7% higher than GBLUP) (Fig. 3c) because of the higher
accuracy of QTL-effect estimates from FarmCPU (Table 3). In
scenario 4, BayesC–AEWGBLUP maximized the prediction
accuracy (2.4% higher than GBLUP) (Fig. 3d) due to the
advantages of BayesC in QTL detection (Fig. 1d) and effect
estimation (Table 3). The comparisons mentioned above were
conducted by paired t-test because the same simulated traits
were used in different methods, and the statistical significance
of the differences between methods is shown in Fig. 3.

Fig. 2 The accuracy of
GFWGBLUP based on four
GWAS/GP methods in
different GF set levels for
simulated traits with different
genetic architectures. The
dashed lines indicate the
prediction accuracies of
general GBLUP.
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For traits mainly controlled by loci of large effect, the
estimates of marker effects obtained by BayesB were also
used in the construction of EVWGBLUP and AEWGBLUP
models. However, there was no difference in prediction
accuracy between BayeB-based EV/AEWGBLUP and
BayeC-based EV/AEWGBLUP. Nevertheless, the prediction
performances of the weighted GBLUPs were much better
than that of BayesB and BayesC (Fig. S4).

In the simulated study, EVWGBLUP maximized the
prediction accuracies for traits controlled by few QTLs.
AEWGBLUP achieved the best results for traits mainly
controlled by loci of moderate effect, except in scenarios
where traits were controlled by fewer genes. Therefore, EV/
AEWGBLUP are superior to GFWGBLUP for traits mainly
controlled by loci with large or moderate effects. This
suggests that the effect estimates of loci with large or
moderate effects are meaningful in GP.

Superiority of GFWGBLUP

To explore the superiority of GFWGBLUP according to
genetic architecture, we also simulated traits for which the

GFWGBLUP was expected to achieve the best results (Fig.
4). The traits in scenarios 6a and 6b were mainly controlled
by loci of a small effect; meanwhile, they were also influ-
enced by some loci of a large effect; the GFWGBLUP was
significantly better (P < 0.05) than other weighted GBLUPs.
For traits mainly controlled by loci of a large effect, the
superiority of GFWGBLUP disappeared (scenario 6c).
GFWGBUP had no advantage across all combinations of
moderate- and small-effect loci (scenarios 6d–f). Therefore,
GFWGBLUP was advantageous for traits controlled by
some loci with large effects (explain 25–50% genetic var-
iance) and a range of loci with small effects.

Include or exclude QTLs

We examined the performance of different weighted
GBLUPs based on genotypic data with or without QTLs for
traits with different genetic architectures. The results indi-
cated that the relationships between the prediction accuracy
of weighted GBLUPs and the genetic architecture of traits
were the same, regardless of whether QTLs were included
in the genotypic data (Fig. S5).

Fig. 3 The accuracy of
EVWGBLUP and
AEWGBLUP based on four
GWAS/GP methods for
simulated traits with different
genetic architectures. For the
last group bars (the far right side
of each plot), the weights are 1
for all markers, so these
weighted GBLUPs are the same
as the general GBLUP, and
these groups of bars were used
as the reference. The standard
errors are indicated by the
whiskers on the bars.
***indicates significant
differences at P < 0.001,
**indicates significant
differences at 0.001 < P < 0.01.
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Performance on real traits across species

We examined the performance of different weighted
GBLUPs on 25 real traits from three species: loblolly pine
(17), cattle (3), and pig (5). Overall, our weighted GBLUPs
outperformed general GBLUP for 21 of 25 real traits (Fig.
S6). Compared with the general GBLUP, the gains of
weighting methods in terms of accuracy ranged from 44%
to marginal for real traits. Table 4 lists nine traits for which
the best weighted GBLUP performed significantly better
than general GBLUP.

Normal-prior AEWGBLUP maximized the prediction
accuracies for milk yield and CWAL (crown width along
the planting beds) (Fig. S7a, c). These results were con-
sistent with that of simulated traits mainly controlled by loci
of moderate effect (scenario 2); milk yield is mainly con-
trolled by loci of moderate effect (Tiezzi and Maltecca
2015; Habier et al. 2011). FarmCPU–EVWGBLUP

maximized the prediction accuracy for fat percentage (Fig.
S7b), which is consistent with the results for simulated traits
controlled by few loci of a large effect and some loci of
moderate effect (scenario 3); fat percentage is controlled by
one major gene and additional loci with moderate effects
(Tiezzi and Maltecca 2015; Hayes et al. 2010). For Rust_-
gall_vol, which is controlled by few loci of a large effect
(Resende et al. 2012), BayesC–AEWGBLUP achieved the
best result (Fig. S7d), which is consistent with the results of
simulated traits controlled by a few loci with large and
many loci with moderate effects (scenario 4). For T1–5
from the pig data set, the BayesB always outperformed the
ssGBLUP, indicating that some loci of large effect affect
these traits (Cleveland et al. 2012). GFWGBLUP obtained
the best results (Fig. S7e–i), which is consistent with the
results of simulated traits controlled by some loci of large
effect and a range of loci with small effects (scenarios 6a
and b).

Fig. 4 The performance of different weighted GBLUPs for traits
controlled by loci with small and large/moderate effects simulta-
neously. The heritabilities and phenotypic variances for scenarios 6a–f
were all 0.8 and 100, respectively. In scenarios 6a–c, loci of a large
effect explained 20%, 40%, and 60% of the phenotypic variances,
respectively; the remaining genetic variance was assigned to 5000 loci
of a small effect evenly. In scenarios 6d–f, loci of a moderate effect
explained 20%, 40%, and 60% of the phenotypic variances, respec-
tively; the remaining genetic variance was assigned to 5000 loci of a

small effect evenly. A single locus of a large effect in scenarios 6a–c
accounts for 2% of the phenotypic variance, and each locus of mod-
erate effect in scenarios 6d–f accounts for 0.4% of the phenotypic
variance. All scenarios were replicated ten times. The standard errors
are indicated by the whiskers on the bars. Paired t-test was applied to
compare the difference between methods, with P values adjusted by
Bonferroni correction. ***indicates significant differences at P <
0.001, **indicates significant differences at 0.001 < P < 0.01, NS
indicates no statistically significant difference.
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Discussion

The genomic relationship matrix is a crucial element in the
GBLUP model. Ideally, the G matrix should precisely
reflect the genetic relationship between individuals for a
specific trait (Wang et al. 2018). However, this ideal
situation is unrealistic in practice. A feasible method is to
construct a weighted G matrix using marker information
from GWAS or Bayesian methods (Fragomeni et al. 2017;
Zhang et al. 2016). At the same time, the effective utiliza-
tion of the marker information becomes crucial in the
construction of the weighted G matrix (Fragomeni et al.
2017), and the optimal weighting method changes with the
trait being analyzed. In this study, we developed a series of
weighted methods that can be adapted to various genetic
architectures of quantitative traits and assessed their relative
performance in relation to trait genetic architecture and the
number of markers considered.

QTL detection and marker-effect estimation

Published studies have shown that loci of a large effect are
easier to be detected (Wimmer et al. 2013; van den Berg et al.
2013), which is consistent with our results (Fig. 1a). Mean-
while, the assumptions of marker effects used in GWAS/GP
methods also influence the efficiency of QTL detection, like
BayesC with larger π achieving better results (Lee et al. 2017;
Mehrban et al. 2017; van den Berg et al. 2013; Zhang et al.
2016). These were consistent with the superiority of local-
shrinkage prior methods used in our study.

In addition to the superiority of QTL detection, local-
shrinkage prior methods can retain the effects of loci with
large effects and shrink the effects of irrelevant loci (Hastie
et al. 2015; van Erp et al. 2019). Therefore, local-shrinkage
prior methods may be suitable for the estimation of marker
effects for traits mainly controlled by loci of large effect.
Detection of QTL is difficult for traits mainly controlled by
loci of moderate effect (Fig. 1b), and local-shrinkage prior
methods would shrink the effects of QTL that could not be
detected (van Erp et al. 2019). Therefore, normal-prior
methods may be appropriate in the estimation of marker
effects for traits mainly controlled by loci of moderate
effect.

EVWGBLUP

Most of the previously published weighted GBLUP meth-
ods are EVWGBLUP (Tiezzi and Maltecca 2015; Calus
et al. 2014; Karaman et al. 2018; Fragomeni et al. 2017;
Zhang et al. 2016). The EVWGBLUP improved the pre-
diction accuracies for traits influenced by loci of large
effect. However, this method had no advantage in traits
mainly controlled by loci with small or moderate effects.Ta
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These results are consistent with those of previous studies
(Tiezzi and Maltecca 2015; Karaman et al. 2018).
EVWGBLUP works to boost accuracies for traits mainly
controlled by loci of large effect, especially when marker
information was derived from local-shrinkage prior meth-
ods, for two reasons. First, local-shrinkage prior methods
can detect and retain loci of a large effect effectively while
shrinking the effects of irrelevant loci (Hastie et al. 2015;
van Erp et al. 2019). Second, EVWGBLUP makes the most
of the information of marker-effect estimates by using the
estimated marker-effect variance to construct the G matrix.
Therefore, the combination of local-shrinkage prior meth-
ods and EVWGBLUP is suitable for traits mainly controlled
by loci of a large effect.

Compared to the general GBLUP, local-shrinkage prior
EVWGBLUP improved the prediction accuracies for three
real traits (i.e., rust_gall_vol, fat percentage, and T1) in this
study (Table 4). Published studies have shown that these
traits are more suitable to shrinkage prior Bayesian meth-
ods, such as BayesCπ performed better for fusiform rust
resistance traits (Resende et al. 2012; Daetwyler et al. 2013)
and fat percentage (Habier et al. 2011), and BayesB was
superior to ssGBLUP for T1 (Cleveland et al. 2012). These
results indicate that the local-shrinkage prior EVWGBLUP
can improve the prediction accuracies for traits that are
suitable for the shrinkage prior Bayesian methods. How-
ever, local-shrinkage prior EVWGBLUP did not have the
highest prediction accuracies for these traits (Table 4)
because loci of a large effect account for only a small part of
the genetic variances, and most of the genetic variances are
explained by loci of moderate or small effects (Resende
et al. 2012; Habier et al. 2011; Cleveland et al. 2012).

Distinguishing causal variants or associated markers
from irrelevant markers can be done more efficiently for
traits controlled by fewer QTL, even for traits with lower
heritabilities (Wang et al. 2018; van den Berg et al. 2013),
which was also true for our study. For simulated traits with
100 QTLs and a heritability of 0.15 (scenario 3), 50–60% of
the QTLs (and nearly 80% of the total genetic variance)
were included in the 15% top-ranked markers, whichever
GWAS/GP methods were used for the QTL detection (Fig.
1c). So, it is necessary to distinguish between predictive and
irrelevant markers in constructing the G matrix.
EVWGBLUP can be used to distinguish markers based on
marker-effect estimates. Moreover, traits in scenario 3 are
mainly controlled by loci of moderate effect, and the QTL-
effect estimates from normal-prior methods were more
accurate (Table 3). Therefore, the normal-prior
EVWGBLUP achieved the best result (Fig. 3c). Similarly,
fat percentage is controlled by one major gene (explaining
about 30% of genetic variance) and some loci of moderate
effect (Tiezzi and Maltecca 2015; Hayes et al. 2010).
Consistent with the simulated results (scenario 3),

FarmCPU–EVWGBLUP maximized the prediction accu-
racy for fat percentage (Table 4). Compared to a previously
published study using the same cattle data set (Gao et al.
2015), the FarmCPU–EVWGBLUP performed better than
all the Bayesian methods. This may be related to Farm-
CPU’s advantage in QTL-effect estimation (Table 3), and
the EVWGBLUP used the advantage further.

AEWGBLUP

Weights of markers in the AEWG are proportional to the
absolute value of marker-effect estimates. Therefore, the
weights are not dependent on the estimates as heavily as
that of EVWG, but the estimated effect information is still
used. GWAS and GP methods are inefficient in QTL
detection for traits mainly controlled by loci of moderate
effect (van den Berg et al. 2013), and normal-prior methods
should be used to avoid the effect shrinkage of QTL that
could not be detected. Compared to EVWGBLUP,
AEWGBLUP can reduce the negative impact of the inac-
curate estimation of the marker effect. This is similar to the
moderate weight used in the BLUP|GA for milk yield
(Zhang et al. 2015). It is hard to find a Bayesian method that
is better than the GBLUP for traits mainly controlled by loci
of moderate effect, like milk yield (Habier et al. 2011; Gao
et al. 2015). However, FarmCPU–AEWGBLUP improved
the prediction accuracy significantly (Table 4). This may be
due to the accurate QTL-effect estimates of GWAS methods
(Table 3).

Most of the traits are actually with complex genetic
backgrounds and may be influenced by loci with large,
moderate, and small effects simultaneously. Like the simu-
lated trait controlled by few loci with large and many loci
with moderate effects simultaneously (scenario 4),
BayesC–AEWGBLUP achieved the best result (Fig. 3d) for
this case. The same trend was also observed in rust_gall_vol
(Table 4), which is controlled by few loci of a large effect
(Resende et al. 2012). In terms of genetic architecture, sce-
nario 4 is a transition state from scenarios 1 to 2, while from
the weighting methods, BayesC–AEWGBLUP is a transition
state from local-shrinkage prior EVWGBLUP to normal-prior
AEWGBLUP. Although BayesC–AEWGBLUP improved
the prediction accuracies significantly for these traits, the
combination (local-shrinkage prior methods and
AEWGBLUP) seems to violate the pattern found in this
study. BayesC is favorable for the detection and estimation of
loci with large effects, but unfavorable for the loci of mod-
erate effect. AEWGBLUP is suitable for loci of moderate
effect, but not for loci of a large effect. As a result, the marker
information from GWAS/GP methods may not be fully uti-
lized. The combination of FarmCPU–EVWGBLUP used in
scenario 3 also has the same problem. Therefore, Bayesian
methods with mixture distribution priors for marker effects
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are needed. BayesR assumes that the true marker effects are
derived from a series of normal distributions (Erbe et al. 2012;
Wang et al. 2015; van den Berg et al. 2017). So a further
study with a focus on the BayesR-weighted GBLUP is
suggested.

GFWGBLUP

Compared to the RRBLUP used in Sarup et al. (2016), the
local-shrinkage prior methods used in this study were more
powerful in QTL detection (Fig. 1). One reason for the
inconsistent results emerging from sGBLUP methods may
be due to the different methods used in the detection of
significant markers (Wang et al. 2018; Moser et al. 2010; Li
et al. 2017; Veerkamp et al. 2016). Equal to the assumption
used in GBLUP, each marker in the GF/remaining set
evenly shares the genetic variances that were allocated to
the GF/remaining set (Sarup et al. 2016; VanRaden 2008).
For traits mainly controlled by loci of a small effect and
influenced by some loci of a large effect simultaneously,
loci of large and small effects can be treated differently in
the GF and remaining sets, respectively. For the real pig
traits that are influenced by some loci of a large effect
(Cleveland et al. 2012), GFWGBLUP based on a powerful
GWAS method, like FarmCPU, improved the prediction
accuracies significantly (Table 4). Moreover, the
FarmCPU–GFWGBLUP has better predictive performance
than the BayesB method used in Cleveland et al. (2012) for
all pig traits. From these results, the detection of loci with
large effects may be crucial in the construction of the
GFWG matrix and, therefore, powerful GWAS methods are
needed.

The impact of genetic variance estimation

The estimates of genetic variance obtained by GBLUP are
very close to the simulated values (Fig. S8) and were used as
references. Local-shrinkage prior EVWGBLUP methods
always had the problem of genetic variance overestimation
(Fig. S8). The overestimation may be caused by the duplicate
use of markers that are in linkage disequilibrium, which
appeared on the same peaks in the GWAS results and had
similar weights. The control of false positives is important in
this situation. The GWAS methods used in this study can
control the false-positive rate (Liu et al. 2016; Wang et al.
2016), and may explain the reasonable variance estimates from
EB-EVWGBLUP (Fig. S8) and FarmCPU–GFWGBLUP
(Fig. S9), and further explain the advantages of
FarmCPU–GFWGBLUP in scenario 6 and real pig traits. The
control of false positives in GWAS methods also seems to be
related to the accurate QTL-effect estimates in Table 3.
However, the control of false positives also compromises the
detection of true positives (Fig. 1). Despite the problem of

overestimation of genetic variance, BayesC–EVWGBLUP
largely improved the performance of GP for traits mainly
controlled by loci of a large effect (Fig. 3a). This finding is
consistent with previous studies (Mathew et al. 2018; Zhang
et al. 2010b).

For traits with low heritability, large numbers of geno-
typed and phenotyped individuals are needed to achieve
even moderate GEBV accuracy (Goddard 2009). Alter-
natively, the heritability of the trait can be increased by
using EBVs as phenotypes, in which case the effective
heritability is proportional to the EBV accuracy (Garrick
et al. 2009). The percentage of phenotypic variance
explained by a single marker will increase with the increase
in heritability. These increases will facilitate QTL detection
and effect estimation and, in turn, improve the effectiveness
of weighted GBLUP methods.

Conclusions

In this study, weighted G matrices were constructed in
different ways to utilize the marker information from dif-
ferent GWAS/GP methods effectively, which can be used to
adapt various genetic architectures. Local-shrinkage prior
EVWGBLUP is superior for traits mainly controlled by loci
of a large effect. Normal-prior AEWGBLUP performs well
for traits mainly controlled by loci of moderate effect. For
traits controlled by some loci of a large effect and a range of
loci with small effects, GFWGBLUP based on powerful
GWAS methods has advantages. Even for traits controlled
by a combination of loci with large and moderate effects,
which are common in real traits, our weighting methods can
optimize the prediction accuracies by trading off the infor-
mation of QTL detection and effect estimation. The strate-
gies of constructing the weighted G matrix proposed in this
study effectively improved the predictive ability of GBLUP
by utilizing the marker information from GWAS/GP
methods, and deserve further investigation in real data.
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