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Abstract
Genomic variation within and among populations is shaped by the interplay between natural selection and the effects of
genetic drift and gene flow. Adaptive divergence can be found in small-scale natural systems even when population sizes are
small, and the potential for gene flow is high, suggesting that local environments exert selection pressures strong enough to
counteract the opposing effects of drift and gene flow. Here, we investigated genomic differentiation in nine moor frog
(Rana arvalis) populations in a small-scale network of local wetlands using 16,707 ddRAD-seq SNPs, relating levels of
differentiation with local environments, as well as with properties of the surrounding landscape. We characterized population
structure and differentiation, and partitioned the effects of geographic distance, local larval environment, and landscape
features on total genomic variation. We also conducted gene–environment association studies using univariate and
multivariate approaches. We found small-scale population structure corresponding to 6–8 clusters. Local larval environment
was the most influential component explaining 2.3% of the total genetic variation followed by landscape features (1.8%) and
geographic distance (0.8%), indicative of isolation-by-environment, -by-landscape, and -by-distance, respectively. We
identified 1000 potential candidate SNPs putatively under divergent selection mediated by the local larval environment. The
candidate SNPs were involved in, among other biological functions, immune system function and development. Our results
suggest that small-scale environmental differences can exert selection pressures strong enough to counteract homogenizing
effects of gene flow and drift in this small-scale system, leading to observable population differentiation.

Introduction

As evolution takes place at the population level, under-
standing local adaptation is central to many aspects of
evolutionary, population, and conservation biology (Hoban

et al. 2016; Delph 2018). The interplay between spatially
varying selection, gene flow, and random genetic drift
affects the genetic diversity of organisms and determines
the ability of a population to adapt to local environmental
conditions. Therefore, quantifying the relative contributions
of natural selection, genetic drift, and gene flow to popu-
lation divergence is crucial for understanding the local
adaptation process (Savolainen et al. 2007). The relative
strength of these processes is tightly linked with the spatial
scale of environmental variation (Kawecki and Ebert 2004;
Richardson et al. 2014; Bachmann et al. 2020). According
to the more traditional view, gene flow is expected to
counteract adaptation, and strong selection is needed to
maintain beneficial alleles in a population (Haldane 1930).
A more current view, however, suggests that gene flow has
a multifaceted role in local adaptation (reviewed in Tigano
and Friesen 2016). Depending on the relative strengths of
gene flow and selection, gene flow can lead to gene
swamping, where less beneficial alleles enter a locally
adapted population (Balkau and Feldman 1973; Lenormand
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2002), and thus serves as an obstacle for local adaptation.
Here the effect size of the alleles involved is important as
large-effect alleles are more resistant to gene swamping than
small-effect alleles (Yeaman and Otto 2011). However,
unless complete swamping occurs, the increase in standing
genetic variation through gene flow may result in a larger
set of available alleles for selection to work on (Barrett,
Schluter 2008), and introgression of directly beneficial
alleles into a population may aid adaptation (Hedrick 2013).

Multiple factors acting at various spatial scales affect the
spatial distribution of genetic variation and rates of gene
flow across landscapes. Geographic separation and envir-
onmental heterogeneity are two key factors affecting
genetic structure among populations (Shafer, Wolf 2013;
Sexton et al. 2014), but landscape resistance, partial barriers
to dispersal, and differences in timing of reproduction can
play important roles as well (Hendry and Day 2005; Van
Strien et al. 2015). Geographic separation is directly related
to the interplay of genetic drift and movement. Dispersal is
often limited by geographic distance, resulting in higher
gene flow between more closely located populations where
low levels of migration will increase the influence of genetic
drift and reinforce population divergence. This pattern is
known as genetic isolation or isolation-by-distance (IBD),
and is commonly observed as a correlation between neutral
genetic differentiation and geographic distance (Wright
1943; Jenkins et al. 2010).

Adaptive local population divergence is typically medi-
ated by abiotic and/or biotic differences in local environ-
ments, a pattern known as isolation-by-environment (IBE,
Rundle and Nosil 2005). While the definition of IBE does
not make any particular claim about the mechanisms
shaping it, allele-frequency shifts correlated with environ-
mental differences are often interpreted as the result of local
variation in selection pressures (Kawecki and Ebert 2004;
Sexton et al. 2014). Environmental differences can also
influence the movements of animals, as well as the behavior
of seed and pollen disperses, affecting the genetic structure
of organisms (Dyer et al. 2012; Wang and Bradburd 2014).
In heterogeneous environments, landscape characteristics,
such as rivers, roads, habitat fragmentation, or mountain
ridges, may promote or resist individual dispersal, which
may lead to a pattern of isolation-by-resistance (IBR,
McRae 2006). Habitat features can also result in small-scale
shifts in phenology, where populations that occupy the
same geographic distribution reproduce at different times,
resulting in isolation-by-time (Hendry and Day 2005).
Genetic divergence and allochronic reproductive isolation
have been described in insects, vertebrates, and plants
(Maes et al. 2006; Santos et al. 2007; Ribolli et al. 2017;
Ismail and Kokko 2019).

Geography and landscape features are often correlated
with local environmental variation, making it difficult to

separate the relative effects of IBE from those of the others,
and thereby understand their roles in genetic differentiation
(Wang and Bradburd 2014). The autocorrelation between
climatic and environmental gradients with geography is
more evident at large spatial scales, which will confound the
detection of IBE, and in particular, complicate any attempt
to identify genomic regions involved in adaptive divergence
(Vasemägi 2006). At small spatial scales, with a weak
correlation between local environments and geographic
distances, it would be easier to disentangle the genetic
signatures of these different types of evolutionary processes.
However, until recently, analyses have often suffered from
low power to detect genetic differentiation among popula-
tions over small spatial scales. Indeed, in many cases where
molecular methods have suggested low divergence, phe-
notypic methods have indicated considerable adaptive
divergence (Leinonen et al. 2013; Savolainen et al. 2013).
The study of divergence at small spatial scales has become
increasingly feasible with modern genomic techniques,
genotyping tens of thousands of single-nucleotide poly-
morphisms (SNPs), providing the resolution to detect
population divergence over short spatial scales (Aguillon
et al. 2017), and detecting signatures of selection within the
genome (Hemmer-Hansen et al. 2013).

Several studies have aimed to unveil the causes of
population differentiation at different environmental and
spatial resolutions, such as along latitudinal and altitudinal
gradients (e.g., Luquet et al. 2019; Yu et al. 2016;
Campbell-Staton et al. 2017; Rödin-Mörch et al. 2019;
Montero-Mendieta et al. 2019), as well as across land-, sea-,
and riverscapes (e.g., Vincent et al. 2013; Whelan et al.
2019). Amphibians provide excellent systems to study
adaptive divergence, where species with a metapopulation
structure and a relatively low mobility are exposed to dif-
ferent environments even at small spatial scales. Ecoevo-
lutionary models used to explore the dynamics of adaptation
in spatially heterogeneous metapopulations show that
depending on gene flow and demographic parameters,
adaptation may be local at the network scale, and leads to a
mosaic specialization (Hanski et al. 2011; Papaïx et al.
2013). Several studies performed on amphibians have found
evidence of adaptive divergence at small spatial scales
(Skelly 2004; Lind and Johansson 2007; Hangartner et al.
2012; Richter-Boix et al. 2013; Zellmer 2018). For exam-
ple, earlier studies in moor frogs (Rana arvalis) in central
Sweden identified adaptive phenotypic divergence as well
as the transcription factor C/EBP-1 as a candidate gene
associated with larval development time, and highlighted
the roles of temperature, canopy cover, and breeding time in
local adaptation of larval development rate (Richter-Boix
et al. 2013, 2015). These studies have demonstrated that
amphibian metapopulations are good systems to disentangle
the genetic signatures of local natural selection, gene drift,
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and gene flow. However, studies with a higher density of
genetic markers, allowing for detailed analyses of gene flow
and adaptation, are lacking at small spatial scales.

In this study, we used double-digest restriction-asso-
ciated DNA sequencing (ddRAD-seq) to characterize small-
scale differentiation among nine R. arvalis populations in a
network of wetlands in central Sweden. We investigated the
importance of different modes of isolation (geographic
distance (IBD), environment (IBE), and landscape resis-
tance (IBR)) in shaping population divergence, and identi-
fied candidate loci involved in adaptive divergence. We
expected that the influence of geographic distance on
population divergence would be minor relative to the
influence of landscape features and local larval environment
and the latter to shape adaptive divergence in this small-
scale system. More specifically, we (1) investigated fine-
scale population structure in a landscape with high potential
for dispersal and gene flow, (2) partitioned the effects of
local larval environment, landscape features, and spatial
separation on total genetic variation across the wetland
network, conducting model selection to test which scenario
fits the data the best, and (3) identified loci under putative
divergent selection associated with fine-grained local larval
environmental variation.

Methods

Sample collection and characterization of local
environments

R. arvalis is a widespread frog occurring from western
Europe to western Siberia (Sillero et al. 2014). It is an
explosive breeder spawning in permanent and temporary
ponds, marshes, and lakes in early spring. In late
March–April 2016, we collected eggs from 16 to 20 egg
masses (each mass representing a separate family) in each
of nine populations in a metapopulation-like network of
interconnected wetlands located in Uppland in central
Sweden (Fig. 1, Table S1). This system consists of tem-
porary and permanent ponds and marshes in a landscape of
agricultural fields and mixed forests (Richter-Boix et al.
2013). The eggs were brought to the laboratory at Uppsala
University where they hatched. Tadpoles were raised in a
common garden experiment in a separate life-history study
(Rödin-Mörch 2019). In short, tadpoles were raised in two
different temperature treatments (16 and 19 °C), until they
reached metamorphosis (stage 42, Gosner 1960) and were
euthanized with an overdose of MS222.

The average distance between the study populations was
24.1 (min 1.1, max 42.6) km. Although the maximum
pairwise distance between ponds is higher than the max-
imum known dispersal distance of the species, this system is

characterized by numerous adjacent wetlands to the focal
ponds that can facilitate dispersal across the landscape
(Richter-Boix et al. 2013). Given these aspects of the cur-
rent study system in terms of geography and environment,
we characterize it as a small-scale system as opposed to
microgeographic scales or large environmental gradients.
We assessed multiple aspects of the local larval environ-
ment (Table S1) in order to analyze IBE. We first measured
pH for each wetland at the time of egg laying using a
multiparameter device (HANNA instruments). We then
measured water temperature for 2 months following egg
laying using data loggers (HOBO Water temp Pro v2 Data
Logger). The loggers were placed in the immediate vicinity
of the area where the eggs were laid and set to record every
15 min. Mean temperature for the entire recording period in
each wetland was used in the analyses. In early June, the
same person (ARB) measured the percentage of canopy
cover in each wetland by visually estimating the amount of
nonvisible sky into 10% categories (Korhonen et al. 2006).
We estimated the percentage of aquatic vegetation cover
along a 15-m transect (Palik et al. 2001) and a predation risk
index, the latter being measured by counting macro-
invertebrates and newts collected using five standardized
dip net sweeps at each of five locations in each wetland
(Michel 2011). Finally, we defined breeding time as the
number of days from January 1st to the date when the first
egg was found in the pond. In R. arvalis, the egg-laying
period within a wetland is very short (Richter-Boix et al.

Fig. 1 Map of the sampled population in Uppland (Sweden). The
map shows the population number and the location of those popula-
tions relative to urban areas, roads and large bodies of water.
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2013), and the date of the first egg is a good proxy of
breeding date. In the present study, eggs were laid between
29th of March and 18th of April with a maximum difference
of 20 days in breeding time.

To investigate the effect of landscape features on popu-
lation divergence (IBR), we measured four landscape vari-
ables around each of the nine sites by summing the areas of
each landscape variable within circular buffer zones at a
spatial scale of 2000 m (Table S1), as this is the most
common movement distance of amphibians (Smith and
Green 2005). The amount of arable land was extracted
using topographic vector maps converted to raster format.
Mature forest (defined as >200 m3 ha−1) was quantified
using k-Nearest-Neighbor-raster (Reese et al. 2003) ori-
ginally at 25 × 25-m resolution and aggregated to 100 ×
100 m by averaging due to low-volume accuracy at the
original scale (Gjertsen 2007). The total road length was
estimated by summing up the total length of roads within
the buffer zone. Additionally, a connectivity index in terms
of number and size of nearby wetlands was estimated, using
a kernel estimation weighted by distance (smoothing curve
of 5 km from each pond) and perimeter of all the sur-
rounding ponds, as vegetated shallow shores are important
breeding sites for moor frogs. All landscape variables were
processed in ArcMap 10.6 (ArcGIS, ESRI, Redlands,
CA, USA).

DNA extraction and ddRAD library prep

To minimize confounding effects of potentially including
siblings in the analysis, we used one individual that was
picked at random from each egg mass. We extracted DNA
from a total of 16–20 individuals from each population (163
individuals in total), from the hind leg or head of meta-
morphosed individuals using a high salt extraction pre-
cipitation protocol with an extra ethanol precipitation step
(modified from Paxton et al. 1996). DNA concentration and
purity were checked using NanoDrop® 2000 spectro-
photometer and Qubit® 3.0 fluorometer Quantitation Kit
(Invitrogen™). We prepared a ddRAD-seq library follow-
ing the protocol by Johansson et al. 2017 (modified from
Peterson et al. 2012; Mastretta‐Yanes et al. 2015). DNA
was digested for 18 h using the restriction enzyme combi-
nation SbfI-HF® and MseI, and digestion was confirmed by
gel electrophoresis. We ligated 16 uniquely barcoded (6 bp)
P1 adapters and one P2 adapter to the digested DNA. The
ligation product was cleaned using AMPure XP beads. For
PCR amplification, we used custom Illumina primers con-
taining 12 unique indices, and DNA was amplified using
Q5 DNA polymerase (New England Biolabs, Massachu-
setts, USA). In order to correct for any biased amplification,
each individual sample was PCR-amplified in four separate
reactions. Samples were then pooled in equimolar

concentrations, and amplification success was confirmed
using gel electrophoresis. For size selection, we performed
agarose gel extraction by cutting out the desired fragments
between ~350 and 600 bp, and extracted the product using
the QIAquick Minielute Gel Extraction Kit. The final
library was then pooled, checked for purity, and the con-
centration (50.6 ng/μl) was measured using NanoDrop®

2000 spectrophotometer and the Qubit®3.0 fluorometer
Quantitation Kit (Invitrogen™). The library was sequenced
on four lanes of Illumina 2500 (2 × 125 bp) in high-
throughput mode by SciLifeLab, Uppsala, Sweden.

ddRAD bioinformatics

Using process_radtags in STACKS v.2.1 (Catchen et al.
2013), we demultiplexed, cleaned, and filtered the raw reads
based on quality and base calling. To reconstruct loci and
call SNPs, we ran the individual programs included in
denovo_map (cstacks, sstacks, tsv2bam, gstacks, and
populations) separately for pair-end reads using starting
parameter settings similar to the optimal parameter combi-
nations in Rödin-Mörch et al. (2019). We then changed the
values of the parameters -M (the number of mismatches
allowed between loci when an individual is being pro-
cessed) and -n (the number of mismatches allowed when
constructing the catalog) by increasing or decreasing the
parameter value one step. We tried four different parameter
combinations (Table S2) and evaluated which of them
yielded the maximum number of variant sites, resulting in
selection of the combination -M 4 and -n 3. A final filtering
step was performed in the program populations, where we
filtered SNPs based on a minor allele frequency of 0.02,
present in all nine populations and in at least 70% of
the individuals. We only retained the first SNP of each
RAD locus.

Population structure

We filtered out SNPs suggested to be under putative
divergent selection (described below) to obtain a data set
evolving under neutral expectations. All the following
analyses were conducted in R v.3.5.2 (R Core Team 2019).
To analyze and visualize population structure, we first used
discriminant analysis of principal components (DAPC) in
the adegenet package v.2.1.1 (Jombart 2008; Jombart and
Ahmed 2011) and determined the number of PCs to retain
by performing stratified cross-validation. We ran cross-
validation using the xvalDapc function for 300 repetitions,
keeping default settings. Second, we used the spatially
informed package tess3r v.1.1.0 (Caye et al. 2018), which
estimates ancestry coefficients using geographically con-
strained nonnegative matrix factorization to characterize
population structure, and evaluates the optimal number of
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clusters fitting the data based on the cross-validation score.
Finally, we estimated global and pairwise FST (Weir and
Cockerham 1984) with 95% confidence intervals for the
total data set in assigner v.0.4.1 (Gosselin et al. 2016).

Identifying differentiation outliers

In order to identify differentiation outliers, we used pcadapt
v.4.0.3 (Luu et al. 2017), which utilizes principal compo-
nent analysis to detect SNPs most associated with the axes
related to population structure. The method estimates
Mahalanobis distances between SNP z scores and the first K
principal components (PCs) capturing population structure.
We ran the initial analysis for ten PCs and evaluated the
optimal K PCs to retain for the final analysis by graphically
inspecting the per-PC decrease in variance in a scree plot,
and the individual clustering using a score plot (Fig. S1).
We retained three PCs in order to calculate the test statistic,
transformed per-SNP p values into q values, in order to
correct for multiple comparisons using the R package
qvalue v.2.4.2 (Storey et al. 2019), and filtered the final list
of outliers using a false-discovery rate (FDR) of 0.05 in
order to correct for multiple comparions.

Identifying environmentally based differentiation in
the landscape

We estimated the influence of geographical distance, local
environmental, and landscape variables on total genetic
variation using redundancy analysis (RDA) and partial
redundancy analysis (pRDA) in the R package vegan
v.2.5.3 (Oksanen et al. 2019). As RDA does not allow for
missing data, we imputed the 2% missing genotypes found
in the data set using Random Forest on-the-fly imputation
(Tang and Ishwaran 2017) from the randomForestSRC
package v.2.7 (Ishwaran and Kogalur 2018) implemented in
the grur package v. 0.0.11 (Gosselin 2018). RDA uses a
multivariate linear regression with the genotype matrix as a
response variable and environmental variables as predictors;
a PCA is then performed on the new matrix of fitted values
from the regression in order to construct constrained axes
summarizing the variation explained by the predictor vari-
ables (Legendre and Legendre 1998).

As compared to RDA, pRDA differs in that it removes
the influence of some predictor variable on the response
matrix when trying to estimate the influence of the
remaining predictors; here we control for spatial influence
(IBD) on the response matrix by incorporating geographical
coordinates. We present the raw r2 values, which for pRDA
is referred to as semipartial r2 (Legendre et al. 2011), and
adjusted r2 for the models. As a response matrix, we used a
transposed matrix of allele abundance in pcadapt format
(encoded as 0/1/2) and the predictors consisted of

geographical coordinates, local larval environmental, and
landscape variables that were scaled and centered for the
analyses. We performed RDA on geographic coordinates
and pRDA on local larval environmental and landscape
variables after testing the correlation between variables to
remove any potential multicollinearity, by removing one of
the correlated variables if |r| > 0.7 (Table S3 a–c). We tested
the significance of each model with the anova.cca function
using 999 permutations.

To complement the RDA, we used Maximum-likelihood
population-effect (MLPE) mixed models (Clarke et al.
2002). MLPE models analyze the effect of one or several
predictor distance matrices on the response distance matrix.
The method accounts for the nonindependence between the
pairwise measurements in the distance matrices by includ-
ing population origin as a random effect. We fitted six
different MLPE models in lme4 (Bates et al. 2015) using the
Euclidean distance between individuals in the same geno-
type matrix as used for the RDA as a response variable. We
included Euclidean geographic, local larval environmental,
and landscape distance matrices as fixed effects, either
separately testing for IBD, IBE, and IBR, but also in
combination two by two (IBD and IBE, IBD and IBR, and
IBE and IBR), testing their individual effects combined
with their interaction. We included population as a random
effect where individuals were implicitly nested within each
population. We ran the models with the setting REML=
FALSE, as this yields an unbiased estimate of Akaike’s
information criterion (AIC) for model comparison (Clarke
et al. 2002). We compared each model testing IBD, IBE,
and IBR, as well as the best-ranked models based on AIC
with a null model just containing the intercept term and the
population-specific random effects using the Anova func-
tion in the car package (Fox and Weisberg 2019). We used
the function r2 from the performance package (Lüdecke
et al. 2020) to estimate the amount of variance explained by
the fixed effects only (marginal R2) and the variance
explained by the fixed and random effects together (con-
ditional R2).

Gene–environment association (GEA)

We used two different gene–environment association
(GEA) approaches to identify candidates for adaptive
divergence using the imputed SNP data. First, we used the
univariate method latent factor mixed models (LFMM)
implemented in the LEA package v.1.99.2 (Frichot et al.
2013; Frichot, François 2015). LFMM identifies associa-
tions between individual SNPs and environmental variables
that are included as fixed effects, while at the same time
modeling any underlying population structure included as a
latent or hidden factor to correct for its influence. We ran
LFMM assuming six latent factors based on graphically
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evaluating the cross-entropy scores, as well as the number
of clusters identified by tess3r and DAPC, and the number
of environmental variables included (see below). The Gibbs
sampling algorithm was initialized with a burn-in of 50,000
iterations followed by 200,000 main iterations for each
scaled and centered environmental variable for 30 inde-
pendent runs. We then combined the resulting z scores
across runs from which the median was used. The p values
were then calibrated using the genomic inflation factor to
account for population structure, and corrected for multiple
comparisons using an FDR of 0.05 calculated as above.
Second, we followed the approach described in Capblancq
et al. (2018) to identify SNPs associated with the local
larval environment, and that of Forester et al. (2018) for pre-
and postprocessing of data. The association method com-
bines RDA and the outlier detection approach implemented
in pcadapt described above, and has the ability to detect
multilocus selection imposed by the combined effect of
multiple environmental gradients. We used the pRDA
model described above, where we removed the spatial
influence on the genetic response matrix. We then calcu-
lated the Mahalanobis distance for the loci loading on the
six retained constrained axes, and adjusted the p values
using an FDR of 0.05 calculated as above.

SNP annotation

We conducted BLAST searches with the RAD tags con-
taining the SNPs putatively under divergent selection against
the nonredundant protein database (blastx) and nucleotide
database (dc-megablast). A match was considered and
retained if it passed an e-value threshold of <10−5 (BLASTX)
or <10−20 (dc-megablast) and had at least ~70% query
coverage and similarity. We retrieved gene ontology terms
and performed enrichment analysis in BLAST2GO using
Fisher’s exact tests and an FDR of 0.05 using BLAST2GO
(Conesa et al. 2005).

Results

Sequencing, ddRAD bioinformatics, and population
summary statistics

We obtained 746.2 M reads from four lanes of Illumina
sequencing. After quality control, running every individual
component of the de novo pipeline separately and filtering,
we obtained a total of 5,915,415 sites (average: 30,888
RAD tags, mean length: 191.51 bp, average depth of cov-
erage: 34.4×). This resulted in a final data set of 16,707 SNP
loci across populations with the number of polymorphic
sites within populations ranging from 14,580 to 15,460.
Expected heterozygosity (HE), nucleotide diversity (π), and

inbreeding coefficients (FIS) ranged between 0.277 and
0.289, 0.286 and 0.297, and 0.016 and 0.050, respectively
(Table S4).

Population structure

Estimating FST revealed overall low levels of genetic dif-
ferentiation (global FST= 0.0277, 95% CI 0.0274–0.0282).
Pairwise FST ranged between 0.0111 and 0.0417 (mean=
0.02735, Table S5), with a cluster of three populations (P2,
P3, and P10) showing elevated pairwise FST values com-
pared to the rest of the populations (Fig. 2a). Using only the
neutral data, after running cross-validation retaining 40 PCs
with the lowest MSE and eight discriminant functions, the
DAPC revealed the presence of five to six somewhat discrete
clusters (Fig. 2b). The first axis separated P1–P4 and P10
from P14, P18, P23, and P26. The second axis further
separated the populations, most notably P2 and P3 from P1,
P4, and P10. Using tess3r and neutral SNPs, the cross-
validation scores calculated for each K-ancestral populations
showed a relatively steep decline with increasing K and a
hint of a plateau at around K6–8, signifying the optimal K
(Fig. S2). Each wetland represents to a certain extent a
discrete cluster with the exception of populations very close
to each other (P18–P26: 1.13 km; P2–P3: 1.59 km, but
where P2 and P3 start to separate at K7 and K8, Fig. 2c).

Identifying environmentally based differentiation in
the landscape

The RDA, including only geographical coordinates, showed
a significant effect of spatial separation on total genetic
variation, explaining 0.8% of the variation (F2,158= 1.664,
p < 0.001), indicating IBD. Using MLPE, we found that
geographic distance explained less variation than in the
RDA, although still a significant proportion (0.2%, χ2=
26.58, Df= 1, p < 0.001). In order to account for the pos-
sible confounding effects of spatial autocorrelation when
evaluating the effect of the local larval environment, we ran
a pRDA controlling for IBD. We found a significant effect
of the local larval environment on total genetic variation
(2.3% of the variation explained, Table 1), indicating IBE
(F6,152= 1.624, p < 0.001). This would indicate that the
impact of spatial correlation was relatively low relative to
the influence of the local larval environment. This was
supported by the MLPE models where the local larval
environmental distance matrix explained 1.2% of the var-
iation (χ2= 141.98, Df= 1, p < 0.001); this was however
less variation explained than by the pRDA. For the pRDA,
the two major axes of variation showed clear environmen-
tally based population clustering (variance explained:
RDA1= 25%, RDA2= 18%, Fig. 3a). The first axis dif-
ferentiates populations inhabiting ponds with more aquatic
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vegetation and later breeding time from ponds with higher
predation risk and canopy cover. The second axis separates
populations from warmer ponds with later breeding from
those with higher pH. The pRDA also found a significant
effect of landscape features (roads, amount of forest, arable
land, and pond connectivity) on total genetic variation
(F4,156= 1.68, p < 0.001), but this explained slightly less of
the total genetic variation (1.8%, Table 1) than the local
larval environment. This indicates an additional level of
IBE, serving as a coarse estimate of IBR. For the first two
axes (33 and 25% of the variance explained), we observed
clear landscape-influenced population structure. The first
axis differentiates populations from ponds surrounded by
the highest amount of roads and arable land from popula-
tions surrounded by more forest (Fig. 3b). However unlike
the RDA, the results from the MLPE models reveal a larger
effect of landscape distance compared to local larval
environment distance (2% of the variance explained,

χ2= 209.33, Df= 1, p < 0.001). Furthermore, we conducted
model selection for the MLPE models and found all three
models representing IBD, IBE, and IBR, as well as the more
complex models including two fixed effects showing a
better fit than the null model (Table 2). Based on the AIC
score, we found that the IBR model fits the data slightly
better than the strict IBE model. However, two of the three
models containing two fixed effects fit the data better than
any of the simpler IBD, IBE, and IBR models. The best-
fitting model based on AIC included the geographic and

Fig. 2 Panel showing estimates of population differentiation and structure. Panel showing a pairwise FST values represented as a triangular
heat map. b DAPC ordination showing population structure along the first two axes. c Tess3r ancestry coefficient barplots for the K’s with the
lowest cross-validation score.

Table 1 Amount of total genetic variance explained in RDA and
pRDA models by geographical distance, local larval environment, and
landscape features.

RDA Spatial Local environment Landscape

r2 0.026 0.059 0.042

Adjusted r2 0.008 0.023 0.018
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local larval environmental distance matrices as well as their
interaction (3.6% of the variance explained, IBD: χ2=
0.363, Df= 1, p= 0.55, IBE: χ2= 118.97, Df= 1, p <
0.001, and IBE × IBD: χ2= 304.53, Df= 1, p < 0.001). The
second best model included landscape and local larval
environmental distance matrices and their interaction (3.5%
of the variance explained, IBE: χ2= 2.07, Df= 1, p= 0.15,
IBR: χ2= 67.47, Df= 1, p < 0.001, and IBE × IBR: χ2=
205.84, Df= 1, p < 0.001).

Identifying differentiation outliers and GEA

We identified 29 differentiation outliers using pcadapt
(Fig. S3), the low number of outliers reflecting the overall low
level of population differentiation. The univariate GEA with
LFMM identified 110 SNPs associated with aquatic vegeta-
tion cover (Fig. S4a), 109 with canopy cover (Fig. S4b), 76
with pH (Fig. S4c), 133 with predation risk index (Fig. S4d),
49 with mean temperature (Fig. S4e), and 153 with breeding

time (Fig. S4f). Some of the SNPs identified overlapped
between environmental variables, LFMM in total identifying
547 candidates. Furthermore, using the pRDA-based GEA
approach, we identified in total 576 candidate SNPs asso-
ciated with the environmental variables. From these,
60 showed the highest correlation with aquatic vegetation
cover (|r|= 0.066–0.307), 150 with canopy cover (|r|=
0.056–0.379), 94 with pH at breeding (|r|= 0.080–0.448), 68
with predation risk index (|r|= 0.092–0.376), 127 with mean
temperature (|r|= 0.093–0.363), and 77 with breeding time
(|r|= 0.075–0.356). The two methods only converged on 123
SNPs, and in total, we identified 1000 candidates putatively
under environmentally mediated divergent selection.

SNP annotation

None of the candidates identified by pcadapt could be
matched to any known genes or proteins by querying the
blastx and megablast databases. For the SNPs associated
with local larval environment, the RAD tags containing
those SNPs matched 32 genes or genomic regions (Table
S6) and 21 proteins, eight of these matching unknown or
hypothetical proteins (Table S7). Hits of particular interest
for the local larval environment-associated SNPs were the
immune genes MHC class 1a, brevinin-2-CE, palustrin-2-
CE, TRIM25, and NLRP3, as well as genes potentially
related to development and stress, such as ITGB1, Mab21,
DAGLB, and TRH, and a protein similar to bifunctional
apoptosis regulator. Due to the relatively few hits, no sig-
nificant GO enrichment could be retrieved.

Discussion

In this study, we attempted to disentangle the relative
influence of different layers of the environment on putative

Fig. 3 RDA plots showing the influence of the local larval environment and landscape features on population structure. The length of the
vectors denotes their relative importance. a) local larval environment b) landscape features.

Table 2 Proportion of variance explained estimates from MLPE
models testing the effect of geographic, local environmental, and
landscape distances as well as their interactions on genetic distance,
with the best-fitting model in bold.

Conditional R2 Marginal R2 Df AIC

Null 0.096 0 3 63193.7

IBD 0.088 0.002 4 63169.1

IBE 0.074 0.012 4 63054.9

IBR 0.075 0.020 4 62989.0

IBD and IBE 0.080 0.036 6 62757.6

IBD and IBR 0.068 0.025 6 62908.6

IBE and IBR 0.077 0.035 6 62786.7

Conditional R2 here refers to the proportion of variance explained by
the fixed and random effects together, and marginal R2 refers to the
variance explained by the fixed effects only.
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adaptive genomic divergence in a system where we have
earlier shown strong phenotypic divergence and ample
opportunity for dispersal and gene flow across the landscape
(Richter-Boix et al. 2013, 2015). Over the past decade,
accumulating studies have indicated that geographic dis-
tance are geographical barriers that are not the only factors
affecting gene flow and thereby population differentiation,
and environmental differences may be the key factor
underlying effective migration (Shafer, Wolf 2013; Sexton
et al. 2014). Using a ddRAD-seq approach, we identified
genomic variation that we posit is associated with adaptive
divergence in the R. arvalis populations, and detected fine-
scale population structure and differentiation. Our results
suggest that small-scale adaptive divergence in R. arvalis is
mainly driven by the local larval environment, but where
the combined effect between local environmental and spa-
tial and landscape features is also very influential. We found
that, much like what would be expected (Meirmans 2015),
the effect size of local larval environment on total genetic
variation was relatively small, which was also true for
landscape features and geographic separation. Nevertheless,
larval environment explained more total genetic variation
than landscape features or geographic distance, the latter
explaining the smallest amount of variation. These results
suggest that selection is efficient enough to counteract the
potential negative effects of gene flow and genetic drift on
adaptive divergence in this small-scale system. We identi-
fied a number of genes involved in immunity, development,
and stress associated with local larval environmental vari-
ables, and might thus potentially be involved in adaptive
divergence. Our results agree with previous studies that
have shown the importance of thermal environment, canopy
cover, time constraints, predation, desiccation risk, and pH
as important selective agents for larval amphibians (e.g.,
Skelly 2004; Lind and Johansson 2007; Hangartner et al.
2012; Richter-Boix et al. 2013, 2015; Nunes et al. 2014;
Van Buskirk J 2014).

Population structure

In spite of the low levels of population differentiation
observed in the landscape, we were able to identify
somewhat discrete clusters in the landscape. The tess3r
analysis revealed that there are between six and eight
population clusters in the landscape. At these levels, most
populations represented clusters with various degrees of
admixture, lending further support for the occurrence of
gene flow. When populations are grouped into an increas-
ing number of clusters, more apparent substructure reveals
itself. The DAPC analysis supported five to six somewhat
discrete clusters, corresponding to the positions of popu-
lations in the landscape. Here, the first axis represented the
component explaining a large part of the spatial and

landscape variation based on the position of the popula-
tions in the landscape, whereas separation along the second
axis mainly reflected local variation and smaller-scale
dispersal barriers. Taken together, we found evidence of
neutral population structure in spite of the assumed high
gene flow. However, the absence of very clear population
boundaries, and increased admixture among some of the
population, could possibly indicate asymmetrical patterns
of gene flow in the landscape.

Identifying environmentally based differentiation in
the landscape

Over the past few years, numerous studies have presented
evidence for small-scale divergence between habitats
without physical barriers in organisms from plants and
insects to fish and amphibians (Skelly 2004; Leimu and
Fischer 2008; Fraser et al. 2011; Watanabe et al. 2014). In
the present study, we found that a variety of mechanisms
influenced population structure in our study system, iden-
tifying three distinct ways. First, as in a previous study
using five microsatelite loci involving some of the same
populations as the present study (Richter-Boix et al. 2013),
we found evidence of differentiation caused by the local
larval environment (IBE), detectable as larger allele-
frequency differences among populations inhabiting more
contrasting environments. The overall FST in the network of
wetlands was low, as expected, with moderate-to-high
levels of gene flow. However, using FST as a direct proxy
for gene flow without additional information is problematic,
giving only indications that gene flow might be occurring
(Whitlock and McCauley 1999). In the present system, the
level of connectivity with ponds surrounding our focal
ponds suggests that low FST is the result of high gene flow
(Richter-Boix et al. 2013). Local selection would have to be
strong to remove migrants to generate divergence between
the ponds. Environmentally induced or genotype-dependent
dispersal preferences could plausibly generate the observed
genetic divergence between different breeding environ-
ments. Biased dispersal is an effective cause of reproductive
isolation that can reduce migration rates and gene flow over
small spatial scales (Bolnick and Otto 2013). Divergent
habitat choice has been documented experimentally in
sticklebacks (Bolnick et al. 2009), and in amphibians, site
fidelity (Semlitsch 2008) as well as breeding pond selection
in response to the presence of predators and competitors
(Buxton et al. 2017) are well known. The environmental
variable contributing most to the IBE pattern on the first two
RDA axes was temperature, closely followed by breeding
time, predation risk, pH, canopy cover, and aquatic vege-
tation, differentiating populations into four different clusters
along the axis. As opposed to a linear environmental gra-
dient such as temperature, these results highlight the
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multivariate effect of the local larval environment shaping
IBE in this system. The results from the MLPE model
selection further corroborate the importance of the local
larval environment in shaping divergence in the landscape.

Second, we found that connectivity was affected by
landscape complexity, showing a pattern of IBR. Earlier
studies demonstrated that natural and anthropogenic land-
scape features contribute to the population structure in
urodeles and anurans (Vos et al. 2001; Lenhardt et al. 2017;
Homola et al. 2019). Different urban landscape elements are
capable of influencing connectivity in metapopulation-
structured species (Graham et al. 2017), and earlier stu-
dies on R. arvalis showed that geographical distance and
density of roads were best predictors of population structure
(Vos et al. 2001; Arens et al. 2007). In our system, the
strongest landscape predictors influencing total genetic
variation were the total length of roads within 2000 m of the
focal pond and the amount of forest surrounding the ponds.
Our results are in line with observations that large-scale
landscape features can cause population differentiation,
depending on the level of human disturbance and its
influence on connectivity in the landscape (Storfer et al.
2007; Safner et al. 2011; Youngquist et al. 2017). MLPE
results suggested that landscape distance (IBR) fits the data
better than local larval environmental distance (IBE),
explaining slightly more of genetic variation than what we
found in pRDA models. However, R2 in MLPE models has
a tendency to increase with model complexity (Row et al.
2017), and R2 values from the more complex models should
therefore perhaps be interpreted with some caution. More
specifically, an explanation for the discrepancies between
the different types of models could be the relative influence
of the random effects on local larval environmental and
landscape distance. Indeed, a comparison of the conditional
R2 accounting for both the fixed and random effects in the
IBE and IBR models shows roughly the same variance
explained, suggesting that Euclidean local larval environ-
mental distance is more specific to the individual popula-
tions than landscape distance. This interpretation is further
strengthened by the RDA results: we found a higher pro-
portion of genetic variation explained by the local larval
environment than the landscape features when we corrected
for the influence of geographical separation, as opposed to
population origin in the MLPE models. Furthermore, the
best-fitting MLPE model includes both larval environmental
and geographic distances as well as their interaction, sug-
gesting that environmental variation and allele frequencies
are not distributed homogeneously in the landscape, but are,
to a certain extent, spatially structured, which contributes to
the divergence.

The third effect we detected was the small influence of
geographic distance shaping genetic differentiation. Pre-
vious works in the same system found no signature of IBD

or IBR, possibly as a result of lower genetic resolution (five
microsatellites). Using a larger number of markers, we
found that geographical distance explained a small but
significant amount of genetic variation, demonstrating that
population structure can be more clearly resolved with RAD
sequencing than with microsatellites (Rašić et al. 2014;
Vendrami et al. 2017), the increased number of markers
giving us more power to detect subtle effects of spatial
separation. The spatial genetic autocorrelation signature
expected under IBD has been observed in other amphibian
species at similar spatial scales (Johansson et al. 2005;
Zamudio and Wieczorek 2007; Zellmer 2018).

Identifying differentiation outliers and GEA

Given the relatively low levels of population differentiation
in the landscape, the low number of differentiation outliers
found by pcadapt in comparison to the number of candidate
SNPs found associated with the local larval environment
was expected. Using the two methods based on associations
between SNPs and local larval environmental variation
(LFMM and pRDA), we identified a much larger number of
candidate SNPs under putative divergent selection. These
methods identified a similar number of outlier SNPs, but
they only converged on 123 SNPs. This however might be
explained by the differences in analytical strength between
multivariate and univariate analyses. The highest number of
candidates identified by LFMM was for breeding time fol-
lowed by predation risk index, aquatic vegetation, canopy
cover, pH, and mean temperature. The highest numbers of
the candidate SNPs obtained by pRDA-based analyses were
correlated with canopy cover, followed by mean tempera-
ture, pH, breeding time, predation risk index, and aquatic
vegetation. The ranking of the relative importance of the
environmental variables could also highlight the dis-
crepancy between univariate and multivariate methods used
in this study, where associations found at the additional
dimensions in the pRDA are potentially lacking in LFMM.
Their importance can also be further explained by the
relationship between the variables that might more easily be
detected with a multivariate approach. Ponds with high
forest canopy have more emergent vegetation, lower tem-
perature, and relatively few predators, while open ponds in
human landscapes have little canopy cover, few emergent
vegetation, higher temperature, and more predators (Rich-
ter-Boix et al. 2013). The genome size of R. arvalis is
estimated to be ~6 Gb (Vinogradov 1998) and attempts to
identify loci under selection in reduced-representation
sequencing studies, where the study organism has a large
genome, most often suffering from limited power to detect
any larger proportion of causal loci. Consequently, our
results should be treated with some caution as they likely
only represent a relatively smaller part of the whole picture.
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However, any identified candidate can be compared in
studies covering the whole genome as the latter becomes
more affordable.

We annotated 4.3% of the SNPs associated with the local
larval environment, and none of the differentiation outliers,
to known genes and proteins using BLAST. These low
numbers reflect the difficulty to obtain functional and bio-
logical annotation for nonmodel organisms (Yandell and
Ence 2012), and amphibians in particular, given the general
scarcity of genomic resources in this group (but see, e.g.,
Hellsten et al. 2010; Sun et al. 2015; Session et al. 2016;
Hammond et al. 2017). Our BLAST hits matched known
genes and proteins that had a relatively wide variety of
biological functions (Tables S6, S7), suggesting fine-
grained and multifaceted selection acting among, as well
as within populations. However, there is a potential risk of
overinterpreting candidate gene hits from various genome
scan methods, in particular in reduced-representation
sequencing studies like ours where only a small part of
the genome has been covered, and the number of BLAST
hits are relatively few. With this in mind, we discuss a few
hits below in more detail that align with genes of impor-
tance in amphibian development and immune response, as
well as hits we have identified to be under putative diver-
gent selection in previous studies.

We obtained two matches with a possible function
related to larval development. The first was bifunctional
apoptosis regulator most correlated with mean temperature
(r=−0.156), which we have previously identified to be
under putative divergent selection along a 1700-km latitu-
dinal gradient (Rödin-Mörch et al. 2019). While the exact
function of this gene in amphibians is uncertain, the product
of this gene suppresses cell death in mammals (Zhang et al.
2000). Common garden studies have revealed large among-
population differences in larval life histories (development
rate and mass at metamorphosis) in the present system
(Richter-Boix et al. 2013, 2015) as well as along the lati-
tudinal gradient (Luquet et al. 2019; Rödin-Mörch 2019). It
seems plausible that the regulation of cell death is related to
the development rate as amphibian metamorphosis involves
large-scale body restructuring, and thyroid hormone-
induced cell death plays a major role in this process
(Nakajima et al. 2005). We also matched two different RAD
tags containing SNPs with thyrotropin-releasing hormone
receptor 1 (TRHR1), mostly correlated with breeding time
and pH (r= 0.095 and 0.141). Thyrotropin-releasing hor-
mone stimulates the secretion of growth hormone and
prolactine (Denver 1997; Galas et al. 2009), which is known
to inhibit amphibian metamorphosis by promoting growth
(Brown and Frye 1969; Galas et al. 2009).

The second candidate that we also found along a latitu-
dinal gradient was brevinin-2-CE that is part of the innate
immune system. This gene codes for an antimicrobial

peptide (AMP) secreted in the skin of amphibians, pro-
tecting against bacterial, viral, and fungal pathogens
(Rollins-Smith 2009). The associated SNP was also most
correlated with mean temperature (r=−0.275). We also
obtained a match to another AMP gene palustrin-2-CE,
which was most correlated to pH (r= 0.067). AMPs protect
anurans against pathogens, such as the chytrid fungus
Batrachochytridium dendrobatides (Bd) and ranavirus
(Rollins-Smith and Conlon 2005; Rollins-Smith 2009).
Previous studies have found that Bd prevalence in R. arvalis
is moderately high in this area (Meurling et al. 2020), but
studies on ranavirus are lacking in Sweden. Furthermore,
we identified matches with additional genes related to
immune response, such as the major histocompatibility
complex class I (MHC class I) correlated with the amount of
aquatic vegetation (r=−0.106), MHC class II correlated
with predation risk index (r= 0.249), and TRIM25 and
NLRP3 (inflammasome) correlated with mean temperature
(r=−0.144 and r= 0.252, respectively). Previous studies
have revealed complex interactions between local larval
environmental characteristics and disease: depending on
parasite type, aspects of the local larval environment, such
as abundance of predators and canopy cover, can have an
effect on disease risk (Holt and Roy 2007; Becker et al.
2012).

Conclusions

In recent years, landscape genomics studies have started to
identify the relative effects of the environment, the land-
scape and distance, in limiting gene flow and shaping
genetic differentiation. Here we document modest but sig-
nificant patterns of IBE, IBR, and IBD between amphibian
populations in a small-scale network of breeding ponds. We
find that IBE, either alone or in combination with that of the
others, is larger than IBR and IBD, supporting the long-
standing view of pond-level local adaptation of amphibian
populations. We identify outlier SNPs under putative
divergent selection associated with specific aspects of the
local environment, those SNPs being involved in develop-
mental processes and the immune system. Our analyses
show that regardless of ongoing gene flow populations,
local adaptation can lead to genomic divergence, and
showcase the complexity of different factors acting at dif-
ferent scales in determining these patterns of divergence.
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