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Abstract
In this study, we developed a nearly unbiased estimator of contemporary effective mother size in a population, which is
based on a known maternal half-sibling relationship found within the same cohort. Our method allows for variance of the
average number of offspring per mother (i.e., parental variation, such as age-specific fecundity) and variance of the number
of offspring among mothers with identical reproductive potential (i.e., nonparental variation, such as family-correlated
survivorship). We also developed estimators of the variance and coefficient of variation of contemporary effective mother
size and qualitatively evaluated the performance of the estimators by running an individual-based model. Our results provide
guidance for (i) a sample size to ensure the required accuracy and precision when the order of effective mother size is
available and (ii) a degree of uncertainty regarding the estimated effective mother size when information about the size is
unavailable. To the best of our knowledge, this is the first report to demonstrate the derivation of a nearly unbiased estimator
of effective population size; however, its current application is limited to effective mother size and situations, in which the
sample size is not particularly small and maternal half-sibling relationships can be detected without error. The results of this
study demonstrate the usefulness of a sibship assignment method for estimating effective population size; in addition, they
have the potential to greatly widen the scope of genetic monitoring, especially in the situation of small sample size.

Introduction

Contemporary effective population size, which is sensi-
tive to ecological time-scale events, has become recog-
nized as an informative parameter in a focus population,
especially in the context of conservation biology and
wildlife management (Luikart et al. 2010). There are
several methods for estimating contemporary effective
population size from genetic markers, such as the tem-
poral method (Nei and Tajima 1981), heterozygote excess
method (Pudovkin et al. 1996), molecular coancestry

method (Nomura 2008), linkage-disequilibrium method
(Waples 2006), and kinship assignment method (Wang
2009). At present, it is known that values estimated by
these methods display large uncertainties and/or biases
under conditions, such as small sample size, small marker
numbers, and large effective population size; thus, a
widely applicable method is required (Wang et al. 2016;
Marandel et al. 2018).

Owing to rapid developments in genotyping technol-
ogy, a large number of genetic markers, including thou-
sands of genome-wide single nucleotide polymorphisms,
have become available for analyzing population structure
and demography. As a result, a more accurate estimation
of contemporary effective population size can be obtained
by, for example, more accurately assigned kinships
(Wang et al. 2016). In addition, the recently developed
theory of estimation of absolute adult number, which is
based on sampled kinship pairs and known as the close-
kin mark-recapture (CKMR) method (Bravington et al.
2016a, b; Skaug 2017; Hillary et al. 2018), makes it
possible to use a full-sibling (FS) or half-sibling (HS)
pair; this involves many more DNA markers for detection
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than a parent–offspring pair. It should be noted that the
CKMR method is designed to minimize the effect of
reproductive variance originating from unmodeled cov-
ariates, such as avoiding the use of sibling pairs sampled
from the same cohorts; meanwhile, reproductive variance
strongly affects the estimation of contemporary effective
population size.

Reproductive variance has two components. The first
component is variation in age, size, and other factors,
which affects average fecundity and originates from dif-
ferences in life-history parameters (Felsenstein 1971). For
example, in the case of teleost species that have a long life
span, the number of eggs produced by a mother (i.e.,
annual fecundity) is determined by her body size; thus,
there is considerable variation in reproduction among
mothers. The second component is variation in reproduc-
tion among parents of the same age or size. An extreme
case reflecting this variation is referred to as the “Sweep-
stakes Reproductive Success (Hedgecock and Pudovkin
2011),” in which only several families reproduce success-
fully. This phenomenon has received much attention not
only for elucidating the ecology of species that display
highly variable early life mortality (i.e., type-III life his-
tory) but also for providing an opportunity to test the
applicability of the multiple-merger coalescent model, a
recently developed theory in population genetics (Tellier
and Lemaire 2014; Eldon et al. 2016). Addressing the two
aforementioned types of variance together can provide
insights for interpreting estimated values of effective
population size.

In this paper, we propose a new method for estimating
the contemporary effective mother size in a population. This
approach is based on the number of maternal HS (MHS)
pairs found within the same cohort and on modeling that
explicitly incorporates overdispersed reproduction, assum-
ing that kinships are genetically detected without any error.
Our model partitions reproductive variance into two types
of variations: (i) age- or size-specific differences in mean
fecundity (referred to as “parental variation”) and (ii)
unequal contributions by mothers of the same age or size to
the number of offspring at sampling (referred to as “non-
parental variation”) First, we formulate the distribution of
offspring number under the two types of variations. Second,
we analytically derive the probability that two randomly
selected individuals found in the same cohort share an MHS
relationship. Third, we determine a nearly unbiased esti-
mator of contemporary effective mother size and its relative
estimators. Finally, we investigate the performance of the
estimators by running an individual-based model. Our
modeling framework may be applied to diverse animal
species; however, the description of the model focuses on
fish species, which are currently the best candidate target of
our proposed method.

Theory

Main symbols used in this paper are summarized in Table 1.

Hypothetical population and sampling scheme

Here, we suppose that there is a hypothetical population
consisting of N mothers and that there is no population
subdivision or spatial structure. In this paper, a mature
female is referred to as a mother even if she does not pro-
duce offspring. For the detection of MHS pairs, n offspring
within the same cohort are simultaneously and randomly
sampled in the population. For mathematical tractability, we
assume that there is only one spawning ground in which the
mothers remain for the entire spawning season.

In our modeling framework, if an MHS pair also shares a
paternal HS (PHS) relationship, the pair is considered to be
an MHS pair (i.e., the FS relationship is assigned as MHS
relationship). The technical difficulties of distinguishing an
MHS pair from a PHS pair are addressed in the “Discus-
sion” section.

Reproductive potential and its variation (parental
variation)

Here, we introduce the concept of the reproductive potential
of mother i (i= 1, 2, …, N), which is defined as the

Table 1 List of mathematical symbols in main text

n Sample number of offspring

npair Number of pairs in a sample (=nC2)

N Number of mothers in the population when sampled
offspring are born

Ne Effective number of mothers in the population

ϕ Overdispersion parameter under negative binomial
reproduction

λi Expected number of surviving offspring of mother i at
sampling

f(λ) Frequency of λ for all mothers

ki Number of surviving offspring born to mother i

H Number of maternal half-sibling pairs found in samples

π Probability that a randomly selected pair (two offspring)
share a maternal half-sibling relationship

c Combined effect of deviation from the Poisson (=(1+ ϕ−1)
E[λ2]/E[λ]2)

N̂e;0 Moment estimator of Ne

N̂e;1 Nearly unbiased estimator of Ne

N̂e;TM Moment estimator of Ne by the temporal method

v̂ Estimator of V½N̂e;1�bcv Estimator of CV½N̂e;1�
bmean Bias of N̂e;1

bvar Bias of v̂
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expected number of surviving offspring at sampling time,
denoted by λi. The reproductive potential is determined by
several factors, including the mother’s age, weight, resi-
dence time on the spawning ground, and it is allowed to
vary across mothers. In this study, this variation is referred
to as parental variation. It should be noted that the magni-
tude of this parameter (λi) includes information about the
survival rate of the offspring, the number of days after egg
hatching, and the egg number; this implies that the para-
meter reflects the sample timing. It should also be noted that
the modeling framework does not depend on whether the
reproductive potential is heritable or not.

Nonparental variation

In addition to parental variation, the variation in reproduc-
tion among mothers with the same reproductive potential,
referred to here as nonparental variation, is also incorpo-
rated into the model, resulting in a large variation in the
fertility of the mothers. As the magnitude of the variance
increases, the number of successful mothers producing
offspring that avoid early life mortality decreases, leading to
a situation in which offspring derived from the same mother
has highly correlated early life survival probabilities. This
situation requires careful consideration of the probability
that two offspring share an MHS relationship. Figure 1
presents a schematic representation of the effects of such
family-correlated survival on kinship relationships in a
population, which are exemplified in iteroparous teleost
species. Older mothers are more likely to produce a larger

number of offspring, as annual fecundity (i.e., number of
eggs, represented by a gray circle) increases with age.
However, due to family-correlated survivorship after eggs
hatching, the probability that two offspring (i.e., at the larva
or juvenile stage, represented by a closed circle) have an
MHS relationship is higher (e.g., 53 MHS pairs in Fig. 1b)
than in a situation with independent survival (e.g., 32 MHS
pairs in Fig. 1a). In other words, MHS pairs have sig-
nificantly higher or lower collective chances for survival. In
addition to family-correlated survivorship, the effects of
mating behavior are also incorporated into nonparental
variation, such as competition for males/females and cor-
relation between mating opportunities of mother and her
offspring number. Nonparental variation may occasionally
overshadow the effect of parental variation; however, the
average number of offspring per mother is higher for an
older mother because the probability of being a successful
mother driven by nonparental variation is not biased among
mothers.

Distribution of offspring number

In attempting to incorporate both parental and nonparental
variation, it is useful to employ a highly skewed distribution
of offspring number. In this study, we use a negative
binomial distribution, which is applicable to deviation from
the Poisson variance (i.e., overdispersed offspring number
with a variance greater than the mean).

Let ki be the number of surviving offspring of mother i at
sampling. Given the expected number of offspring λi, ki is

Fig. 1 Example of relationships between mothers and their offspring
number for only parental variation (a) and both parental- and non-
parental variation (b). N= 6 and

PN
i ki ¼ 21. Open, gray, and black

circles represent mothers, their eggs, and their offspring, respectively.

The area of an open circle indicates the degree of reproductive
potential of each mother (i.e., λi). Dotted and thin arrows show
mother–egg and egg–offspring relationships, respectively. The x
symbol indicates a failure to survive at sampling
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assumed to follow a negative binomial distribution by a
conventional parametrization,

Pr½kijλi� ¼ Γ½ki þ ϕ�
ki!Γ½ϕ�

λi
ϕ þ λi

� �ki ϕ

ϕ þ λi

� �ϕ

; ð1Þ

where ϕ (>0) is the overdispersion parameter describing the
degree of nonparental variation (Akita 2018). At present, ϕ
is assumed to be constant across mothers, whereas the
expected number of surviving offspring (λi) is variable
across mothers. The mean and variance of this distribution
are λi and λi þ λ2i =ϕ, respectively. In the limit of infinite ϕ,
this distribution becomes a Poisson distribution as follows:

lim
ϕ!1

Pr½kijλi� ¼ λkii e
�λi

ki!
: ð2Þ

We assume that λi is independent and identically dis-
tributed with a density function f(λ), which produces par-
ental variation. The shape of the density function is often
complex but may be described by information such as the
mother’s weight composition in the population. The specific
form of f(λ) is provided in Appendix A and is used for
verifying the theory developed in this paper. As explained
in the next subsection, the theory does not require this
specific form; it only requires the ratio of the second
moment to the squared first moment (i.e., E[λ2]/E[λ]2).

MHS probability among randomly selected
individuals

We have derived the approximate probability that two off-
spring share an MHS relationship with an arbitrary mother
(denoted by π) as follows:

π � c

N þ c � 1
; ð3Þ

where

c ¼ ð1þ ϕ�1ÞE½λ
2�

E½λ�2 :

The details of the derivation is provided in Appendix B.
Equation (3) explicitly contains the two variations (i.e.,
parental variation and nonparental variation) that determine
the degree of deviation from the Poisson distribution. When
λ is constant across mothers, E[λ2] equals E[λ]2 and then π

becomes (1+ ϕ−1)/(N+ ϕ−1), which appears in Eq. (7) in
Akita (2018). In addition, as ϕ→∞, (1+ ϕ−1)/(N+ ϕ−1)
converges to 1/N, which corresponds to the Poisson
variance of ki for all mothers in a population. The effect
of the two factors causing a deviation from the Poisson
distribution can be combined as parameter c (≥1). Hereafter,

“overdispersion” is referred to as the distribution of the
number of offspring resulting from this combined effect.

When N is provided, π increases with an increase in c,
suggesting that a randomly selected pair is more likely to
share an MHS relationship under greater overdispersion.
Figure S1a–d (Supplementary Information) illustrates the
theoretical curve and the simulation results of π with N=
100 and 10,000 as a function of ϕ or E[λ2]/E[λ]2. This
figure demonstrates that the approximation in Eq. (3) works
well for the investigated function f(λ).

Skewed offspring distribution by parental and
nonparental variation

For illustrative purposes, we demonstrate how parental and
nonparental variation skew the offspring distribution in an
age-structured population. First, we explore the case in
which parental variation is moderately observed and the
case in which it is scarcely observed. The cases can be
controlled by changing the parameters affecting the shape of
f(λ). Suppose that the mean fecundity of a mother depends
on her age, which can be considered as the reproductive
potential. Let λa be mean fecundity, which is a function of
age (denoted by a). Assuming that individual fecundity is
proportional to weight and using the von Bertalanffy growth
equation for body weight, λa is explicitly described as a
function of age as follows:

λa / ð1� exp½�κða� a0Þ�Þβ; ð4Þ

where κ, a0, and β are conventionally used parameters in the
von Bertalanffy equation and represent the growth rate, the
adjuster of the equation for the initial size of the animal, and
the allometric growth parameter, respectively. This relation-
ship indicates that the age distribution generates the
variation of λa. Given the age distribution, the variation of
f(λ) increases with β; meanwhile, when β goes to zero, the
variation of f(λ) vanishes. Figure 2a presents a histogram of
f(λ) for the two cases.

Next, we explore f(λ) with several combinations of the
magnitude of parental and nonparental variations. Figure
2b, c illustrates the offspring distribution with a relatively
low β and a moderate β, respectively. If both parental and
nonparental variations are very small, k has as a Poisson
distribution (dotted line in Fig. 2b), as noted above. When
there is no parental variation, nonparental variation skews
the distribution of k (thin and bold lines in Fig. 2b), and vice
versa (dotted line in Fig. 2c). In this study, we selected
parameter c= (1+ ϕ−1)E[λ2]/E[λ]2 to be 1 and 10 for
comparison with the results. These two values represent two
extreme cases and can be derived from the parameter set
(ϕ, β)= (1000, 0.0009) (dotted line in Fig. 2b) and (0.1302,
0.9) (bold line in Fig. 2c), respectively. It should be noted
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that in the latter case, the offspring distribution is highly
skewed: 63% of mothers cannot produce surviving off-
spring at sampling, and 6% of mothers produce more than
20 offspring (E[λ]= 4.5 and V[λ]= 157.5). Other para-
meter values used in f(λ) are provided in Appendix A.

Effective mother size and census size

We have defined the effective mother size as follows:

Ne ¼ 1
π

¼ N � 1
c

þ 1: ð5Þ

This definition is similar to the inbreeding effective
population size (Nordborg and Krone 2002), as the
probability of sharing an MHS relationship (π) is identical
to the probability that two individuals share a mother in the
previous breeding season. It should be noted that when
sampling from a single cohort in a population with
overlapping generations, the effective mother size in our
definition corresponds to the effective breeding mother size,
which produces a single cohort.

One might ask whether the proposed effective size is
consistent with previous work, such as the drift-based
effective population size. When λ is constant, the drift-based
effective population size is provided as follows:

Ne ¼ λ2

V½k�N

¼ N

λ�1 þ c� 1
; ð6Þ

where V[k]= λ+ λ2/ϕ and c= 1+ ϕ−1. This derivation is
based on the natural extension of the existing approach
(e.g., Gillespie 2004), relaxing the assumption that mean
size of a population does not change (i.e., λ= 1). The
formulation is similar to the proposed effective size in Eq.
(5), but not consistent except for the case of λ= 1.

Using Eq. (5), the ratio of the effective mother size to
census size can be written as follows:

Ne

N
¼ 1

c
þ 1
N

1� 1
c

� �

� 1
c
; ð7Þ

where N≫ 1 is assumed for the purpose of approximation.

Statistical properties of MHS pair number

In this subsection, given the unconditional probability that
two offspring share an MHS relationship (Eq. (3)), we con-
sider the distribution of the number of MHS pairs and its
statistical properties. Let H be the number of MHS pairs found
in an offspring sample of size n. First, we derive the
approximate distribution of H for a situation in which over-
dispersion does not exist (i.e., c= 1). Second, we evaluate
whether the derived distribution of H for the nonoverdispersed
case is applicable to the overdispersed case (i.e., c > 1).

If overdispersion does not exist (i.e., c= 1), drawing an
MHS pair from a randomly selected pair in a sample is
considered a Bernoulli trial. Thus, H follows a hypergeo-
metric distribution, which is a function of the sample size of
the offspring, the total number of offspring in the popula-
tion, and the total number of MHS pairs in the population.
However, in the setting of this study, the latter two com-
ponents are random variables, thus creating a
complex situation for deriving the exact formulation (Akita
2018). Therefore, assuming that the total number of MHS
pairs in the population is much higher than the number of
pairs in a sample P

kC2 �n C2 the distribution is
approximated by a binomial form as follows:

Pr½H ¼ hjnpair; π� ¼
npair
h

� �
πhð1� πÞnpair�h; ð8Þ

where npair is the number of pairs in a sample (=nC2). For
practical purposes, the condition P

kC2 �n C2 may be
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Fig. 2 a Histogram of f(λ) assuming fish species with a relatively low β
(denoted by black bar, E[λ2]/E[λ]2= 1.0000) and high β (denoted by
gray bar, E[λ2]/E[λ]2= 1.1519). b, c Marginal distribution of k for

several values of ϕ (see legend). b β= 0.0009; Pr[k= 0] with ϕ=
0.1302 equals 0.57. c β= 0.9; Pr[k= 0] with ϕ= 0.1302 equals 0.63.
Details of f(λ) are provided in Appendix A

Nearly unbiased estimator of contemporary effective mother size using within-cohort maternal sibling. . . 303



acceptable. The theoretical expectation of H is

E½H� ¼ npairπ; ð9Þ

and the variance is

V½H� ¼ npairπð1� πÞ: ð10Þ
Figure S2a, b (Supplementary Information) illustrates the

accuracy of the theoretical prediction for the expectation
and the variance of H under the Poisson variance as a
function of n, respectively. For the investigated parameter,
the prediction is demonstrated to be highly accurate.

If overdispersion exists (i.e., c > 1), drawing an MHS pair
is no longer a Bernoulli trial. For example, an individual
that is born to a relatively successful mother has a greater
probability of an MHS relationship with other individuals.
Therefore, a hypergeometric/binomial form is not appro-
priate for the distribution of H. As illustrated in Fig. S2d
(Supplementary Information), the binomial variance (Eq.
(10)) is downwardly biased from the observed variance of H
when n increases. The theoretical evaluation is relatively
complex and is left for future research. However, for the
investigated parameter set, the expected value is well
approximated by Eq. (9) (Fig. S2c in Supplementary
Information), assuming independent comparisons. The
rationale may be that the MHS probability in a pair, π (Eq.
(3)), includes the effect of overdispersion. Next, on the basis
of an accurate approximation of E[H] in the case of over-
dispersion, we provide the estimator of Ne from the
observed number of MHS pairs in a sample.

Moment estimator of Ne from observed number of
MHS pairs

By removing π in Eqs. (5) and (9), Ne can be written as a
function of c, npair, and E[H]. The observed number of MHS
pairs in a sample is defined by Hobs, and E[H] is replaced by
Hobs, generating the moment estimator of Ne:

N̂e;0 ¼ npair
Hobs

: ð11Þ

In this paper, a “hat” indicates the estimator of a variable.
This relationship can be written as follows:dN � 1

c

� �
¼ npair

Hobs
� 1; ð12Þ

indicating that N and c cannot be estimated simultaneously
from the number of observed MHS pairs.

Assuming that H follows a binomial distribution, the
estimator corresponds to the maximum likelihood estimator
of N0 (see Appendix C). There are two drawbacks to using
this estimator. First, the value of N̂e;0 becomes inflated when

no MHS pairs are observed in a sample (i.e., Hobs= 0). This
leads to a situation in which an individual-based model
frequently generating zero MHS pairs is not available for
statistical evaluation. Second, even if an MHS pair is
detected in a sample, it is likely that N̂e;0 is strongly biased
(see Appendix C). Therefore, an improved estimator is
necessary for the purpose of appropriate evaluation and
higher accuracy for a wide parameter range.

Nearly unbiased estimator of Ne

We have derived an alternative estimator of Ne (denoted by
N̂e;1) as follows:

N̂e;1 ¼ npair þ 1
Hobs þ 1

: ð13Þ

The derivation process is similar to that of the nearly
unbiased estimator of adult number in a population using
the mark-recapture method (Chapman 1951), which is
based on the idea that the observation of 1/(H+ 1)
approximately provides a linear estimator of Ne (see
Appendix D). The bias of N̂e;1 is defined by bmean, which
is given by

bmean ¼ E½N̂e;1� � Ne

¼ �Neð1� N�1
e Þnpair þ 1: ð14Þ

It should be noted that N̂e;1 is downwardly biased; however,
this bias may be ignored for a wider range of parameters
than N̂e;0 (see details in the “Results” section), which allows
N̂e;1 to be called a nearly unbiased estimator.

We also determined the estimator of V½N̂e;1�, given by

v̂ ¼ ðnpair þ 1Þðnpair � HobsÞ
ðHobs þ 1Þ2ðHobs þ 2Þ : ð15Þ

The derivation process is similar to that in Seber (1970) (see
Appendix E for details). The bias of v̂ is defined by bvar,
which is given by

bvar ¼ E½v� � V½N̂e;1�

¼ N2
e ð1� N�1

e Þnpair þ 2
�

þ ðnpair þ 2ÞN�1
e � 2

� �ð1� N�1
e Þnpair þ 1

þð1� N�1
e Þ2ðnpair þ 1ÞÞ: ð16Þ

Finally, we consider the estimator of the coefficient of
variation of N̂e;1. A method similar to the derivation of v̂
(i.e., searching for a formula such that its expectation
approximates CV½N̂e;1�) was overly complex for the

304 T. Akita



estimator; instead, using Eqs. (13) and (15), we defined the
estimator as follows:

bcv ¼ ffiffiffî
v

p

N̂e;1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npair � Hobs

ðnpair þ 1ÞðHobs þ 2Þ

s
; ð17Þ

Roughly speaking, bcv is approximated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðHobs þ 2Þp

because npair≫Hobs, which is similar to an approximate
lower bound on the coefficient of variation of N̂, as
presented in Bravington et al. (2016b).

Individual-based model

To evaluate the performance of the estimators (N̂e;1, v̂, andbcv), we developed an individual-based model that tracks
kinship relationships. The population structure was assumed
to be identical to that in the development of the estimators.
The population consisted of mothers and their offspring and
was assumed to follow a Poisson or negative binomial
reproduction. The expected number of surviving offspring
of a mother followed the density distribution f(λ), which
was deterministically specified under stable age structure
(see Appendix A). It should be noted that the overdispersion
parameter (c) was calculated from ϕ and f(λ). Each off-
spring retained the ID of its mother, making it possible to
trace an MHS relationship.

Given a parameter set (N, n, ϕ, and parameters that
determine f(λ)), we simulated a population history in
which N mothers generated offspring; this process was
repeated 100 times. For each history, the sampling pro-
cess was repeated 1000 times, acquiring 100,000 data
points that were used to construct the distribution of N̂e;1,
v̂, and bcv for each parameter set. Ne was calculated from N
and c (Eq. (5)).

Temporal method

To compare the performance between our method and other
existing methods, we considered the temporal method,
which is based on a moment estimator (Nei and Tajima
1981). The temporal method relies on the temporal changes
in allele frequency over time, as information for estimating
Ne. To calculate the estimator of Ne by the temporal method,
simulations were independently run and analyzed.

We evaluated the performance of the temporal method
estimator on data simulated under the Wright-Fisher model
for a haploid population. For a given Ne, the frequency
trajectory of 500 independent loci was simulated. For each
locus, the maximum number of alleles was set to 10 and
initial frequencies of those alleles were fixed to 0.1 at
generations 0. Two samples of n individuals were each
randomly taken at generation 0 and 9 from the offspring
gene pool (i.e., sampling without replacement). For each
combination of parameters (Ne, n), we run 100,000 repli-
cates and obtained the estimator of Ne (denoted by N̂e;TM)
for each replicate. For comparisons, we set an equal sample
size at one time for both methods, although the total sam-
pling size of the temporal method was twice that of our
method. In the current comparison, we did not consider the
case of overdispersion (e.g., c > 1) because an estimation of
an extra parameter is needed (see Kitada et al. 2000) and the
comparison of the case goes beyond the scope of this work.

Results

We evaluated the performance of the estimators (N̂e;1, v̂, andbcv) for a situation in which the number of mothers, N, and
the combined effect of deviation from the Poisson, c, were
unknown. The parameter values were changed for N (100,
1000, 10,000, and 100,000) and c (1 and 10). We primarily
addressed the number of samples (n) required to provide
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adequate accuracy and precision under a given parameter
set (N and c).

Comparison of the bias of N̂e;1 with that of N̂e;0

First, we evaluated the accuracy of N̂e;1 based on its bias
(bmean). For a given Ne, the absolute value of the bias is
represented by a solid line in Fig. 3a (Ne= 100), 3b (Ne=
1000), and 3c (Ne= 10,000) as a function of n. For com-
parison, the bias of N̂e;0 (see Appendix C) is represented by
a dotted line. It is evident that the absolute value of the bias
is smaller in N̂e;1 than in N̂e;0, because the bias of N̂e;1

approximately increases with Ne (Eq. (14)) while the bias of
N̂e;0 approximately increases with N̂2

e (Eq. (S13)). There are
remarkable differences between them especially in the
situation of small sample size (n). Hereafter, we use N̂e;1 as
the estimator of effective mother size.

Accuracy and precision of N̂e;1

As expected, |bmean| decreases with n, as a larger n leads the
term ð1� N�1

e Þnpair þ 1 in bmean to vanish more quickly. The
requisite sample size (n) with a small bias of less than 10%
is 22 for Ne= 100 (|bmean| < 10; see Fig. 3a), 69 for Ne=
1000 (|bmean| < 100; see Fig. 3b), and 216 for Ne= 10,000 (|
bmean| < 1000; see Fig. 3c). The results of the individual-

based model support the above prediction. Figure 4 illus-
trates the average value of N̂e;1 (represented by black open
circles) and N̂e;TM (represented by gray open circles; details
are provided in the next subsection) with a 95% confidence
interval (CI), which is obtained from the individual-based
model. As expected, the average value of N̂e;1 downwardly
deviates from Ne for a relatively small sample size (n)
satisfying |bmean|≫ 1. As n increases, the average value of
N̂e;1 approaches a true Ne (represented by a black dotted line
in Fig. 4).

Next, we evaluated the precision of N̂e;1. As illustrated in
Fig. 4, the precision of N̂e;1 for a change in n behaves in a
complex manner. For the investigated parameter set, we
determined that the degree of precision holds under differ-
ent combinations of N and c if the value of Ne is fixed (Ne ≈
N/c equals 100 in Fig. 4a, d, 1000 in Fig. 4b, e, and 10,000
in Fig. 4c, f); this suggests that the level of uncertainty is
roughly determined by Ne. Although the lower limit of the
CI monotonically increases with n, the upper limit of the CI
has a peak at the point at which the average N̂e;1 is very
close to the true Ne. Near this point, the range of the CI is
large, and N̂e;1 is asymmetrically distributed with a longer
tail on the large side (e.g., n= 300 in Fig. 4c, f). As n
increases beyond this point, the range of the CI decreases,
and the shape of the distribution asymptotically becomes
symmetric.
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Comparison of N̂e;1 with N̂e;TM

As shown in Fig. 4a–c, N̂e;1 is much more accurate than
N̂e;TM for most of the sample sizes (the number of loci is
500 and the interval generation of sampling is ten; see
details in the “Theory” section). In addition, with a rela-
tively small sample size, N̂e;1 is much more precise than
N̂e;TM. It is generally known that, when Ne is relatively large
and sample size is relatively small, the estimated value by
the temporal method becomes flawed because the sampling
variance overshadows the magnitude of genetic drift that
determines the accuracy in the temporal method (Nei and
Tajima 1981). Such a situation was confirmed in our setting,
as an appearance of negative N̂e;TM. (Ne= 10,000 and n=
100; see Fig. 4c). Even when Ne is relatively small, the
accuracy of N̂e;1 is higher than that of N̂e;TM (Ne= 100; see
Fig. 4a). Together with the theoretical predictions (as shown
in Fig. 3), we conclude that the high performance of our
method is due to the bias reduction of the estimator, espe-
cially in a relatively small sample size.

Accuracy of v̂ and bcv
We then evaluated the accuracy of v̂. Theoretically, the
bias of v̂ (bvar) was determined to have a peak at a certain
value of n, as illustrated in Fig. S3 (Supplementary
Information). Figure 5a–c presents the ratio of the average

v̂ to the variance of N̂e;1 for different combinations of (N,
c) with fixed Ne, which is obtained from the individual-
based model. If the ratio is close to 1, v̂ is deemed an
estimator of unbiasedness. When n approaches zero, the
ratio becomes inflated (e.g., n= 5 in Fig. 5a) although bvar
also approaches zero (Fig. S3). This inconsistency for a
small n (i.e., overestimation) may result from the bias of
N̂e;1. As n increases, the ratio approaches 1 when c= 1 but
less than 1 when c > 1 (c= 10 in Fig. 5a–c), suggesting
that the property of unbiasedness holds only under the
Poisson variance; however, the degree of this bias is not
very high for a relatively large Ne (c= 10 in Fig. 5c). In
other words, the accuracy of v̂ is not solely determined by
the level of Ne. This inconsistency (i.e., underestimation)
may result from the assumption that the correlation
between pairs can be ignored and thus that the number of
HS pairs in the sample follows a binomial distribution
(Eq. (8)).

Finally, we evaluated the accuracy of bcv. Figure 5d–f
illustrates the ratio of the average bcv to the coefficient of
variation of N̂e;1, which is obtained from the individual-
based model. As expected, the property of the estimator is
similar to that of v̂, as bcv is defined by using v̂ (Eq. (17)).
The ratio becomes inflated for small n; as n increases, the
ratio approaches 1 when c= 1 but is <1 when c > 1 (i.e.,
underestimation); however, the relationship between the
degree of bias and the level of Ne is unclear.
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Discussion

We theoretically developed a nearly unbiased estimator of
the number of effective mothers in a population (N̂e;1), the
estimator of its variance (v̂), and its coefficient of variation
(bcv), which are based on the known MHS relationships
found within a single cohort. The performance of the esti-
mators (accuracy and precision) was quantitatively eval-
uated by running an individual-based model. Our modeling
framework allows for two types of reproductive variation;
variance of the average offspring number per mother (par-
ental variation) and variance of the offspring number across
mothers with the same reproductive potential (nonparental
variation). The former is related to age- or size-dependent
reproductive potential, whereas the latter is related to
family-correlated survival, both of which can result in a
skewed distribution of offspring number. These two effects
are summarized into one parameter (c) in the framework.
Our estimators can be calculated from sample size (n) and
the observed number of MHS pairs (Hobs) and do not
require other parameters, such as adult mother size (N) or
the degree of overdispersed reproduction (c). The rationale
for this is that the observed number of MHS pairs contains
information about these parameters.

To estimate the number of effective mothers (Ne), our
theoretical results provide guidance for a sample size to
ensure the required accuracy and precision, especially if the
order of the number of effective mothers is approximately
known. For example, when the effective number of mothers
is within 102–103, sampling 50 offspring falls within the
range of accuracy of the estimation with a 0–30% bias (Eq.
(14) and Fig. 3). Even if there is no information about the
effective number of mothers, the coefficient of variation of
the estimated number can be estimated (bcv) when the
sample size is above a given level (Fig. 5c, d). Although the
estimator of the variation of the number of mothers (v̂) is
relatively accurate for the investigated parameter set
(Fig. 5a, b), the present estimator of the coefficient of var-
iation is systematically biased; thus, improvements in
accuracy are left for future research.

Our modeling framework is presented in the context of
the sibship assignment (SA) method, which defined a
kinship-oriented estimation of effective population size
(Wang 2009; Waples and Waples 2011; Ko and Nielsen
2019). The original theory of the SA method was developed
by Wang (2009), and it can perform the estimation of
effective population size from HS and FS probabilities,
which are calculated by the number of HS and FS pairs in a
sample. Wang’s estimator reduces to the inverse of the
frequency of HS pairs in a sample, which corresponds to
N̂e;0 (Eq. (11)). Our proposed estimator N̂e;1 (Eq. (13)) is
more accurate than N̂e;0, because the bias of N̂e;1

approximately increases with Ne (Eq. (14)) while the bias of
N̂e;0 approximately increases with N̂2

e (Eq. (S13)). There are
remarkable differences between them specially for small
sample sizes, as shown in Fig. 3. In this study, we analy-
tically obtained nearly unbiased estimators (N̂e;1, v̂, and bcv),
although their application is limited to the estimation of
effective mother size and the case in which MHS can be
perfectly distinguished from PHS and other relatives. The
latter limitation may be overcome to some extent by the use
of a hypervariable region in the mitochondrial genome and/
or sex-linked markers. It should be noted that genetic dif-
ferentiation between maternal and paternal relatives is a
general problem with pedigree reconstruction (Huisman
2017; Hillary et al. 2018). Therefore, incorporating the
uncertainty of differentiation or modifying the theory with
the use of HS (not MHS) remains a task for future research.

As a first step in developing unbiased estimators of Ne, we
examined a relatively simple situation and ignored the com-
plex but important features required in practical scenarios,
including errors associated with kinship detection and non-
random sampling. In general, SAs are biased when only
limited molecular information is available (e.g., small number
or poor quality of genetic markers), and direction of the biases
depends on kinship detection algorithm and how to incorpo-
rate prior knowledge into the algorithm. Uncertainties of the
proposed estimator of Ne due to limited molecular data could
be assessed if an algorithm for SAs is incorporated into our
framework. It is expected that if nonrandom sampling is
caused by a family-correlated sampling scheme, the effective
mother size is underestimated because MHS pairs are more
likely to be sampled with this sampling scheme than with
random sampling. To reduce this bias, the sampling time and
location should be varied, or sampling at an early life stage
after hatching should be avoided; this may reduce the effect of
family-correlated movement that is not addressed in the cur-
rent theoretical framework.

Contemporary effective population size can provide not
only an understanding of genetic health but also an indi-
cation of adult size. If the effect of overdispersion c is
invariant across years, N̂e;1 may behave as an index of the
number of mothers per year, making it possible to determine
the temporal trends, since Eq. (13) can be rewritten as

dN � 1
c

� �
¼ N̂e;1 � 1: ð18Þ

In this case, the proposed index becomes highly informative,
particularly for integrating stock assessment in fisheries
management using many types of data (e.g., catch data and
abundance index data); this leads to more accurate estimation
due to the use of fishery-independent data (Ovenden et al.
2015). Recently, Akita (2018) developed a summary statistic
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that indicates the degree of overdispersion; this statistic is
based on the number of MHS pairs and mother–offspring
pairs in the sample. The temporal trend of this statistic
provides information on whether c is invariant across the
years and thus provides criteria for determining whether
N̂e;1 behaves as an index of the number of mothers in a
population. It should be noted that, if census size is
independently obtained, combined with the estimated
effective size, we can estimate the magnitude of reproduc-
tive variance and potentially the parameter of nonparental
variation (i.e., ϕ), which is generally difficult to obtain and
can provide unavailable insights into the underlying
ecological processes.

Finally, we note the theoretical connection of our results to
the ratio of effective mother size to census size, Ne/N. A
number of studies have demonstrated that the ratio of the
effective size to the census size (including fathers) in high-
fecundity marine species is estimated to fall within 10−3–10−6

(Hauser and Carvalho 2008). In our derivation, Ne/N is
approximately equal to 1/c. If there is only parental variation
(i.e., c=E[λ2]/E[λ]2=CV[λ]2+ 1), c cannot have a large
value; thus, the ratio cannot become very small (e.g., <10−3).
This theoretical consideration suggests a dominant contribu-
tion of nonparental variation to a very small Ne/N, which is
consistent with the result in Waples (2016).
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Appendix

A. Probability density function and its
moment of λ

As noted in the main text, our modeling framework does not
require the specific form of f(λ); instead, it only requires the
ratio of the second moment to the squared first moment
(E[λ2]/E[λ]2). However, the specific form is required for
illustrative purposes (Fig. 2a) and for the evaluation of the
theoretical results (i.e., calculating the moment or running the
individual-based model). Here, we model an age-structured
fish population, which serves as a representative example,
demonstrating both parental and nonparental variations.

Suppose that the mean fecundity of a mother depends on
her age. Let λa be mean fecundity, which is a function of
age (denoted by a). The moment can be described as
E½λm� ¼Pamax

a¼0 λ
m
a hmatðaÞ, where hmat(a) is the frequency of

mature mothers at a given age, and amax is the maximum
age. Thus, we can numerically obtain the moment from λa
and hmat(a).

For marine species with a type-III survivorship curve, it
is generally assumed that individual fecundity is propor-
tional to weight. Using the von Bertalanffy growth equation
for body weight, λa is explicitly described as a function of
age as follows (identical to Eq. (4)):

λa / ð1� exp½�κða� a0Þ�Þβ;

where κ, a0, and β are conventionally used parameters in the
von Bertalanffy equation and represent the growth rate, the
adjuster of the equation for the initial size of the animal, and
the allometric growth parameter, respectively. For obtaining
a specific value of λ, a coefficient value of 10 multiplied by
the right-hand side of Eq. (4) was used when running the
individual-based model.

The frequency of mature mothers at a given age can be
written as follows:

hmatðaÞ / hðaÞQðaÞ; ðS1Þ

satisfying
Pamax

a¼0 hmatðaÞ ¼ 1, where h(a) and Q(a) repre-
sent the frequency and maturity at a given age, respec-
tively. Although f(a) is affected by historical population
dynamics and age-dependent survival, for simplicity,
the mortality rate is assumed to be constant (i.e., age
independent):

hðaÞ / Sa

0

if a< amax

if a ¼ amax

�
; ðS2Þ
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where S is survival probability. Maturity at age (Q(a)) is
assumed to be a knife-edge function, given by

QðaÞ ¼ 1

0

if a � amat

otherwise

�
; ðS3Þ

where amat is the mature age.
For calculating E[λ2]/E[λ]2, the required parameter set

is (amax, κ,a0, β, S, amat). In this paper, for the purpose of
representation, we fixed the value of several parameters as
follows: amax= 20, κ= 0.3, a0= 0, S= 0.5 and amat= 0.
In addition, we selected parameter value c (=(1+ ϕ−1)
E[λ2]/E[λ]2) to be 1 and 10 for comparison with the results
in the main text, which are derived from the parameter set
(ϕ, β)= (1000, 0.0009) and (0.1302, 0.9), respectively.

Finally, we provide the specific forms of f(λ) and Pr[k],
which are presented in the main text (Fig. 2). When λa and
hmat(a) are obtained, f(λ) is given by

f ðλÞ ¼ hmatðaÞ
0

if λ ¼ λa

otherwise

�
: ðS4Þ

Using Eqs. (1) and (S 4), we can obtain the specific form of
the marginal distribution of k by

Pr½k� ¼
X
λ

Pr½kjλ�f ðλÞ: ðS5Þ

B. Probability that two offspring share an
MHS relationship

Given the realized number of offspring k1, k2, …, kN, the
probability that two randomly selected offspring are born to
mother i is ki=

PN
j¼ 1 kj � ðki � 1Þ=ðPN

j¼ 1 kj � 1Þ. Thus,
the conditional probability that two offspring share an MHS
relationship with an arbitrary mother is

πjk1; ¼; kN ¼
XN
i¼1

kiðki � 1Þ
ðPN

j¼1 kjÞð
PN

j¼1 kj � 1Þ

¼
PN

i¼1 k
2
i �

PN
i¼1 ki

ðPN
j¼1 kjÞ2 �

PN
j¼1 kj

: ðS6Þ

It should be noted that ki is a random variable followed by
a negative binomial distribution (Eq. (1)), in which the
parameter of the distribution, λi, is also a random variable
followed by an arbitral function f(λ). By taking the
expectation over the distribution of offspring number, the

conditional probability is given by

πjλ1; ¼; λN ¼ E πjk1; ¼; kN½ �

�
PN

i¼1 E½k2i jλi� �
PN

i¼1 E½kijλi�
E½ðPN

j¼1 kjÞ2jλ1; ¼; λN � �
PN

j¼1 E½kjjλj�

¼
PN

i¼ 1 ð1 þ ϕ�1Þλ2iPN
i¼ 1 ð1 þ ϕ�1Þλ2i þ 2

P
i>j λiλj

: ðS7Þ

From the first to the second line, we use the approximation
that E[g1(k)/g2(k)]�E[g1(k)]/E[g2(k)]. The expectations are
averaged over k or k2, conditional on λ. By taking the
expectation over λ and applying a similar approximation,
the unconditional probability is given by

π ¼ E½πjλ1; ¼; λN �

� ð1 þ ϕ�1ÞE½λ2�
ð1 þ ϕ�1ÞE½λ2� þ ðN � 1ÞðE½λ�Þ2 : ðS8Þ

This provides the formulation described in Eq. (3). In
computing the expectation, we remove the subscript (i or j)
because λ is independent and identically distributed.

C. Properties of moment estimator of N

Here, we demonstrate that N̂e;0 in Eq. (11) is the maximum
likelihood estimator and that N̂e;0 is upwardly biased,
especially when n is small. Let L be the likelihood of the
distribution of H (Eq. (8)). Given the observation (i.e.,
Hobs), the partial derivative of the log-likelihood with
respect to π is given by

∂lnL
∂π

/ Hobsnpair
π

� ðnpair � HobsÞnpair
1� π

; ðS9Þ

leading to the maximum likelihood estimator of π:

π̂ ¼ Hobs

npair
; ðS10Þ

where π̂ satisfies ð∂lnL=∂πÞjπ¼π̂ ¼ 0. Substituting Eq. (3)
into Eq. (S10), we can obtain the estimator (N̂e;0) described
in Eq. (11).

Consider the bias of N̂0 defined by E½N̂e;0� � Ne. We set
the following equations:

gðHÞ ¼ N̂e;0

¼ npair
H

; ðS11Þ
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and

gðμÞ ¼ Ne

¼ npair
μ

; ðS12Þ

where μ ¼ E½H�. Using Eqs. (9) and (10), the bias is given
by

E½gðHÞ � gðμÞ� � 1
2
E½g′′ðHÞðH � μÞ2�

¼ 1
2
2npair
μ3

V½H�

� N2
e

npair
; ðS13Þ

where a quadratic approximation for g centered at μ and
V[H] ≈ E[H] is used. The value of the right-hand side of
Eq. (S13) is illustrated in Fig. 3a, b as the bias of N̂e;0.

D. Derivation of nearly unbiased estimator
of Ne

We consider the following

E 1
H þ 1

	 

¼
Xnpair
h¼ 0

1
h þ 1

Pr½hjnpair�

¼ 1
ðnpair þ 1Þπ

Xnpair þ 1

h′¼ 1

Pr½h′jnpair þ 1�

¼ 1
ðnpair þ 1Þπ ð1� Pr½h′ ¼ 0jnpair þ 1�Þ

¼ 1� ð1� πÞnpair þ 1

ðnpair þ 1Þπ ; ðS14Þ

assuming the binomial form of H (Eq. (8)). Equation (S14)
is not directly applied for the derivation of the estimator of
Ne due to the complex formulation. Thus, we simplify the
formulation as follows:

E 1
H þ 1

	 

� 1

ðnpair þ 1Þπ ; ðS15Þ

assuming that

ð1� πÞnpair þ 1 � 0: ðS16Þ

This simplification deviates from the prediction by Eq.
(S14) when n is relatively small. Replacing E[1/(H+ 1)] by
1/(Hobs+ 1) in the left-hand side of Eq. (S15), we can
obtain the estimator (N̂e;1) described in Eq. (13).

For the evaluation of N̂e;1, the bias is calculated. E½N̂e;1�
is required for the calculation and given by

E½N̂e;1� ¼ ðnpair þ 1ÞE 1
H þ 1

	 

¼ Ne � Neð1� N�1

e Þnpairþ 1; ðS17Þ

where the relationship in Eq. (S14) is used. This provides
the formulation of the bias, as described in Eq. (14).

E. Derivation of estimator of variance of N̂e;1

Let v be the estimator of the variance of N̂e;1. It is desirable
for v to be defined such that the bias (denoted bvar) is rea-
sonably small. From Eq. (13), the variance of N̂e;1 is given by

V½N̂e;1� ¼ ðnpair þ 1Þ2V 1
H þ 1

	 


¼ ðnpair þ 1Þ2 E 1

ðH þ 1Þ2
" #

� E 1
ðH þ 1Þ
	 
2 !

¼ E ðnpair þ 1Þ2
ðH þ 1Þ2

" #
� N2

e ð1� ð1� N�1
e Þnpair þ 1Þ2

ðS18Þ
where the term E[1/(H+ 1)] is calculated from the
relationship in Eq. (S14). Roughly speaking, V½N̂e;1� is
dominated by two terms when npair is relatively large:
E[(npair+ 1)2/(H+ 1)2] and �N̂2

e . Thus, it is expected that
E[v] includes both terms for a reasonably small bias. We
propose the following formulation for v:

v ¼ ðnpair þ 1Þðnpair � HÞ
ðH þ 1Þ2ðH þ 2Þ

¼ ðnpair þ 1Þ2
ðH þ 1Þ2 � ðnpair þ 1Þðnpair þ 2Þ

ðH þ 1ÞðH þ 2Þ : ðS19Þ

The expectation of the second term in Eq. (S19) is given by

E ðnpair þ 1Þðnpair þ 2Þ
ðH þ 1ÞðH þ 2Þ

	 


¼ ðnpair þ 1Þðnpair þ 2Þ
Xnpair
h¼ 0

1
ðh þ 1Þðh þ 2ÞPr½hjnpair�
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¼ 1
π2

Xnpairþ2

h′¼2

Pr½h′jnpair þ 2�

¼ N2
e ð1� Pr½h′ ¼ 0jnpair þ 2� � Pr½h′ ¼ 1jnpair þ 2�Þ

¼ N2
e ð1� ð1� N�1

e Þnpairþ2 � ðnpair þ 2ÞN�1
e ð1� N�1

e Þnpairþ1Þ;
ðS20Þ

leading to a relatively small bvar when npair is large,
which is described in Eq. (16).
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