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Abstract
Seed filling is a dynamic process that determines seed size and nutritional quality. This time-dependent trait follows a
logistic (S-shaped) growth curve that can be described by a logistic function, with parameters of biological relevance. When
compared between genotypes, the filling dynamics variations are explained by the differences of parameter values; as such,
the parameter estimates can be considered as “traits” for genetic analysis to identify loci that are associated with the seed-
filling process. We carried out genetic and genomic analysis of the seed-filling process in maize, using a recombinant inbred
line (RIL) population derived from the two inbred lines with contrasting seed-filling dynamics. We recorded seed dry weight
at 14 time points after pollination, spanning the early filling phases to the late maturation stages. Fitting these data to a
logistic model allowed for estimating 12 characteristic parameters that can be used to meaningfully describe the seed-filling
process. Quantitative trait locus (QTL) mapping of these parameters identified a total of 90 nonredundant loci. Using bulked
segregant RNA-sequencing (BSR-seq) analysis, we identified eight genes that showed differential gene expression patterns
at multiple time points between the extreme pools, and these genes co-localize with the mapped QTL regions. Two of the
eight genes, GRMZM2G391936 and GRMZM2G008263, are implicated in starch and sucrose metabolism, and biosynthesis
of secondary metabolites that are well known for playing a vital role in seed filling. This study suggests that the logistic
model-based approach can efficiently identify genetic loci that regulate dynamic developing traits.

Introduction

Maize is a widely cultivated crop in the world, providing an
important source for food, feed, and biofuels. Increasing
and stabilizing maize productivity has been a primary goal
of breeders. Among many agronomic traits that are asso-
ciated with yield potential, the seed-filling process is an
important factor that affects seed size and the final yield
(Takai et al. 2005; Sadras and Egli 2008; Borrás et al. 2009;
Eichenberger et al. 2015). Seed filling is a complex trait
involving cell expansion and accumulation of proteins, oils,
and carbohydrates. Despite being under genetic control, this
developmental process is also highly sensitive to environ-
mental fluctuations, such as heat and drought stresses.
Optimizing the rate and duration of seed filling can max-
imize partitioning of photosynthates and assimilates to the
seed, reduce the negative effects of potential adverse
environments in the late growing season, and consequently
ensure a high and stable yield. Therefore, a thorough
understanding of the genetic and environmental factors
regulating seed filling will assist breeding efforts to develop
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high-yielding varieties with improved resilience capacity to
abiotic stresses.

Seed filling in maize can be divided into multiple suc-
cessive and interrelated developmental stages, beginning
with successful pollination and initiation of seed develop-
ment and ending when the seeds are physiologically mature.
The dynamic feature of the trait poses a significant chal-
lenge for quantitative genetic analysis, because at individual
developmental stages or time points, different sets of genes
are involved. Most of the current studies focused only on
the linear growth phase by measuring the dry seed weight
over an isometric time period to estimate the filling rate
(Maydup et al. 2010; Liu et al. 2011; Zhang et al. 2016;
Carmo-Silva et al. 2017) Although this approach allowed
for rough estimation of the average filling rate over a spe-
cific period of the filling duration, it failed to capture the
dynamic developing features of the entire filling process,
such as the maximum filling rate and the time to reach the
maximum filling rate.

A better strategy for studying such a time-dependent trait
is to fit a growth curve to the phenotypic values across the
entire developmental process and analyze the fitted para-
meters of the growth trajectory using quantitative genetic
approaches. The effectiveness of this strategy has been
proven by combining genetic analysis and an ecophysio-
logical model to reveal the response of maize leaf growth to
temperature and water deficit (Reymond et al. 2003). For
the physiological process of seed filling, the more common
approach is to separate the entire process into the segmented
model, according to different phases of seed development
(Gambín et al. 2008; Alvarez Prado et al. 2013, 2014). This
segmented model usually indicates physiological maturity
based on the intersection of the second and third phases
(Alvarez Prado et al. 2013, 2014). However, seed maturity
is programmed and not abruptly reached. Therefore, this
approach based on the segmented model lost dynamic
information about the continuous seed-filling process (Vega
and Sadras 2003; Borrás et al. 2009). Considering the above
case, it is a need to use a nonlinear function to model the
dynamic process. Logistic models have been widely used to
analyze complex dynamic developing traits, such as human
population growth (Ershkov 2011; Peckham et al. 2018),
plant height (Sun and Frelich 2011), and the leaf biomass in
forest stands (Ogawa 2012). Meanwhile, seed development
follows a typical sigmoid growth curve that can be descri-
bed by a logistic function with a few fitted parameters.
Instead of analyzing many “traits” derived from phenotypic
measurements at multiple time points, genetic analysis can
be limited to a few parameters with biological relevance
(Thornley et al. 2007; Yin et al. 2018).

In this study, we performed genetic and genomic analysis
of the seed-filling process in maize, using a recombinant
inbred line (RIL) population derived from the two inbred

lines (DH1M and T877) that differed significantly in their
seed-filling dynamics. For phenotyping, we measured seed
dry weight at multiple time points after pollination, from the
early filling phases to the late maturation stages. By fitting
these data to a logistic model, we estimated 12 characteristic
parameters that can be used to explain the seed-filling
dynamics. Quantitative trait locus (QTL) mapping of these
parameters identified abundant nonredundant QTL loci,
revealing a complex nature of the seed-filling process.
Using bulked segregant RNA-sequencing (BSR-seq) ana-
lysis, we further identified eight genes that showed differ-
ential gene expression patterns at multiple time points
between the extreme pools, and these genes co-localize with
the mapped QTL regions. Two of the eight genes,
GRMZM2G391936 and GRMZM2G008263, are implicated
in starch and sucrose metabolism, and biosynthesis of sec-
ondary metabolites that are well known for playing a vital
role in seed filling. This study suggests that the logistic
model-based approach can efficiently identify genetic loci
that regulate dynamic developing traits.

Materials and methods

Plant materials, field experiments, and phenotyping

The RIL population consisting of 208 lines was derived
from the cross of the parental genotypes DH1M and
T877 that differed significantly in the rate and duration
of grain filling. DH1M had a shorter grain-filling dura-
tion and produced smaller grains, while T877 had a much
longer grain-filling period and produced much larger
grains. The experiments were conducted at three geo-
graphically different locations in China: Nantong (N31°
55′, E121°37′) in 2015, Yangzhou (N32°22′, E119°16′)
in 2016, and Sanya (N18°23′, E109°44′) in 2017. For
each RIL, a total of 78 plants were grown in a plot
consisting of six rows, with a row length of 3.0 m, a
distance between rows of 0.5 m, and 13 plants per row.
The pollination dates were recorded for individual RIL
lines to determine the sampling time. Seeds were sam-
pled at 10, 15, 20, 25, 30, 35, 40, 43, 46, 49, 52, 55, 58,
and 61 days after pollination (DAP). At each time point,
two ears with the synchronous developmental process
were selected. Fifty seeds in the middle of each ear were
removed and dried to a constant weight at 70–80 °C after
fixing at 105 °C for 1 h. The dry weight of 50 seeds was
measured and recorded.

Growth curve fitting and parameter estimation

The relationship between the seed dry weight (w) and the
number of days after pollination (t) was described by a
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logistic function in the following form (West et al. 2001):

w ¼ k

1þ ae�bt
ð1Þ

where k, a, and b are fitted parameters. k estimates the final
or upper limit of seed dry weight; b is related to the filling
rate; and a is associated with both the rate and duration of
seed filling.

The instantaneous rate of seed filling (v) at the moment
of t was obtained by taking the first derivative of formula
(1):

v ¼ dw

dt
¼ kabe�bt

ð1þ ae�btÞ2 ð2Þ

Based on this equation, the average filling rate (v) and the
active filling duration (T) were also estimated; v was
calculated from the integral of the formula (2) and T was
obtained by k/v.

According to formulas (1) and (2), the distributions of
seed dry weight (w, green color) and filling rate (v, purple
color) over time t are presented in Fig. 1. By taking the
second derivative of formula (1) and setting it equal to zero,
an inflexion point (lna/b, k/2) on the seed-filling curve was
defined; lna/b is the time for reaching the median final dry
weight (k/2) and at this time, the maximum instantaneous
filling rate (vmax) is reached.

By taking the second derivative of formula (2) and set-
ting it equal to zero, two inflexion points were defined at the
time points t1 and t2. The stage from fertilization to t1 is
defined as the lag or gradual growth period and that between

t1 and t2 is defined as the fast growth period. Theoretically,
seed dry weight will never be able to reach the asymptotic
maximum k. In this study, seed filling was considered to be
complete when w= 0.99k. Based on this assumption, an
estimate of the length of the seed-filling duration (t3) was
calculated by substituting 0.99k for w in formula (1). The
stage from t2 to t3 is defined as the slow growth period or the
maturation phase. As shown under the filling rate curve, the
accumulated dry weight during each of the three filling
periods, denoted as w1, w2, and w3, respectively, can also be
calculated.

In summary, a total of 12 characteristic parameters
related to the dynamic seed-filling process were estimated.
The symbols of these parameters together with their cal-
culation formulas and biological definitions are listed in
Table 1. Parameters k, a, and b were estimated using a
nonlinear least-squares approach implemented in R (Bates
and Watts 1988).

Statistical analysis of the parameters

In this study, we fitted one filling curve for each inbred line
in an environment and estimated a list of characteristic
parameters for each inbred line. Calculating the descriptive
statistics of the parameters was performed in R. Broad-sense
heritability (H2) across multiple environments was esti-
mated as H2 ¼ δ2g=ðδ2g þ δ2=eÞ (Knapp et al. 1985), where
δ2g is the genetic variance, δ2 is the error variance, and e is
the number of environments. Pearson correlation coeffi-
cients between characteristic parameters were calculated

Fig. 1 A diagrammatic representation of the seed-filling curve (green)
and the filling rate curve (purple). Several seed-filling characteristic
parameters are indicated. k is the final seed dry weight; vmax is the
maximum filling rate; lna/b is time for reaching the median final dry
weight; and w1, w2, and w3 are accumulated dry weight during the
gradual growth period (t1), fast growth period (t2–t1), and slow growth
period (t3–t2), respectively. t1 and t2 are DAPs (days after pollination)
reaching the first and second inflexion of the filling curve, respectively;
and t3 is the total filling duration

Table 1 Characteristic parameters related to seed filling in maize

Parameter symbol Biological significance Formula

k Final seed dry weight (g)

b Relative filling rate

lna/b Time for median final dry
weight (DAP)

t1 Time for first inflexion of
filling rate (DAP)

t1 ¼ � ln 2þ ffiffi

3
p
a

� �

b

t2 Time for second inflexion of
filling rate (DAP)

t2 ¼ � ln 2� ffiffi

3
p
a

� �

b

t3 Filling duration (DAP) t3 ¼ lnð99aÞ
b

w1 Accumulation during
gradual growth period (g)

w1 ¼ k
3þ ffiffi

3
p

w2 Accumulation during fast
growth period (g)

w2 ¼
ffiffi

3
p
3 k

w3 Accumulation during slow
growth period (g)

w3 ¼ 49
100 �

ffiffi

3
p
6

� �

k

v Average filling rate (g/DAP) v ¼ kb
6

T Active filling period (DAP) T ¼ 6
b

vmax Maximum filling rate (g/
DAP)

vmax ¼ kb
4
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using the agricolae software package (De Mendiburu
2014). The best linear unbiased prediction values of vmax

were calculated based on the combined data from three
environments using lmer function in the lme4 package
(Bates et al. 2015) in R. In this model, genotypes and
environments were considered as random factors.

Genotyping and bin-map construction

DNA was extracted from the young healthy leaves of 208
RILs and two parents. Genotyping was performed with the
Illumina MaizeSNP50 BeadChip, which contained over
56,110 evenly distributed single-nucleotide polymorphisms
(SNPs) covering the entire maize genome. Chi-square tests
were conducted for all SNPs to detect segregation distor-
tion. SNPs with a segregation distortion test P < 0.001 or
containing abnormal bases were filtered out. To eliminate
redundant markers, we used a sliding-window approach
(Huang et al. 2009) to construct a bin map. The order of bin
markers were then checked using the ripple function in the
qtl package (Broman et al. 2003). Genetic distances
between bin markers were calculated using the “Kosambi”
function (Kosambi 1944).

QTL analysis

QTLs associated with the 12 characteristic parameters were
mapped using composite interval mapping (CIM) with the
lmem.qtler package in R (Gutierrez et al. 2016). For CIM,
we used a window size of 10 cM, a step size of 1 cM, and a
threshold that was estimated through a Bonferroni correc-
tion based on the effective number of markers (Meff) (Li and
Ji 2005). In this study, the Meff was 35 and the threshold
was 2.8.

Differential gene expression and enrichment
analysis

Based on the vmax values estimated from the combined data
obtained from 2015 to 2017, we selected two pools of
inbred lines (13 lines per pool) that displayed contrasting
seed-filling rates but reached vmax at a similar time, ~30 days
after pollination. Moreover, the difference significance of
characteristic parameters between two pools was detected
using the t.test function in R. These lines along with the two
parents were grown at Yangzhou, China in the summer of
2017, using the same experimental design as described
above. At 30 days post pollination, seeds were collected and
mRNAs were then isolated from individual plants. Two
bulked mRNA samples were then created by pooling the
mRNAs of all individuals in each pool. The pooled mRNA
samples were subjected to RNA-seq analysis to identify
genes that were differentially expressed between the two

pools. In the RNA-seq analysis process, we first standar-
dized the read counts using TMM algorithm (Robinson and
Oshlack 2010). Under the biological coefficient of variation
was equal to 0.2, we performed the genewise exact test for
differences between two pools of negative binomial counts
using the exactTest function in the edgeR software package
(Robinson et al. 2009). After Bonferroni correction, the
genes with adjusted P values less than 0.05 and an absolute
value of logarithm fold change greater than two were
identified as differentially expressed genes (DEGs). To
determine the putative biological functions of DEGs, Gene
Ontology (GO), and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed
using the clusterProfiler package (Yu et al. 2012). The GO
terms and KEGG pathways with adjusted P values < 0.05
through false discovery rate (FDR) (Hochberg 1995) cor-
rection were identified as significant.

Detection of the associated SNPs

To identify SNPs that could distinguish between the two
bulks, a series of tests were performed in R. Fisher’s exact
tests were first performed for each SNP followed by cal-
culation of the SNP index of each bulk and G value of each
SNP using the QTLseqr package (Mansfeld and Grumet
2018). Through these procedures, the ΔSNP index per site
was then acquired. Using 0.05 as a threshold after FDR
correction, the significantly associated SNPs were identi-
fied. DEGs with significantly associated SNPs and enriched
terms or pathways were considered as associated genes.

Expression analysis of the associated genes

To further characterize the expression of the associated
genes in the filling process, seeds of parents and two
extreme inbred lines were sampled at 10, 20, 30, 40, and 50
DAP. At each time point, seeds in the middle of two similar
ears were sampled as two biological repeats, followed by
RNA isolation and RNA-seq analysis. The reads per kilo-
base of exon per million mapped reads (FPKM) of indivi-
dual genes at different time points were calculated based on
the length of the genes and read counts. In addition, the dry
weights of 50 seeds for each inbred line at different time
points were measured to fit the seed growth curves.

Results and discussion

Fitting the seed-filling curves using a logistic
function and estimating the parameters

The RIL population consisting of 208 lines was derived
from the parental genotypes DH1M and T877 that differed
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in the final seed dry weight and rate, and duration of seed
filling. In particular, DH1M produced smaller seeds and had
a shorter filling duration and a higher filling rate, while
T877 produced larger seeds and had a longer filling period
and a lower rate of filling (Fig. 2a). These plants were
grown in three different environments and seed dry weight
was measured at various time points from pollination to
maturity. A logistic function was used to characterize the
seed-filling process of both parents and RILs (Fig. 2b). The
average determination coefficients (R2) of the fitting curves

in three environments were 0.95, 0.95, and 0.97, respec-
tively, indicating a good fit of the logistic curve to the seed-
filling data. We estimated a total of 12 parameters that are
associated with seed dry weight accumulation, seed-filling
rate, and filling duration (Table S1). There were significant
variations between genotypes, environments, and strong
genotype-by-environment interactions for the observed data
and all the parameter estimates. The variation coefficients of
the parameters ranged from 9.53 to 45.11% among the RIL
lines, and the estimated H2 of the parameters ranged from

Fig. 2 Seed-filling curves of the two parents and RILs, and correlations
among the parameter estimates of seed dry weight, filling duration, and
filling rate. a On the left are seed changes of DH1M and T877 during
filling process. Seed-filling curves (green) and filling rate curves
(purple) of DH1M and T877 in three different environments are on the
right. b Seed-filling curves of RILs across three different environ-
ments. Purple, blue, and green curves are filling curves of RILs in

Nantong (2015), Yangzhou (2016), and Sanya (2017), respectively. c
Correlations among parameter estimates of seed dry weight, filling
duration, and filling rate. Blue color represents a positive correlation
and red color represents a negative correlation; color depth indicates
the level of correlation. * and ** represent significant correlation at
P= 0.05 and 0.01 levels, respectively

126 S. Yin et al.



69.26 to 79.33%. These data suggested the presence of
significant genetic variation for seed-filling dynamics in the
segregating population. Compared with results based on the
segmented model (Alvarez Prado et al. 2013, 2014), herit-
abilities related to seed weight were similar. However,
heritabilities related to filling duration were evidently larger
in this study.

Pearson’s correlation analysis revealed a positive rela-
tionship between the total filling duration (t3) and the final
seed dry weight (k) and between the duration (t1, t2–t1, and
t3–t2) and the accumulated dry weight in each of the three
filling phases (w1, w2, and w3), respectively (Fig. 2c). On
average, the three phases contributed ~21%, 58%, and 20%
to the final dry weight, respectively. The final seed dry
weight was also positively correlated with the parameters
associated with filling rate (v, and vmax). In general, the
filling duration estimates were negatively associated with
those of filling rate; interestingly however, t1, the duration
of the early or lag phase of seed development was positively
associated with the filling rate parameters. Several other
studies also suggested the importance of this phase in reg-
ulating the seed growth rate in the following seed-filling
phase in soybeans and maize (Egli and Wardlaw 1980; Egli
et al. 1989; Jones et al. 1984). The lag phase is dominated
by cell division and cell number determination; thus, this
phase likely mediates final seed size by regulating the
endosperm sink capacity and this capacity in turn governs
the dry matter deposition rate in endosperm cells during the
subsequent seed-filling stage.

Genetic map construction and QTL mapping

For genetic mapping of QTLs associated with the para-
meters in the RIL population, we constructed a high-density
linkage map consisting of 3227 bin markers (Fig. S1).
Summary statistics of the map are presented in Table S2.
The number of bin markers per chromosome varied from
111 to 503. The total length of the linkage map was
2450 cM, with chromosome 1 being the longest and chro-
mosome 2 the shortest. The average genetic distance
between two adjacent markers was 0.76 cM; chromosome 5
had the highest marker density and chromosome 2 had the
lowest marker density. A heatmap showing the linkage and
recombination relationship between bin markers is illu-
strated in Fig. S2a, and a grid for the haplotypes of the RIL
population is shown in Fig. S2b.

QTL analysis of the estimated parameters was per-
formed, based on the data obtained from individual envir-
onments, as well as combined data from all three
environments. For analysis of combined data, the average
values of the parameters were calculated. These analyses
identified a total of 90 nonredundant QTLs associated with
12 parameters (Tables S3 and S4). In particular, 12 QTLs

were associated with accumulation of seed dry weight (k,
w1, w2, and w3); 23 QTLs were related to filling rate (b, v,
and vmax); and 60 QTLs were linked to seed-filling duration
(T, t1, t2, t3, and lna/b). Because of significant genotype-by-
environment interactions, certain QTLs identified in one
environment were not detected in another environment (Fig.
3a). Across three environments, the mean percentage of
phenotypic variation explained by individual QTLs ranged
from 4.59 to 6.29% (Fig. 3b and Table S3). Both parents
contributed favorable alleles at various loci; however, T877
provided more increasing QTL alleles for seed dry weight
and filling duration, while DH1M conferred more increas-
ing QTL alleles associated with filling rate (Fig. 3c). This
latter observation is consistent with the phenotypic differ-
ences observed between the two parents. In addition, we
identified some pleiotropic QTL (Table S4), such as QTL
located at 14.1 cM chromosome 7 controlled both seed dry
weight and filling duration. This case was also found by
other studies based on independent time points (Zhang et al.
2016) or the segmented model (Alvarez Prado et al. 2014).
This similar result indicated that the correlated traits were
likely to be controlled by common genetic mechanism,
which helped explaining the phenotypic correlation. Fur-
thermore, the locus located at 56.3 cM on chromosome 2
was associated with seed dry weight, which was consistent
with other studies (Austin and Lee 1998; Alvarez Prado
et al. 2013). The loci mapped at 95.4−104.1 cM on chro-
mosome 5 co-localized with QTL related to seed weight in
other studies (Guo et al. 2011; Alvarez Prado et al. 2013).
The locus detected at 43 cM on chromosome 7 was located
in the same region as other reports related to seed weight
and filling rate (Li et al. 2012).

Bulked segregant RNA-seq analysis of the RIL
population

To complement QTL mapping, we carried out a genomic
analysis to identify genes that regulate the seed-filling
dynamics using a BSR-seq approach. For this purpose, we
selected two pools of RILs that showed extreme phenotypes
of vmax, the maximum rate of seed filling (Fig. 4a). The
rationale of this strategy was based on the observation that
vmax was positively correlated to the final seed weight. One
of the pools consisted of 13 RILs with high-vmax values of
0.451–0.472, while another pool contained 13 RILs with
low-vmax values of 0.421–0.428. The selected lines were
planted and evaluated at Yangzhou in 2017. The fitting
curves derived from individual RILs and combined analysis
of individual pools are shown in Fig. 4b. It is apparent that
the two pools differed in their seed-filling dynamics;
accordingly, the parameter estimates are statistically dif-
ferent except for the parameter lna/b, the time when vmax is
reached (Fig. 4c). Such analysis further validated the
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previous conclusions that the lag phase duration t1 was
positively correlated with the filling rate and that the filling
rate was positively associated with seed dry weight
accumulation.

Comparative transcriptomic analysis of the two extreme
bulks was performed by RNA sequencing, and the gene
expression levels were measured based on FPKM. To
simplify the analysis, this study focused only the DEGs
located within the mapped QTL regions. We identified a
total of 512 QTL-related DEGs, of which 265 genes were
expressed at a higher level in the high-vmax pool and 247

genes were expressed at a higher level in the low-vmax pool
(Fig. 5a). GO analysis assigned these genes to different
functional categories, and we found that nine GO terms
comprising 17 genes were specifically enriched in the set of
DEGs when compared with background frequency. Eight of
the nine terms were annotated as involving in “biological
process” and one was grouped into the “molecular function”
category (Fig. 5b, c). Most represented biological processes
were associated with carbohydrate synthesis and metabo-
lism. KEGG analysis of QTL-related DEGs revealed the
enrichment of three pathways, including biosynthesis of

Fig. 3 QTL mapping of 12 characteristic parameters. a LOD curves of
12 characteristic parameters in different environmental conditions.
Some peaks of the same characteristic parameter in one environment
do not appear in another environment. b Phenotypic contribution rates
of QTLs associated with the 12 characteristic parameters. Blue,

orange, and green colors represent PVE (phenotypic variability
explained) related to dry weight, filling duration, and filling rate,
respectively. Red points indicate the higher PVEs. c Number of
increasing QTL alleles in different categories contributed by
each parent
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secondary metabolites (zma01110), starch and sucrose
metabolism (zma00500), and taurine and hypotaurine
metabolism (zma00430) (Fig. 5d). The three pathways
involved 33 DEGs, 10 of which were also identified by GO
analysis; as such, a total of 40 genes were revealed by GO
and KEGG enrichment analyses.

Validation of the differentially expressed genes

In addition to identification of DEGs, the BSR-seq analysis
also allowed for detection of allelic variants that were differ-
entially present between pools. These variants could be cau-
sally or non-causally associated with the phenotypic differences
or differential gene expression. For this study, we were speci-
fically interested in identifying SNPs associated with the 40
DEGs revealed by the GO and KEGG enrichment analyses.
Based on Fisher’s exact test, ΔSNP index, and G values, we
identified eight genes whose allele frequencies differed sig-
nificantly between the two pools (Fig. 6). These genes included
GRMZM2G030571, GRMZM2G038677, GRMZM2G043417,
GRMZM2G391936, GRMZM2G136106, GRMZM2G008263,
GRMZM5G843748, and GRMZM2G125923. We assumed that
these genes likely play important roles in regulating the seed-
filling process.

To further validate our assumption, we characterized the
expression of these genes in the developing seeds of the two
parents T877 and DH1M, as well as two additional inbred lines
YZU147 and YZU191, at 10–50 days after pollination (Fig. 7).
The filling dynamics was similar between YZU147 and T877
and between YZU191 and DH1M. Cluster analysis classified
these genes into two groups based on their expression patterns
across genotypes. The first group included genes
GRMZM2G030571, GRMZM2G038677, GRMZM2G043417,
GRMZM2G391936, GRMZM2G136106, and GRMZM5G
843748 that were expressed at a higher level at the early filling
stage, while the second group contained genes
GRMZM2G008263 and GRMZM2G125923 that appeared to
be expressed at a higher level at the mid-filling stage. Overall,
genotypes with similar seed-filling trajectories shared similar
expression profiles across different genes, suggesting that
changes in the expression levels of these genes are associated
with seed filling.

Interestingly, two of the eight genes (GRMZM2G391936
and GRMZM2G008263) are associated with the starch and
sucrose metabolism. GRMZM2G391936 (agpllzm) encodes
a leaf large subunit of ADP-glucose pyrophosphorylase
(AGPase). AGPase is a rate-limiting enzyme
(Georgelis et al. 2009) and catalyzes the reaction of

Fig. 4 Construction of two extreme pools based on vmax. a The dis-
tribution of vmax and selection intervals of two extreme pools were also
indicated. b The filling curves of RILs in two extreme pools (trans-
parent lines) and the average filling curves of lowest and highest pools

(solid lines). c Comparisons of estimates of 12 characteristic para-
meters between the two extreme pools. Red color represents the
highest pool and green color represents the lowest pool
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glucose-1-phosphate (Glc-1-P) and adenosine triphosphate
to produce ADP glucose (ADPGlc) and inorganic pyr-
ophosphate, where ADPGlc formation is an important
metabolic control point (Huang et al. 2014). The yield of
several starch-producing crops can be increased by altered
AGPase activity (Smidansky et al. 2007; Hannah et al.
2012; Tuncel and Okita 2013). Although
GRMZM2G391936 usually has a higher expression level in
leaves, some studies showed that this gene was present in
maize endosperm after pollination (Davidson et al. 2011;
Huang et al. 2014). It has been reported that starch content
of homozygous agpllzm-Ds1 mutant endosperm in maize
had a statistically significant reduction when compared with

the starch content of wild-type kernels at 20 DAP (Huang
et al. 2014). GRMZM2G008263 (GBSSIIa) encodes a
granule bound starch synthase that is localized exclusively
within the starch granule and is responsible for amylose
biosynthesis. GBSSIIa also plays a role in the elongation of
long chains in amylopectin (Grimaud et al. 2008). The
activity of GBSS was significantly and positively correlated
with the accumulation rate of starch and its components in
maize lines, especially the amylose accumulation rate
(Zhang et al. 2008). Therefore, mutation of GBSSIIa could
result in changes in GBSS activity, greatly influencing
amylose accumulation. AGPase catalyzes Glc-1-P to pro-
duce ADPGlc, and ADPGlc is an acting substrate of GBSS,

Fig. 5 Enrichment analysis of differentially expressed genes between
the two extreme pools. a A volcano plot of 512 differentially
expressed genes, where blue and red dots represent DEGs with higher
expression levels in the high-vmax and the low-vmax pools, respectively.
CPM is counts per million. b A bubble plot of enriched GO terms,
where circle size represents number of enriched genes; and red, blue,

and green dots represent biological process, cellular component, and
molecular function, respectively. Yellow line is the threshold line with
adjusted P= 0.05. c A relationship network between enriched terms
and DEGs. d A relationship network between enriched pathways
and DEGs
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indicating that GRMZM2G008263 plays a role after
GRMZM2G391936 in the starch biosynthesis pathway. In
consistent with this, we observed that upregulation of
GRMZM2G391936 occurred before that of
GRMZM2G008263, and that the enhanced expression of
GRMZM2G008263 lasted until 40 DAP, which was longer
than GRMZM2G391936. The inbred lines (YZU191 and
DH1M) with a higher filling rate exhibited a higher

expression level of both GRMZM2G008263 and
GRMZM2G391936 when compared with the inbred lines
(YZU147 and T877) with a lower filling rate. These
observations suggest an important role of the two genes in
seed filling. Notably, despite we only focused on SNPs in
QTL regions, it was still possible that there were linkage
blocks. If the causal variant is linked to a gene(s) that has
cis-controlled expression variation in the parents, and also

Fig. 6 Identification of SNPs associated with the 40 DEGs in the
mapped QTL regions. The red dots and bars are statistically sig-
nificant. The DEGs are indicated around the circle, where DEGs with
significantly associated SNP are tagged by red. a The −log10(Padj) of
each site through Fisher’ exact test. b G values of individual sites. c

Absolute values of the ΔSNP index of individual sites. d The −log10
(Padj) of genes in the QTL regions through differentially expressed
analysis. e |log2(fold change)| of DEGs in the QTL regions. Based on
these indicators, eight associated genes with significantly associated
SNPs and enriched terms or pathways are identified
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likely SNPs, this linked gene(s) would still be classified as
significant by this assay. In this study, we further verified
these candidate genes by the change of expression levels
during the filling process. Two of these candidate genes
were well known for playing roles in seed filling, which
supported our conclusion that the logistic model-based
approach can efficiently identify genetic loci that regulate
dynamic developmental traits. In addition, due to feedback
regulation and post-translational modifications, some
potential candidate genes could have no difference in
transcriptional level (Schlötterer et al. 2014). Therefore,
some potential candidate genes are still unable to be
detected in this study. Other methods would be needed to
mine these potential candidate genes.

Summary

Seed filling is a vital process of seed development. Seed-
filling rate and duration determine the yield of grain crops,
and an efficient and rapid filling process is crucial to
achieve high yield. Understanding the genetic factors
underlying seed filling will facilitate breeding for optimal
filling rate and duration. Seed development follows a sig-
moid growth curve, with each phase contributing to the final
seed size. Traditional studies have been focused on the
linear phase of the seed development and thus failed to
capture the dynamic developing features of the filling pro-
cess. In this study, we employed a logistic function-based
approach to model the seed-filling dynamics and applied
genetic and genomic tools to search for genetic factors that
are associated with the seed-filling process in maize. QTL
mapping in an RIL population coupled with bulked segre-
gant RNA-seq analysis allowed for identifying multiple
QTL loci and associated genes, including two genes well
known for playing roles in seed filling. This study validates
our hypothesis that the logistic model-based approach can

efficiently identify genetic loci that regulate dynamic
developmental traits.

Data archiving

Seed-filling characteristic parameters of RIL in three
environments and genotypic data, as well as the RNA-seq
FPKM data sets are available from Figshare (https://doi.org/
10.6084/m9.figshare.7588547). The raw fastq files were
deposited in the Gene Expression Omnibus: accession
number GSE130930.
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Fig. 7 Expression levels of eight
related genes in different seed-
filling phases of the two parents
and RILs. Red color represents
relatively higher expression
levels and blue color represents
relatively lower levels. Red
curves represent seed-filling
processes of individual inbred
lines. Genotypes with similar
seed-filling trajectories shared
similar expression profiles
across different genes
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