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Abstract
Standard statistical tests for Hardy–Weinberg equilibrium assume the equality of allele frequencies in the sexes, whereas
tests for the equality of allele frequencies in the sexes assume Hardy–Weinberg equilibrium. This produces a circularity in
the testing of genetic variants, which has recently been resolved with new frequentist likelihood and exact procedures. In
this paper, we tackle the same problem by posing it as a Bayesian model comparison problem. We formulate an exhaustive
set of ten alternative scenarios for biallelic genetic variants. Using Dirichlet and Beta priors for genotype and allele
frequencies, we derive marginal likelihoods for all scenarios, and select the most likely scenario using the posterior
probabilities that each of these scenarios is the one in place. Different from the usual frequentist testing approach, the
Bayesian approach allows one to compare any number of models, and not just two at a time, and the models compared do
not have to be nested. We illustrate our Bayesian approach with genetic data from the 1,000 genomes project and through a
simulation study.

Introduction

The Hardy–Weinberg law, independently formulated by
Hardy (1908) and Weinberg (1908) more than 100 years
ago, is a fundamental genetic principle. It is of importance
in many areas of genome research. Hardy–Weinberg equi-
librium is typically assumed in haplotype estimation (Single
et al. 2002). Classical estimation of genetic relatedness
between individuals by maximum likelihood methods also
rests on the equilibrium assumption (Thompson 1975). In
fact, many statistical models and procedures used in genetic
epidemiology make the Hardy–Weinberg assumption. Data
produced by genotyping arrays undergoe extensive quality
control procedures, of which testing for Hardy–Weinberg
proportions (HWP) forms an important part (Laurie et al.
2010). It is well-known, and widely stated in genetic text-
books (Hartl 1980; Hamilton 2009), that a biological

population will reach HWP in one generation of random
mating.

Recently, Graffelman and Weir (2017) have stressed that
this is only true under the assumption of equal allele fre-
quencies (EAF) in the sexes. If such equality does not hold,
it will take two generations before equilibrium is achieved.
Graffelman and Weir (2017) show that the statistical testing
of EAF and HWP by chi-square or exact procedures is
intricately linked in assumptions, leading to circularity in
the statistical testing, because EAF tests assume HWP,
whereas HWP tests assume EAF. The authors propose
novel exact and likelihood ratio procedures that avoid this
dependence in assumptions, making it possible to test EAF
and HWP whether independently or simultaneously.

In this paper, we readdress this issue from a Bayesian
perspective. Our approach extends previous Bayesian work
for the analysis of X-chromosomal variants (Puig et al.
2017). Here, we enumerate ten possible scenarios (models)
for the data, choose prior distributions for the parameters of
each one of the models and prior probabilities for them,
derive marginal likelihoods, and compute posterior prob-
abilities to identify the most probable model, given the
observed data. Six of the scenarios (models) considered
here coincide with the ones considered in Graffelman and
Weir (2017); they include the scenario with both HWP and
EAF in place, together with five scenarios where either

* Jan Graffelman
jan.graffelman@upc.edu

1 Department of Statistics and Operations Research, Universitat
Politècnica de Catalunya, Barcelona, Spain

2 Department of Biostatistics, University of Washington,
Seattle, WA, USA

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-019-0232-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-019-0232-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-019-0232-0&domain=pdf
http://orcid.org/0000-0003-3900-0780
http://orcid.org/0000-0003-3900-0780
http://orcid.org/0000-0003-3900-0780
http://orcid.org/0000-0003-3900-0780
http://orcid.org/0000-0003-3900-0780
mailto:jan.graffelman@upc.edu


HWP or EAF or both restrictions fail. The four scenarios
considered here for the first time are included to admit the
possibility of having one sex in HWP and the other one not
in HWP.

Different from the approach based on the usual fre-
quentist testing, which compares only two scenarios at a
time with one of the scenarios typically nested into the
other one, the Bayesian approach allows one to compare
any number of models which can be nested or not nested
into each other. Different from the approach based on the
use of heuristic model selection criteria, under the Baye-
sian approach, models are assessed based on their pos-
terior probabilities, adding up to one, which helps to
assess the degree of the uncertainty behind the model
choice. Prior distributions are chosen in a way such that
posterior probabilities can be computed either exactly or
through numerical integration, hence avoiding the need to
estimate them through more intensive computational
methods.

The structure of the paper is as follows. In the section
Theory, we develop Bayesian theory for this particular
genetic context. In the section Examples, we illustrate the
use of the Bayesian approach with data taken from the
Japanese population of the 1,000 Genomes project (The
1,000 Genomes Project Consortium et al. 2010). A Dis-
cussion section completes the paper.

Theory

Here, we describe the Bayesian framework that enables
one to select the most credible scenario among ten alter-
native scenarios, including the one in which both HWP as
well as EAF are in place. In the following, the subsection
Notation presents our basic definitions and the subsection
Scenarios and priors gives the probabilistic definition of
each scenario, including both the corresponding statistical
models as well as the prior distributions on their para-
meters. Subsection Bayesian model selection addresses
the way Bayesian model selection works, and finally the
subsection Simulation evaluation explores the perfor-
mance of the model selection procedure through a
simulation study.

Notation

We consider a biallelic genetic polymorphism with alleles A
and B having population allele frequencies pAf and pBf in
females and pAm and pBm in males, with pAf+ pBf= pAm+
pBm= 1. We denote the observed A and B allele counts in
females as nAf and nBf, and in males as nAm and nBm, and
their totals by nA= nAf+ nAm and nB= nBf+ nBm. When the
population has equal allele frequencies for both sexes,

denoted by EAF, their ratio, d, is given by

d ¼ pAm
pAf

¼ 1; ð1Þ

and d will be used as a measure of the discrepancy of male
and female allele frequencies.

Let (pAAf, pABf, pBBf), with pAAf+ pABf+ pBBf= 1, be the
female genotype frequencies, and let (pAAm, pABm, pBBm),
with pAAm+ pABm+ pBBm= 1, be the male genotype fre-
quencies in the population. We denote the observed geno-
type counts in females by (nAAf, nABf, nBBf), and in males by
(nAAm, nABm, nBBm). The total genotype counts are given by
the sum of the latter vectors, and indicated by (nAA, nAB, nBB),
without the index for sex. The total sample size is n= nm+
nf, where nf= nAAf+ nABf+ nBBf is the total number of
females, and nm= nAAm+ nABm+ nBBm is the total number of
males. The total allele counts can be obtained as nA= nAf+
nAm= 2nAAf+ nABf+ 2nAAm+ nABm and nB= 2nBBf+ nABf+
2nBBm+ nABm. One considers the population of females to be
in a Hardy–Weinberg equilibrium when their genotype fre-
quencies are such that

ρf ¼
pAAf � p2Af
pAf ð1� pAf Þ ¼ 0; ð2Þ

and the population of males to be so when

ρm ¼ pAAm � p2Am
pAmð1� pAmÞ ¼ 0; ð3Þ

where ρf and ρm are the inbreeding coefficients for males
and females, which can be used as measures of the
deviation of female and of male genotype frequencies from
HWP. The term “inbreeding coefficient” might be regarded
as a misnomer because disequilibrium might arise from
genotyping error or by chance, instead of from inbreeding,
and because here we have a different coefficient for each
sex while the two sexes intervene when breeding. Never-
theless, we still use the term “inbreeding coefficient” for
historical reasons and because of its widespread use in
population genetics.

The range of ρf is the interval [−pmin/(1− pmin), 1],
where pmin=min(pAf, 1− pAf); in particular, when pAf is 0
or 1, the range for ρf is [0, 1], and its range will only be [−1,
1] when pAf is 0, 5. The same applies to the range of ρm after
replacing pAf by pAm.

When ρm= ρf, we will state that males and females have
equal inbreeding coefficients, and it will be denoted by EIC.
It is easy to check that the relationship between male gen-
otype and allele frequencies in the population is such that

pAm ¼ 2pAAm þ pABm
2

; ð4Þ
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pAAm ¼ p2Am þ pAmpBmρm; ð5Þ

pABm ¼ 2pAmpBmð1� ρmÞ; ð6Þ

pBBm ¼ p2Bm þ pAmpBmρm; ð7Þ

and similarly between female genotype and allele frequen-
cies. The distribution of the vector of female genotype
counts (nAAf, nABf, nBBf), is assumed to be:

Multinomialðnf ; ðpAAf ; pABf ; pBBf ÞÞ; ð8Þ

and the one for male genotype counts (nAAm, nABm, nBBm)
to be:

Multinomialðnm; ðpAAm; pABm; pBBmÞÞ: ð9Þ
The precise situation of a biallelic genetic variant with

respect to the HWP and EAF hypotheses can be efficiently
visualized by plotting the genotype probabilities in a
ternary diagram, also known as a de Finetti diagram (de
Finetti 1926). A sample can be represented by a single
point in the diagram that uniquely defines its genotype and
allele frequencies. The base of the diagram is a 0–1 axis for
the allele frequencies. Genotype frequencies are repre-
sented by the relative length of the three line segments
obtained by perpendicular projection of the sample onto the
edges of the diagram. Allele frequencies can be read off by
projection onto the triangle base. The two vertices at the
base of the ternary diagram therefore have a double

interpretation: they represent the homozygote genotypes
(AA and BB) as well as the two alleles, A and B. Genotype
compositions in HWP must satisfy p2AB ¼ ð2pApBÞ2 ¼
4pAApBB and are therefore constrained to be on a parabola
in the triangle. EAF in the sexes is indicated by male and
female compositions that line up vertically, perpendicularly
with respect to the triangle base. For more background on
the use of the ternary diagram for genetic data, we refer to
Cannings and Edwards (1968), Graffelman and Morales-
Camarena (2008), and Graffelman and Weir (2016) for X-
chromosomal variants.

The ten ternary diagrams presented in Fig. 1 distinguish
ten different possibilities that we consider, which we call
scenarios or models. The diagrams in the first row of Fig. 1
refer to a population with equal allele frequencies for both
sexes, whereas the second row in that figure corresponds to
populations with heterogeneous gender allele frequencies.
The diagrams in the first column in Fig. 1 refer to the two
scenarios in which genotype frequencies satisfy the HWP.
Scenarios with deviations from Hardy–Weinberg propor-
tions, shown in columns 2–5 in Fig. 1, all have points which
are off the HW parabola. When the inbreeding coefficients
are positive, indicating a lack of heterozygotes, the points
fall below the parabola. When the inbreeding coefficients
are negative, indicating an excess of heterozygotes, they
will fall above the parabola.

The statistical models that correspond to each one of
these ten scenarios, together with the prior distribution
assumed for their parameters, are described next in a
systematic way.

Fig. 1 Ternary diagrams with male and female population genotype
frequencies for ten different scenarios. Top row: scenarios with equal
allele frequencies in the sexes. Bottom row: scenarios with different
allele frequencies for both sexes. Population allele frequencies shown

by vertical projections onto the base of the diagram. Symbols on the
parabola indicate that the corresponding sexes are in HWP.
The dimension of the parameter space for each scenario (k) is given at
the bottom of each diagram

Bayesian model selection for the study of Hardy–Weinberg proportions and homogeneity. . . 551



Scenarios and priors

We label the statistical models behind scenarios with a
double subindex, Mij, setting the first subindex i to 1 if the
EAF hypothesis holds and to 2 otherwise. We use the
second subindex j for the HWP hypothesis, setting it to 1
when the HWP hypothesis holds for both males and
females, to 2 when it holds for males but not for females, to
3 when it holds for females but not for males, to 4 when
HWP neither hold for males nor for females but their
inbreeding coefficients are equal, and to 5 when HWP
neither hold for males nor for females and their inbreeding
coefficients are different.

Scenarios M11, M21, M14, M24, M15, and M25 are the ones
considered by Graffelman and Weir (2017). Here, we pro-
vide some more detail by explicitly admitting the possibility
of having one sex in HWP and the other not, which cor-
respond to the scenarios with models M12, M22, M13, and
M23.

Scenario M11: EAF and HWP in both sexes

If there are no disturbing factors operating in the population,
one expects EAF to hold together with HWP for both males
as well as females. When these three conditions hold, that
is, when d= 1, together with ρm= ρf= 0, then all male and
female genotype frequencies can be written as a function of
pAf, (or equivalently pAm), and

ðnAAf ; nABf ; nBBf ÞjpA � Multinomial nf ; ðp2A; 2pAð1� pAÞ; ð1� pAÞ2Þ;
�

ð10Þ
ðnAAm; nABm; nBBmÞjpA � Multinomial nm;ð ðp2A; 2pAð1� pAÞ; ð1� pAÞ2Þ;

ð11Þ

where pA= pAf= pAm. Under this scenario, male and female
allele frequencies, pAm and pAf, are equal, and they will be
assumed to be Betaðb111 ; b112 Þ distributed, where the super-
index ij in bijk denotes the model. This prior distribution on
allele frequencies univocally determines the prior distribu-
tion of all male and female genotype frequencies.

The full equilibrium in M11 can be broken because EAF
does not hold, and therefore d ≠ 1, because HWP do not
hold for females, and therefore ρf ≠ 0, because HWP do not
hold for males, and therefore ρm ≠ 0, or because of the
simultaneous occurrence of any two or of all three of these
conditions. These disequilibrium situations are the ones
covered by the next nine scenarios.

Scenario M21: HWP in both sexes

With HWP in both sexes, we have ρm= ρf= 0, but here
male and female allele frequencies are not the same, and

hence d ≠ 1. In that case, all male and all female genotype
frequencies can be posed as functions of pAf and pAm,
respectively:

ðnAAf ; nABf ; nBBf ÞjpAf � Multinomial nf ; ðp2Af ; 2pAf ð1� pAf Þ; ð1� pAf Þ2Þ
� �

;

ð12Þ
ðnAAm; nABm; nBBmÞjpAm � Multinomial nm; ðp2Am; 2pAmð1� pAmÞ; ð1� pAmÞ2Þ

� �
:

ð13Þ

The allele frequencies, pAf and pAm, are assumed to be
independent with Betaðb211f ; b212f Þ and Betaðb211m; b212mÞ prior
distributions, respectively where, unless one has different
information about pAf and about pAm, one will most likely
set b211f ¼ b211m and b212f ¼ b212m.

Scenario M12: EAF and HWP in males only

Under this scenario, one assumes that there is EAF and
HWP among males, and hence d= 1 and ρm= 0, but HWP
do not hold among females, and hence ρf ≠ 0, and in that
case, male and female genotype frequencies can be posed
just as a function of pAAf and of pABf, and

ðnAAf ; nABf ; nBBf ÞjpAAf ; pABf � Multinomialðnf ; ðpAAf ; pABf ; 1� pAAf � pABf ÞÞ;
ð14Þ

ðnAAm; nABm; nBBmÞjpAAf ; pABf � Multinomial nm; pAAf þ 1
2 pABf

� �� 2
;

�

2ðpAAf þ 1
2 pABf Þð1� ðpAAf þ 1

2 pABf ÞÞ; ð1� ðpAAf þ 1
2 pABf ÞÞ2

��
:

ð15Þ

Under this scenario, the prior distribution used for (pAAf,
pABf, 1− pAAf− pABf) will be Dirichlet ða121f ; a122f ; a123f Þ, where
the superindex ij in aijkf denotes the model.

Scenario M22: HWP for males only

This scenario is like M12 but without EAF, and genotype
frequencies can be written as a function of pAAf, pABf, and
pAm, and are such that

ðnAAf ; nABf ; nBBf ÞjpAAf ; pABf � Multinomialðnf ; ðpAAf ; pABf ; 1� pAAf � pABf ÞÞ;
ð16Þ

ðnAAm; nABm; nBBmÞjpAm � Multinomialðnm; ðp2Am; 2pAmð1� pAmÞ; ð1� pAmÞ2ÞÞ:
ð17Þ

The prior distribution for pAm here will be Betaðb221m; b222mÞ
and for (pAAf, pABf, 1− pAAf− pABf) will be Dirichlet
ða221f ; a222f ; a223f Þ.
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Scenario M13: EAF and HWP for females only

This scenario is like M12 in that EAF holds, but where HWP
holds among females and not among males. In that case,
genotype frequencies are a function of just pAAm and of
pABm, and

ðnAAf ; nABf ; nBBf ÞjpAAm; pABm � Multinomial nf ; ðpAAm þ 1
2 pABmÞ2;

�

2ðpAAm þ 1
2 pABmÞð1� ðpAAm þ 1

2 pABmÞÞ; ð1� ðpAAm þ 1
2 pABmÞÞ2

�
;

ð18Þ
ðnAAm; nABm; nBBmÞjpAAm; pABm � Multinomialðnm; ðpAAm; pABm; 1� pAAm � pABmÞÞ:

ð19Þ

Analogously to M12, we now use the Dirichlet
ða131m; a132m; a133mÞ prior on (pAAm, pABm, 1− pAAm− pABm).

Scenario M23: HWP for females only

This scenario is like M13 but without EAF, and genotype
frequencies are a function of pAf, of pAAm, and of pABm, and
are such that

ðnAAf ; nABf ; nBBf ÞjpAf � Multinomial nf ; ðp2Af ; 2pAf ð1� pAf Þ; ð1� pAf Þ2Þ
� �

;

ð20Þ
ðnAAm; nABm; nBBmÞjpAAm; pABm � Multinomialðnm; ðpAAm; pABm; 1� pAAm � pABmÞÞ:

ð21Þ

The prior distribution will be Betaðb231f ; b232f Þ for pAf and
Dirichlet ða231m; a232m; a233mÞ for (pAAm, pABm, 1− pAAm− pABm).

Finally, in the case where neither males nor females are in
HWP, we will distinguish the setting in which male and
female inbreeding coefficients are equal, EIC, which will be
labeled with a 4 as the second index, from the case in which
the two inbreeding coefficients are different, which will be
labeled with a 5. That, coupled with the possibility of having
or not having EAF, leads to the last four possible scenarios.

Scenario M14: EAF and EIC

With this scenario, one has EAF, and neither males nor
females are in HWP, but male and female inbreeding
coefficients are equal, ρm= ρf ≠ 0, in which case male and
female genotype frequencies are a function of pAAf and of
pABf and are such that

ðnAAf ; nABf ; nBBf ÞjpAAf ; pABf � Multinomialðnf ; ðpAAf ; pABf ; 1� pAAf � pABf ÞÞ;
ð22Þ

ðnAAm; nABm; nBBmÞjpAAf ; pABf � Multinomialðnm; ðpAAf ; pABf ; 1� pAAf � pABf ÞÞ:
ð23Þ

Under this scenario, the prior distribution for (pAAf, pABf,
1− pAAf− pABf) will be Dirichlet ða141f ; a142f ; a143f Þ.

Scenario M24: EIC only

This scenario is like M14 but without EAF, and in that case,
genotype frequencies are a function of pAAf, of pABf, and of
pAm. Their distribution is

ðnAAf ; nABf ; nBBf ÞjpAAf ; pABf � Multinomialðnf ; ðpAAf ; pABf ; 1� pAAf � pABf ÞÞ
ð24Þ

ðnAAm; nABm; nBBmÞjpAm; pAAf ; pABf � Multinomial

nm; p2Am þ pAmð1� pAmÞ pAAf�ðpAAf þ 1
2pABf Þ2

ðpAAf þ 1
2pABf Þð1�pAAf � 1

2pABf Þ
;

��

2pAmð1� pAmÞð1� pAAf�ðpAAf þ 1
2pABf Þ2

ðpAAf þ 1
2pABf Þð1�pAAf � 1

2pABf Þ
Þ;

ð1� pAmÞ2 þ pAmð1� pAmÞ pAAf � ðpAAf þ 1
2pABf Þ2

ðpAAf þ 1
2pABf Þð1�pAAf � 1

2pABf Þ
��

:

ð25Þ

The prior distribution will be Dirichlet ða241f ; a242f ; a243f Þ for
(pAAf, pABf, 1− pAAf− pABf) and it will be Betaðb241m; b242mÞ for
pAm, but truncated to the set of feasible values for that
parameter, the way indicated in Appendix 1.

Scenario M15: EAF only

With this scenario, one has EAF, and neither males nor
females are in HWP, but different from scenario M14, male
and female inbreeding coefficients are assumed to be dif-
ferent. In that case, genotype frequencies are a function of
pAAf, pABf, and pAAm, and

ðnAAf ; nABf ; nBBf ÞjpAAf ; pABf � Multinomialðnf ; ðpAAf ; pABf ; 1� pAAf � pABf ÞÞ;
ð26Þ

ðnAAm; nABm; nBBmÞjpAAm; pAAf ; pABf � Multinomial nm; pAAm;ðð
2pAAf þ pABf � 2pAAm; 1þ pAAm � 2pAAf � pABf

��
:

ð27Þ

Here, the prior for (pAAf, pABf, 1− pAAf− pABf) will be
Dirichlet ða151f ; a152f ; a153f Þ and the prior for pAAm will be Beta
ðb151m; b152mÞ, but truncated to the interval of feasible values
for that parameter, the way indicated in Appendix 1.

Scenario M25: neither EAF nor HWP nor EIC

Finally, under M25, here, neither the EAF nor the HWP
hypotheses for males and females hold, and male and
female inbreeding coefficients are different, and we deal
with the general unrestricted full four-dimensional
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parameter space model, with

ðnAAf ; nABf ; nBBf ÞjpAAf ; pABf � Multinomialðnf ; ðpAAf ; pABf ; 1� pAAf � pABf ÞÞ;
ð28Þ

ðnAAm; nABm; nBBmÞjpAAm; pABm � Multinomialðnm; ðpAAm; pABm; 1� pAAm � pABmÞÞ:
ð29Þ

Under this scenario, the prior for (pAAf, pABf, 1− pAAf− pABf)
is Dirichlet ða251f ; a252f ; a253f Þ while the prior for (pAAm, pABm,
1− pAAm− pABm) is Dirichlet ða251m; a252m; a253mÞ.

In frequentist inference, this last entirely unrestricted
scenario M25 is used as the reference (alternative) hypoth-
esis against which all other scenarios are tested. In the
Bayesian setting, it becomes just another model, treated on
the same level as the other nine.

Depending on the values picked for (a1, a2, a3), the
Dirichlet(a1, a2, a3) distribution will be more or less infor-
mative, and it will capture different information about male or
female genotype frequencies. In particular, its expected value
is ða1; a2; a3Þ=ð

P
ajÞ, and one can choose the aj’s to reflect

the fact that one expects some genotypes to have larger
probabilities than others. Also, the larger

P
aj, the smaller the

variances of the components of the Dirichlet random variable,
and the more informative that prior distribution will be.
When one is not willing to use subjective information about
genotype frequencies, Bernardo and Tomazella (2010) and
Berger et al. (2015) recommend using a Dirichlet prior with
a1= a2= a3= 1/3. We will use this reference prior, which is
like assuming that what you know about genotype fre-
quencies is worth as much as what you learn from a sample
with nm or nf equal to one. Given that the actual sample sizes
in our setting will typically be a lot larger than one, the impact
of this Dirichlet prior on the posterior distribution for the
genotype frequencies will be negligible.

An analogous argument can be made for choosing the
parameters of the Beta(b1, b2) distribution to model the prior
information about allele frequencies in those scenarios
where that is needed. In that case, in the absence of sub-
jective information, one often chooses Beta(b1, b2) with
b1= b2= 1/2.

Note that our choice of prior for the genotype frequencies
determines that the prior distributions for ρf and for ρm will
have two modes at the extremes of the range of values that
they take, and one mode at 0, which are features that one
expects from reference priors for parameters with finite
support and a singular point in its interior. Even though the
prior probability that each one of these coefficients is larger
than 0 is 0.55, and not 0.5, due to the asymmetry of the
support for these parameters, the prior is vague enough to
avoid having that much impact on the posterior distribution
for these coefficients. Our choice of prior for genotype

frequencies determines that the prior distributions for allele
frequencies will have modes at 0, at 0.5, and at 1.

Different parameterizations for the statistical models
allow for different ways of capturing what one knows about
the parameters of the model through a prior distribution for
them. Adopting the parameterizations used above allows for
a choice of priors that leads to simple closed-form expres-
sions for most of the posterior probabilities of the models
considered. Alternative ways of choosing prior distributions
for testing for HWP under the usual autosomal data, often
involving different parameterizations of the statistical
models, can be found in Lindley (1988), Shoemaker et al.
(1998), Consonni et al. (2008), and Wakefield (2010). All
their proposals could be adapted here, but if one chose these
priors to have a small effective sample size, choosing them
instead of the one we chose would make a small difference
at a considerable extra computational cost, because they
would require the use of Markov chain Monte Carlo
methods to estimate posterior probabilities.

Bayesian model selection

In the frequentist literature, one usually tests for EAF and for
HWP separately, assuming that the other hypothesis holds.
Graffelman and Weir (2017) propose an omnibus exact test to
test both hypotheses jointly against a specific alternative
scenario. They also propose a likelihood ratio approach to
pick up the scenario that is most parsimonious among all
scenarios that cannot be rejected. Alternatively, they also
suggest doing model selection among the six models they
consider, based on Akaike’s information criterion (AIC).

Instead, in the Bayesian setting, one can tackle the same
problem by classifying a genetic variant into one scenario
among the ten alternative scenarios described above, which
is equivalent to selecting one model among ten. This is
done by choosing a prior distribution on the parameter
space for each model, together with a prior distribution on
the model space, and then computing the posterior prob-
ability of each one of the ten models. Then, one selects the
model that best represents the variant by picking up the
model with the largest posterior probability. In that setting,
one treats all ten models involved on the same level,
without assigning a special role to the full equilibrium
model, M11.

The posterior probability of each model, P(Mij|y), which
is the probability that Mij is the model generating the data,
y= (nAAf, nABf, nBBf, nAAm, nABm, nBBm), assessed after the
data have been observed, can be computed through Bayes
theorem:

PðMijjyÞ ¼ PðMijÞPðyjMijÞP2
i¼1

P5
j¼1 PðMijÞPðyjMijÞ

; ð30Þ
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where P(Mij) is the prior probability assigned to Mij, and
where P(y|Mij) is the marginal likelihood of Mij. With
everything else staying constant, the larger P(y|Mij), the
larger P(Mij|y). If all models were considered equally likely
a priori, with P(Mij)= 1/10, then P(Mij|y) is proportional to
P(y|Mij).

Most often, computing P(y|Mij) exactly is too compli-
cated, and the marginal likelihoods need to be estimated
through MCMC simulation. In our multinomial setting with
Beta and Dirichlet priors though, there are closed-form
expressions for P(y|Mij) which allow one to compute these
marginal likelihoods exactly in the case of M11, M14, M21,
M22, M23, and M25, and to evaluate them through numerical
integration in the four remaining cases. The expressions for
the marginal likelihoods, P(y|Mij), under our choice of prior
distribution can be found in Appendix 1.

Simulation evaluation of the performance of the
method

To evaluate the performance of this Bayesian model
selection procedure and of the inferences that follow from
it, here, it is used under a large set of known scenarios

through a simulation study. In particular, the method is tried
on SNPs from populations where the female inbreeding
coefficient, ρf, is known and it takes values in its whole
range, where ρm is either 0 or 0.5, where d is either 1 or 1.5,
and where pAf is either 0.2 or 0.4. Sample sizes, nf and nm,
are assumed to be equal and either 50 or 500.

For each set of values for (ρf, ρm, d, pAf, nf, nm) con-
sidered, we have simulated 1,000 SNPs from a population
with the corresponding values for (ρf, ρm, d, pAf), and for
each one of the samples, we have computed P(Mij|y) for the
ten models considered, and the posterior expected value of
ρf, ρ̂f ¼ Eðρf jyÞ under the fully unrestricted model, M25.

When simulations are set for populations with d= 1 and
ρm= 0, as in the top two panels of Fig. 2, the true model is
bound to be either M11, when ρf= 0, or M12 when ρf ≠ 0.
These two panels present the average of the 1,000 values
obtained for P(M11|y), for P(M12|y), and for the sum of the
posterior probabilities of the other eight models, as a
function of ρf. These averages estimate the expected value
of P(M11|y), of P(M12|y), and of the sum of the remaining
posterior probabilities for each given (ρf, ρm, d, pAf). As
desirable, the expected value of P(M11|y) and of P(M12|y)
peak for the values of ρf where the corresponding model
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Fig. 2 Expected value of P(Mij|y) for M11 and M12 for two different
sample sizes in the top two panels, and for M23, M24, and M25 for the
same two sample sizes in the bottom panels, and of the sum of the

posterior probabilities of the remaining models, as a function of ρf in
its whole support, when pAf= 0.4
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holds true. One also observes that for nf and nm as small as
50, the sum of the posterior probabilities for the eight
models known to be wrong is already negligible, and that
the larger the sample sizes, the more peaked the expected
values of P(M11|y) and of P(M12|y) are as a function of ρf,
and hence the larger the power of the model selection
procedure.

When simulations are set for populations with d= 1.5
and ρm= 0.5, as in the bottom two panels in Fig. 2, the true
models are M23, when ρf= 0, M24, when ρf= ρm= 0.5, or
M25, when ρf ≠ 0 and ρf ≠ ρm. These two panels show that
when nf= nm= 500, these three models are indeed the ones
with the largest P(Mij|y) around the values for ρf for which
they are the models in place, and they also show that the
sum of the posterior probabilities of the other seven models,
which are known to be wrong, is negligible. Instead, when

nf= nm= 50, there is not enough power to tell M25 apart
from M23 and M24 when M25 is the correct model and ρf is
between 0 and 0.5. Also, when sample sizes are small, the
posterior probabilities of the other seven models are not
negligible anymore, even though none of these alternative
models ever comes as the winner.

To evaluate the performance of our approach when it
comes to estimating inbreeding coefficients, we explore
how does the posterior expected value of ρf under M25

perform as an estimate for ρf. Figure 3 presents the 90%
posterior-credible interval for E(ρf|y) together with an
average of the sample of 1,000 values obtained for E(ρf|y)
for known values of ρf in its whole range. Observe that the
average of the E(ρf|y) is extremely close to the true ρf of the
population from which SNPs have been sampled from,
which is an indication that ρ̂f ¼ Eðρf jyÞ is practically an

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

ρf

ρ̂f

pAf = 0.2,  nf = nm = 50

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

ρf

ρ̂f

pAf = 0.2,  nf = nm = 500

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

ρf

ρ̂f

pAf = 0.4,  nf = nm = 50

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

ρf

ρ̂f

pAf = 0.4,  nf = nm = 500

Fig. 3 Expected value of ρ̂f ¼ Eðρf jyÞ (circles), and 90% posterior-credible intervals for ρ̂f ¼ Eðρf jyÞ (line segments), as a function of ρf, when
d= 1 and ρm= 0
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unbiased estimate of ρf even for sample sizes as small as
50. The accuracy of the estimation of ρf grows with sample
size and it is larger for pAf= 0.4. Note also that the prior
mode at 0 shrinks inferences about ρ toward 0 and hence,
for very small nf’s and positive ρf’s, there will be a small
downward bias and not the upward bias that one might
have anticipated from the fact that the prior expected value
for ρf is positive.

Examples

To illustrate our approach to testing for HWP and EAF
through Bayesian model selection, we analyze markers
from chromosome 22 using data from the Japanese popu-
lation of the 1,000 Genomes project (The 1,000 Genomes
Project Consortium et al. 2015) consisting of nm= 56 males
and nf= 48 females. Genetic variants were extracted with
the PLINK program (Purcell et al. 2007), using only var-
iants that had no missing values. Variants were LD pruned
(using PLINK option –indep-pairwise 50 5 0.5) in order to
produce an approximately uncorrelated subset.

Classification of ten single SNPs

To illustrate the use of our method, here, we report the
posterior probabilities for the ten alternative scenarios
described in the section Scenarios and priors for the ten
SNPs presented in Table 1. These ten SNPs were chosen so
that there is one with a largest posterior probability for each
one of the ten scenarios considered.

The posterior probabilities, presented in Table 2, are
computed through Eq. (30), assuming equal prior prob-
abilities for the ten models, and hence P(Mij)= 1/10, and
using the expressions for the marginal likelihoods, P(y|Mij)
in Appendix 1 with aj= 1/3 for all the Dirichlet priors on
population genotype frequencies, and with bj= 1/2 for the
beta priors on population allele frequencies. The only

exception will be in Scenario M15, where we will use a Beta
ðb151 ¼ 1=3; b152 ¼ 2=3Þ prior for the population genotype
frequency, pAAm. Given that each one of these priors cor-
responds to an effective sample size of only one, and data
involve a sample size of n= 104, the role played by prior
distributions will be negligible. Sample sizes will most
often be larger than in this example, and hence in practice,
the choice of a prior will most often be even less relevant
than here.

The first marker in Table 1, rs566641289, has a posterior
probability of 0.503 of being both in HWP and having EAF,
and hence one rejects all the nine disequilibrium scenarios,
with posterior probabilities of 0.215 or smaller. The second
marker in Table 1, has a posterior probability smaller than
.001 of being both in HWP and having EAF, but it has
instead a posterior probability of 0.741 of being in the M12

disequilibrium scenario, with d= 1 and ρm= 0 but with ρf ≠
0, and hence where EAF holds but where HWP fails for
females. For the third marker, the equilibrium scenario M11

is also rejected, because it has a posterior probability
smaller than 0.001, and one settles with the M13 scenario,

Table 2 Posterior probabilities,
P(Mij|y), of the ten scenarios
considered in the section
Scenarios and priors for the ten
SNPs presented in Table 1

SNP M11 M12 M13 M14 M15 M21 M22 M23 M24 M25

rs566641289 0.503 0.078 0.072 0.215 0.021 0.056 0.019 0.020 0.008 0.007

rs67982243 0.000 0.741 0.000 0.004 0.170 0.000 0.071 0.000 0.001 0.012

rs398040486 0.000 0.000 0.775 0.021 0.098 0.000 0.000 0.083 0.006 0.016

rs11913608 0.000 0.000 0.000 0.899 0.033 0.000 0.000 0.000 0.041 0.027

rs5761644 0.030 0.280 0.051 0.004 0.434 0.003 0.036 0.014 0.001 0.147

rs2071891 0.043 0.013 0.006 0.005 0.003 0.605 0.123 0.095 0.088 0.019

rs137960 0.009 0.087 0.002 0.034 0.028 0.028 0.597 0.007 0.058 0.151

rs546414427 0.007 0.001 0.036 0.001 0.004 0.046 0.007 0.735 0.053 0.111

rs9798787 0.002 0.005 0.011 0.050 0.035 0.067 0.076 0.105 0.529 0.120

rs112334000 0.000 0.000 0.000 0.102 0.037 0.000 0.000 0.000 0.427 0.433

The largest value for each variant is marked in bold

Table 1 Genotype counts of ten single-nucleotide polymorphisms for
males and females from a sample of the Japanese population study
with nm= 56 and nf= 48

SNP nAAm nABm nBBm nAAf nABf nBBf

1 rs566641289 46 10 0 40 8 0

2 rs67982243 19 29 8 10 37 1

3 rs398040486 12 42 2 17 25 6

4 rs11913608 22 34 0 18 30 0

5 rs5761644 33 23 0 35 8 5

6 rs2071891 18 29 9 30 15 3

7 rs137960 37 18 1 17 30 1

8 rs546414427 29 27 0 16 23 9

9 rs9798787 48 6 2 29 13 6

10 rs112334000 6 50 0 0 47 1
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with d= 1 and ρf= 0 but ρm ≠ 0, because it has a posterior
probability of 0.775. For the last marker, the most probable
scenario is the saturated M25 disequilibrium scenario with
d ≠ 1, ρf ≠ 0, and ρm ≠ 0, even though P(M25|y)= 0.433 is
smaller than 0.5.

One of the advantages of the Bayesian approach, is that
one can easily simulate samples from the marginal pos-
terior distribution of any function of the parameters, and
that is very useful when it comes to present and interpret
the results. Figures 4 and 5, for example, present samples
from the marginal posterior distributions of (pAf, pAm), of
(ρf, ρm), of log(d), and of ρm− ρf for the ten markers in
Table 1. These marginal posterior distributions are com-
puted assuming the fully unrestricted model, M25, as
described in Appendix 2. These two figures also present
90% highest posterior density (hpd) credible intervals/
regions for these parameter values or pairs of parameter
values.

Note that in Figs. 4 and 5, all posterior distributions for a
given SNP are coherent with the characteristics of the model
with the largest posterior probability. In particular, observe
that the posterior-credible intervals for log(d) in Fig. 4,
corresponding to the five SNPs with a most probable model
with d= 1, all include 0 in the intervals for log(d), while the
opposite happens in Fig. 5, where all SNPs are from sce-
narios with d ≠ 1. Also, note that for all the SNPs classified
into one of the four models having EIC, the credible
intervals for ρm− ρf include 0 and the credible regions for
(ρf, ρm) include a substantial part of the diagonal ρf= ρm.
The same coherence is observed in the samples from the
posterior of (pAf, pAm).

We analyzed the same set of SNPs using Akaike’s infor-
mation criterion as proposed by Graffelman and Weir (2017).
In order to do so, the maximum likelihood (ML) estimators of
scenarios M12, M13, M22, and M23, not covered by that paper,
were derived. Appendix 3 provides the details on the com-
putation of the MLE for all ten scenarios. Table 3 presents the
value taken by AIC for all ten SNPs and all ten scenarios; note
that the AIC is always the smallest for the same scenario
chosen by our Bayesian procedure, and that AIC and posterior
probabilities provide very similar rankings of the models for
all ten SNPs considered.

Simultaneous analysis of multiple SNPs

In this section, we illustrate the Bayesian model selection
approach to testing for HWP and EAF by carrying out
the simultaneous analysis of the set of all 107.261
complete polymorphic SNPs with RS identifiers on
chromosome 22 of the Japanese population of the 1,000
Genomes project.

Figure 6 presents the model with the largest posterior
probability for each one of these SNPs, presented in the

order in which these SNPs appear on the chromosome.
Consecutive sequences of markers being systematically
classified to the same scenario might be an indication of
quality control problems in the SNP measurements. Too
few SNPs being classified as being in HW equilibrium
would also be an indication of either a problem in the
measurements or of the fact that the population under
scrutiny is actually in disequilibrium.

Figure 6 also indicates the proportion of these 107.261
SNPs that have been classified into each one of the ten
alternative scenarios described in the section Scenarios and
priors. Scenario M11, representing the setting where both
EAF as well as HWP for both males and females are in
place, is the scenario with the largest posterior probability
for 92.53% of all the SNPs considered. Scenario M14 is the
second most frequent scenario among all SNPs, because it is
the one with the largest posterior probability in 2.67% of the
cases considered. Scenarios M21 and M12 are the third and
fourth most frequent ones, because they are the ones with
the largest probability in 1.66% and in 1.46% of the cases,
respectively. The least frequent scenario among the SNPs
from chromosome 22 is the saturated model, M25, which is
the most probable model in only 0.01% of the cases.

Figure 6 shows a dense stripe for the most common
scenario M11, and also reflects that EAF scenarios M1i are
far more common than the corresponding M2i scenarios that
have different allele frequencies in the sexes. There is
overall, little evidence for deviations from EAF, and if it is
found, then HWP still mostly hold for both sexes separately.
Chromosome 22 is acrocentric, having its centromere in the
interval 12.2–17.9 Mb (hg 19). It is known that the cen-
tromere region is hard to genotype, and that deviation from
HWP is more often found for variants inside and flanking
the centromere (Graffelman et al. 2017). Figure 6 also
shows that scenario M15 is more common in the centromere
in comparison with the rest of the chromosome. In fact, all
disequilibrium scenarios with EAF were found to be more
common in the centromere, though this is hard to perceive
in Fig. 6. Outside the centromere, 92.7% of the variants are
assigned to theM11 scenario, whereas this drops to 88.5% in
the centromere region.

Discussion

We have presented a Bayesian method for joint inference on
Hardy–Weinberg equilibrium and on equality of allele fre-
quencies for biallelic markers. Disequilibrium might be due
to a difference in allele frequencies between the sexes, to
males or females not satisfying the HW proportions, or any
combination of these situations simultaneously. By com-
puting the posterior probability for each scenario, one can
classify each SNP into its most probable scenario.
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Fig. 4 Samples from the marginal posterior distributions of (pAf, pAm), of (ρf, ρm), of log(d), and of ρm− ρf, and 90% hpd posterior-credible regions,
all for the first five SNPs in Table 1
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Fig. 5 Samples from the marginal posterior distributions of (pAf, pAm), of (ρf, ρm), of log(d). and of ρm− ρf, and 90% hpd posterior-credible regions,
all for the last five SNPs in Table 1
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Frequentist tests compare models (scenarios) in pairs,
and when choosing between equilibrium, (i.e., M11), and
disequilibrium, (i.e., any of the other nine models), one can
pair equilibrium with disequilibrium in nine different ways.
In order to precisely determine the disequilibrium scenario
that is in place with a frequentist approach, several statis-
tical tests are necessary, because the number of ways in
which scenarios can be paired increases a lot, and many of
these pairs of scenarios are not nested. Instead, by assigning
a posterior probability to each one of the ten scenarios, with
the ten probabilities adding up to one, our Bayesian
approach provides a simple way of selecting the most
probable scenario in the light of the data. Moreover, the
Bayesian approach allows the simultaneous comparison of
all possible models, whereas the likelihood ratio approach is
restricted to compare models that are nested.

Akaike’s information criterion also offers an easy way to
select the best fitting model among all available models.
However, if two models have a similar AIC, then it may be
hard to tell how strong the evidence is in favor of the better
fitting model. In the Bayesian approach, the scenarios are
compared in a probability scale, and this gives a better idea

of the extent to which the best fitting model outperforms its
competitors.

One nice feature of the Bayesian approach is that, on top
of providing posterior probabilities for the scenarios, it also
yields the posterior distribution of the parameters of interest,
the way described in Appendix 2 and illustrated in the
section Classification of ten single SNPs.

We have found it convenient to parameterize dis-
equilibrium by using the inbreeding coefficient and the ratio
of male to female allele frequencies, using a Dirichlet prior
on the genotype frequencies. Alternatively, priors specified
directly on the disequilibrium measures might also be
considered.

The Bayesian procedures described here do not require
one to implement MCMC methods, as it is usual in most
Bayesian applications, and that simplifies computations a
lot. If the integration required for the computation of some
of the posterior probabilities is carried out efficiently,
there will not be any problem in using this method for
complete chromosomes.

The analysis of variants on chromosome 22 by our
proposed Bayesian procedure reveals more deviation from
the equilibrium scenario in the centromere region, in com-
parison with the rest of the chromosomes, which is con-
sistent with previous disequilibrium studies. A more
detailed analysis of centrometric regions could be of inter-
est, given the role this region has in human diseases like
cancer (Barra and Fachinetti 2018). The analysis also shows
that deviation from HWP is far more frequent than deviation
from EAF. This is in agreement with the population-genetic
principle that it takes only one generation to achieve EAF,
but two to achieve HWP.

Software

The Bayesian methods presented here have been pro-
grammed in R by Xavier Puig. Bayesian model selection
can be carried out using function HWPosterior of version

Table 3 AIC of the ten scenarios
considered in the section
Scenarios and priors for the ten
SNPs presented in Table 1

SNP M11 M12 M13 M14 M15 M21 M22 M23 M24 M25

rs566641289 99.54 100.81 100.56 99.83 101.83 101.52 102.79 102.53 101.83 103.81

rs67982243 191.11 173.09 192.78 182.15 174.76 193.11 175.09 194.77 183.99 176.75

rs398040486 188.93 190.46 171.99 178.03 173.52 190.79 192.31 173.80 180.03 175.33

rs11913608 170.05 157.91 156.73 142.59 144.59 172.03 159.88 158.70 144.59 146.55

rs5761644 165.52 159.33 161.52 167.18 155.32 167.41 161.24 163.40 168.91 157.23

rs2071891 203.91 204.88 205.86 205.75 206.82 196.22 197.89 198.00 198.22 199.66

rs137960 169.39 163.35 171.15 164.82 165.21 164.77 157.39 166.20 161.12 158.81

rs546414427 195.59 197.41 190.80 196.68 192.47 189.44 191.42 182.71 187.55 184.69

rs9798787 164.16 160.94 159.89 155.93 157.12 155.17 153.22 153.02 149.10 151.07

rs112334000 155.40 100.15 111.40 61.04 62.99 156.55 100.38 112.02 57.30 55.86

The minimal value for each variant is marked in bold

Fig. 6 Model with the largest posterior probability for the SNPs selected
from the Japanese population, presented in the position where they are
placed on the chromosome. The vertical gray line indicates the boundary
of the centromere, and the numbers on the right extreme correspond to the
proportion of SNPs classified into each one of the scenarios considered
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1.6.2 of the Hardy–Weinberg package (Graffelman 2015).
Function HWAIC does the AIC calculations.
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Appendix 1: marginal likelihoods

Here, we present the marginal likelihoods, P(y|Mij) for the
ten models needed to compute the posterior probabilities, P
(Mij|y), through Eq. (30). The priors assumed are the ones
described in the section Scenarios and priors, and y= (nAAf,
nABf, nBBf, nAAm, nABm, nBBm).

For convenience, we define constant K as the product of
the multinomial coefficients involving the male and female
genotype counts:

K ¼ nf !

nAAf !nABf !nBBf !

nm!

nAAm!nABm!nBBm!
:

The marginal likelihood under M11, is

PðyjM11Þ ¼ K
ΓðP2

j¼1 b
11
j ÞQ2

j¼1 Γðb11j Þ
Γðb111 þ nAÞΓðb112 þ nBÞ

ΓðP2
j¼1 b

11
j þ 2nÞ 2nAB ;

The marginal likelihood under M21, with d ≠ 1 and ρf=
ρm= 0, can be computed through

PðyjM21Þ ¼ K
Γ
�P2

j¼1
b21jf

�
Q2

j¼1
Γðb21jf Þ

Γ
�P2

j¼1
b21jm

�
Q2

j¼1
Γðb21jmÞ

Γðb211f þnAf ÞΓðb212f þnBf Þ
Γ
�P2

j¼1
b21jf þ2nf

� Γðb211mþnAmÞΓðb212mþnBmÞ
Γ
�P2

j¼1
b21jmþ2nm

� 2nAB

The marginal likelihood under M12, with d= 1, ρf ≠ 0,
and ρm= 0, is

PðyjM12Þ ¼ K
Γ
�P3

j¼1
a12jf

�
Q3

j¼1
Γ
�
a12jf

� 2nABm
�R 1

0

R 1�pABf
0 p

a121f þnAAf�1

AAf

�p
a122f þnABf�1

ABf ð1� pAAf � pABf Þa
12
3f þnBBf�1

� 2pAAfþpABf
2

� �nAm
1� 2pAAfþpABf

2

� �nBm
dpAAf dpABf :

The marginal likelihood underM22, with d ≠ 1, ρf ≠ 0, and
ρm= 0, is

PðyjM22Þ ¼

K
Γ
�P3

j¼1
a22jf

�
Q3

j¼1
Γða22jf Þ

Γ
�P2

j¼1
b22jm

�
Q2

j¼1
Γðb22jmÞ

Γða221f þnAAf ÞΓða222f þnABf ÞΓða223f þnBBf Þ
Γ
�P3

j¼1
a22jf þnf

� Γðb221mþnAmÞΓðb222mþnBmÞ
Γ
�P2

j¼1
b22jmþ2nm

� 2nABm

The marginal likelihood under M13, with d= 1, ρf= 0,
and ρm ≠ 0, is

PðyjM13Þ ¼ K
Γ
�P3

j¼1
a13jm

�
Q3

j¼1
Γða13jmÞ

2nABf

�R 1
0

R 1�pABm
0 p

a131mþnAAm�1
AAm

�p
a132mþnABm�1
ABm ð1� pAAm � pABmÞa

13
3mþnBBm�1

� 2pAAmþpABm
2

� �nAf 1� 2pAAmþpABm
2

� �nBf dpAAmdpABm:
The marginal likelihood under M23, with d ≠ 1, ρf= 0,

and ρm ≠ 0, is

PðyjM23Þ ¼ K
Γ
�P2

j¼1
b23jf

�
Q2

j¼1
Γðb23jf Þ

Γ
�P3

j¼1
a23jm

�
Q3

j¼1
Γða23jmÞ

Γðb231f þnAf ÞΓðb232f þnBf Þ
Γ
�P2

j¼1
b23jf þ2nf

�

� Γða231mþnAAmÞΓða232mþnABmÞΓða233mþnBBmÞ
Γ
�P3

j¼1
a23jmþnm

� 2nABf :

The marginal likelihood under M14, with d= 1, ρf ≠ 0,
and ρm ≠ 0 but ρf= ρm, is

PðyjM14Þ ¼ K
ΓðP3

j¼1 a
14
jf ÞQ3

j¼1 Γða14jf Þ
Γða141f þ nAAÞΓða142f þ nABÞΓða143f þ nBBÞ

ΓðP3
j¼1 a

14
jf þ nÞ

The marginal likelihood underM24, with d ≠ 1, ρf ≠ 0, and
ρm ≠ 0 but ρf= ρm, is

PðyjM24Þ ¼

K
Γ
�P3

j¼1
a24jf

�
Q3

j¼1
Γða24jf Þ

2nABm
R 1
0

R 1�pABf
0

Rminðt2;1Þ
maxð0;t1Þp

a241f þnAAf�1

AAf p
a242f þnABf�1

ABf

�ð1� pAAf � pABf Þa
24
3f þnBBf�1

�p
b241mþnABm�1
Am ð1� pAmÞb

24
2mþnABm�1

� p2Am þ pAmð1� pAmÞ pAAf�ðpAAfþ1
2pABf Þ2

ðpAAfþ1
2pABf Þð1�pAAf�1

2pABf Þ
� �nAAm

� 1� pAAf�ðpAAfþ1
2pABf Þ2

ðpAAfþ1
2pABf Þð1�pAAf�1

2pABf Þ
� �nABm

1R minðt2 ;1Þ
maxð0;t1Þ

p
b24
1m

�1

Am ð1�pAmÞb
24
2m

�1
dpAm

� ð1� pAmÞ2 þ pAmð1� pAmÞ pAAf�ðpAAfþ1
2pABf Þ2

ðpAAfþ1
2pABf Þð1�pAAf�1

2pABf Þ
� �nBBm

dpAmdpAAf dpABf ;

where

t1 ¼ ð4p2AAf þ 4pAAf pABf � 4pAAf þ p2ABf Þ=ð2pABf Þ;

t2 ¼ ð�4p2AAf � 4pAAf pABf þ 4pAAf � p2ABf þ 2pABf Þ=ð2pABf Þ:
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The marginal likelihood under M15, with d= 1, ρf ≠ 0,
and ρm ≠ 0, is

PðyjM15Þ ¼ K
Γ
�P3

j¼1
a15jf

�
Q3

j¼1
Γða15jf Þ

R 1
0

R 1�pABf
0

R pAAfþ0:5pABf
maxð0;2pAAfþpABf�1Þp

a151f þnAAf�1

AAf p
a152f þnABf�1

ABf

�ð1� pAAf � pABf Þa
15
3f þnBBf�1p

b151mþnAAm�1
AAm

�ð1� pAAmÞb
15
2m�1ð2pAAf þ pABf � 2pAAmÞnABm

�ð1þ pAAm � 2pAAf � pABf ÞnBBm 1R pAAf þ0:5pABf

maxð0;2pAAf þpABf �1Þp
b15
1m

�1

AAm ð1�pAAmÞb
15
2m

�1
dpAAm

dpAAmdpAAf dpABf :

The marginal likelihood underM25, with d ≠ 1, ρf ≠ 0, and
ρm ≠ 0, is

PðyjM25Þ ¼ K
Γ
�P3

j¼1
a25jf

�
Q3

j¼1
Γða25jf Þ

Γ
�P3

j¼1
a25jm

�
Q3

j¼1
Γða25jmÞ

Γða251f þnAAf ÞΓða252f þnABf ÞΓða253f þnBBf Þ
Γ
�P3

j¼1
a25jf þnf

�

� Γða251mþnAAmÞΓða252mþnABmÞΓða253mþnBBmÞ
Γ
�P3

j¼1
a25jmþnm

�

Note that the only models that require integration are
M12, M13, M24, and M15. However, it can be carried out
numerically without any problem because the integration
region is compact, and grid size can be set to be as small as
needed for the precision required.

Appendix 2: posterior distribution under M25

Under the saturated model M25, (nAAf, nABf, nBBf) is multi-
nomially (nf,(pAAf, pABf, pBBf)) distributed and (nAAm, nABm,
nBBm) is multinomially (nm, (pAAm, pABm, pBBm)) distributed.

If (pAAf, pABf, pBBf) is Dirichlet ða251f ; a252f ; a253f Þ, and (pAAm,
pABm, pBBm) is Dirichlet ða251m; a252m; a253mÞ, the posterior dis-
tribution for (pAAf,pABf,pBBf) is

πðpAAf ; pABf ; pBBf jyÞ ¼ Dirichletða251f þ nAAf ; a
25
2f þ nABf ; a

25
3f þ nBBf Þ;

ð31Þ

independent of the posterior distribution for (pAAm, pABm,
pBBm), which is

πðpAAm; pABm; pBBmjyÞ ¼ Dirichletða251m þ nAAm; a
25
2m þ nABm; a

25
3m þ nBBmÞ:

ð32Þ
The marginal posterior distributions for pAf, pAm, d, ρf, and
ρm follow from the ones for (pAAf, pABf, pBBf) and for (pAAm,
pABm, pBBm), and they can be easily estimated by simulating
large samples of (pAAf, pABf, pBBf), and of (pAAm, pABm, pBBm),
and by computing the corresponding value of pAf, pAm, d, ρf,
and ρm for each value in the sample.

Appendix 3: maximum likelihood estimators

In this appendix, we give the maximum likelihood estima-
tors for those scenarios for which a closed-form expression

has been found. These are needed for the calculation of
Akaike’s information criterion, AIC= 2k− 2 logL(bθ),
where k is the number of parameters of the model, and θ̂
the vector of ML estimators. Maximum likelihood (ML)
estimators for the parameters of the new models M12,
M13, M22, and M23 were derived for this paper. We also
include the estimators for models M11, M14, M15, M21, M24,
andM25 previously derived by Graffelman and Weir (2017),
and labeled in their article as A, B, C, D, E, and F,
respectively.

M11. This model has pA= pAf= pAm and ρ= ρf= ρm= 0.
There is only one free parameter to be estimated, so k= 1.
The ML estimator of pA is just the overall sample A allele
frequency p̂A ¼ nA=ð2nÞ.

M12. This model has pA= pAf= pAm, ρm= 0, no restric-
tions on ρf, and so k= 2. Solving the likelihood equations,
one finds the relationship ρ̂f ¼ �ðnA � 2np̂AÞ=
ðnAm � 2nmp̂AÞ. This can be used to solve the likelihood
equations numerically in one parameter, after which the
other is inferred.

M13. This is essentially the same model as M12, but with
the sexes interchanged. It has k= 2 and the parameters pA
and ρm can be estimated by the same numerical procedure
outlined for M12.

M14. This model has EAF and EIC such that pA= pAf=
pAm and ρ= ρf= ρm, giving k= 2. The ML estimator for pA
is the overall sample A allele frequency, and the ML esti-
mator for ρ is ρ̂ ¼ ð4nAAnBB � n2ABÞ=ðnAnBÞ.

M15. This model has only EAF such that pA= pAf= pAm,
and different inbreeding coefficients ρf and ρm for the sexes,
and so k= 3. No closed-form solution was reported for this
model, and its three parameters are estimated by iterative
maximization.

M21. This model has HWP for both sexes, ρm= ρf= 0, and
k= 2 because the two allele frequencies pAm and pAf need to
be estimated. The ML estimators for the allele frequencies are
the male and female sample A allele frequencies, respectively,
that is, p̂Am ¼ nAm=ð2nmÞ and p̂Af ¼ nAf =ð2nf Þ.

M22. This model has different allele frequencies for the
sexes, pAm and pAf, and one inbreeding coefficient for
females only, ρf, because ρm= 0 and so k= 3. The ML
estimators for the male and female allele frequency are the
corresponding sample allele frequencies and the ML esti-
mator for ρf is ρ̂f ¼ ð4nAAf nBBf � n2ABf Þ=ðnAf nBf Þ.

M23. This model is essentially the same as model M22, but
with the sexes interchanged. It has ρf= 0, and k= 3. The ML
estimators for the male and female allele frequencies are the
corresponding sample allele frequencies, and ρm is estimated
by ρ̂m ¼ ð4nAAmnBBm � n2ABmÞ=ðnAmnBmÞ.

M24. This model assumes EIC such that ρm= ρf= ρ, and
k= 3, requiring estimation of ρ, pAm, and pAf. No closed-
form expressions have been found for the ML estimators,
and the latter are estimated by iterative maximization,
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taking into account the usual range constraints for the
inbreeding coefficients and allele frequencies.

M25. This is the full model that has no restrictions on the
parameters, except the usual range constraints, and has the
largest number of free parameters, k= 4. The ML estima-
tors are given by the sample allele frequencies, and the sex-
specific inbreeding coefficient estimators already given
under models M22 and M23.
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