Article | Published:

Genetic evaluation of the Iberian lynx ex situ conservation programme


Ex situ programmes have become critical for improving the conservation of many threatened species, as they establish backup populations and provide individuals for reintroduction and reinforcement of wild populations. The Iberian lynx was considered the most threatened felid species in the world in the wake of a dramatic decline during the second half of the 20th century that reduced its numbers to around only 100 individuals. An ex situ conservation programme was established in 2003 with individuals from the two well-differentiated, remnant populations, with great success from a demographic point of view. Here, we evaluate the genetic status of the Iberian lynx captive population based on molecular data from 36 microsatellites, including patterns of relatedness and representativeness of the two remnant genetic backgrounds among founders, the evolution of diversity and inbreeding over the years, and genetic differentiation among breeding facilities. In general terms, the ex situ population harbours most of the genetic variability found in the two wild populations and has been able to maintain reasonably low levels of inbreeding and high diversity, thus validating the applied management measures and potentially representing a model for other species in need of conservation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. Abascal F, Corvelo A, Cruz F, Villanueva-Cañas JL, Vlasova A, Marcet-Houben M et al. (2016) Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biol 17:251

  2. Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5:384–387

  3. Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471

  4. Attard CRM, Möller LM, Sasaki M, Hammer MP, Bice CM, Brauer CJ et al. (2016) A novel holistic framework for genetic-based captive-breeding and reintroduction programs. Conserv Biol 30:1060–1069

  5. Ballou JD, Lacy RC (1995) Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In: Ballou JD, Gilpin M, Foose TJ (eds) Population management for survival and recovery. Columbia University Press, New York, pp 76–111

  6. Ballou JD, Lees C, Faust LJ, Long S, Lynch C, Lackey LB, et al. (2010) Demographic and genetic management of captive populations. In: Kleiman DG, Thompson K, Kirk-Baer C (eds) Wild mammals in captivity, principles and techniques. University of Chicago Press, London & Chicago, pp 219–252

  7. Balmford A, Leader-Williams N, Green MJB (1995) Parks or arks. Biodivers Conserv 4:595–607

  8. Blouin MS, Parsons M, Lacaille V, Lotz S (1996) Use of microsatellite loci to classify individuals by relatedness. Mol Ecol 5:393–401

  9. Boardman K, Mace M, Peregoy S, Ivy JA (2017) Population analysis & breeding transfer plan, whooping crane (Grus americana). AZA Species Survival Plan® Program. Population Management Center, Association of Zoos and Aquariums, Silver Spring, MD, 36 pp

  10. Bowkett AE (2009) Recent captive-breeding proposals and the return of the ark concept to global species conservation. Conserv Biol 23:773–776

  11. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA et al. (2010) Global biodiversity: Indicators of recent declines. Science 328:1164–1168

  12. Caballero A, Toro MA (2000) Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet Res 75:331–343

  13. Calzada J, Guzmán JN, Rodríguez A (2007).Lynx pardinus (Temminck, 1827). Ficha libro rojo. In: Palomo L, Gisbert J, Blanco J (eds) Atlas y libro rojo de los mamíferos terrestres de España. Dirección General para la Biodiversidad-SECEM-SECEMU, Madrid, pp 345–347

  14. Casas-Marce M, Marmesat E, Soriano L, Martínez-Cruz B, Lucena-Perez M, Nocete F et al. (2017) Spatiotemporal dynamics of genetic variation in the Iberian lynx along its path to extinction reconstructed with ancient DNA. Mol Biol Evol 34:2893–2907

  15. Casas-Marce M, Soriano L, López-Bao JV, Godoy JA (2013) Genetics at the verge of extinction: insights from the Iberian lynx. Mol Ecol 22:5503–5515

  16. Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244

  17. Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform 12:12–35

  18. Chesser RK (1983) Isolation by distance: relationship to management of genetic resources. In: Schonewald-Cox C, Chambers S, MacBryde B, Thomas W (eds) Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin Cummings Publishing Co., London, UK, pp 66–77

  19. Conway WG (1986) The practical difficulties and financial implications of endangered species breeding programmes. Int Zoo Yearb 24:210–219

  20. Csilléry K, Johnson T, Beraldi D, Clutton-Brock T, Coltman D, Hansson B et al. (2006) Performance of marker-based relatedness estimators in natural populations of outbred vertebrates. Genetics 173:2091–2101

  21. Dobrynin P, Liu S, Tamazian G, Xiong Z, Yurchenko AA, Krasheninnikova K et al. (2015) Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol 16:277

  22. Fernández BJ, Toro MA (1999) The use of mathematical programming to control inbreeding in selection schemes. J Anim Breed Genet 116:447–466

  23. Fernández J, Toro MA (2006) A new method to estimate relatedness from molecular markers. Mol Ecol 15:1657–1667

  24. Fernández J, Toro MA, Caballero A (2004) Managing individuals’ contributions to maximize the allelic diversity maintained in small, conserved populations. Conserv Biol 18:1358–1367

  25. Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333

  26. Frankham R (2016) Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biol Conserv 195:33–36

  27. Frankham R, Ballou JD, Briscoe DA (2010). Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

  28. Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR et al. (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

  29. Godoy JA, Casas-Marce M, Fernández J (2009) Genetic issues in the implementation of the Iberian lynx ex situ conservation programme. In: Vargas A, Breitenmoser C, Breitenmoser U (eds) Iberian lynx ex situ conservation: an interdisciplinary approach, Fundación Biodiversidad: Madrid, pp 86–99

  30. Gómez-Romano F, Villanueva B, de Cara MA, Fernández J (2013) Maintaining genetic diversity using molecular coancestry: the effect of marker density and effective population size. Genet Sel Evol 45:38

  31. Gonçalves Da Silva A, Lalonde DR, Quse V, Shoemaker A, Russello MA (2010) Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation. J Hered 101:581–590

  32. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

  33. Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3).

  34. Guzmán JN, García FJ, Garrote G, Pérez de Ayala R, Iglesias C (2004) El lince ibérico (Lynx pardinus) en España y Portugal. Censo diagnóstico de sus poblaciones. Dirección General para la Biodiversidad, Madrid

  35. Henkel JR, Jones KL, Hereford SG, Savoie ML, Leibo SP, Howard JJ (2012) Integrating microsatellite and pedigree analyses to facilitate the captive management of the endangered Mississippi sandhill crane (Grus canadensis pulla). Zoo Biol 31:322–335

  36. Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SHM et al. (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509

  37. Hogg CJ, Grueber CE, Pemberton D, Fox S, Lee AV, Ivy JA et al. (2017) “Devil Tools & Tech”: a synergy of conservation research and management practice. Conserv Lett 10:133–138

  38. Jiménez MA, Sánchez B, Alenza MDP, García P, López JV, Rodríguez A et al. (2008) Membranous glomerulonephritis in the Iberian lynx (Lynx pardinus). Vet Immunol Immunopathol 121:34–43

  39. Johnson WE, Godoy JA, Palomares F, Delibes M, Fernandes M, Revilla E et al. (2004) Phylogenetic and phylogeographic analysis of Iberian lynx populations. J Hered 95:19–28

  40. Jones KL, Glenn TC, Lacy RC, Pierce JR, Unruh N, Mirande CM et al. (2002) Refining the whooping crane studbook by incorporating microsatellite DNA and leg-banding analyses. Conserv Biol 16:789–799

  41. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

  42. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

  43. Kalinowski ST, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

  44. Kardos M, Luikart G, Allendorf FW (2015) Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity (Edinb) 115:63–72

  45. Kleinman-Ruiz D, Martínez-Cruz B, Soriano L, Lucena-Perez M, Cruz F, Villanueva B et al. (2017) Novel efficient genome-wide SNP panels for the conservation of the highly endangered Iberian lynx. BMC Genomics 18:556

  46. Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158

  47. Lacy RC, Ballou JD, Pollak JP (2012) PMx: software package for demographic and genetic analysis and management of pedigreed populations. Methods Ecol Evol 3:433–437

  48. Laikre L (1999) Hereditary defects and conservation genetic management of captive populations. Zoo Biol 18:81–99

  49. Lucena-Perez M, Soriano L, López-Bao JV, Marmesat E, Fernández L, Palomares F et al. (2018) Reproductive biology and genealogy in the endangered Iberian lynx: implications for conservation. Mamm Biol 89:7–13

  50. Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629

  51. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

  52. Martínez F, Manteca X, Pastor J (2013) Retrospective study of morbidity and mortality of captive Iberian lynx (Lynx pardinus) in the ex situ conservation programme (2004–june 2010). J Zoo Wildl Med 44:845–852

  53. McGowan PJK, Traylor-Holzer K, Leus K (2017) IUCN guidelines for determining when and how ex situ management should be used in species conservation. Conserv Lett 10:361–366

  54. Meuwissen TH (1997) Maximizing the response of selection with a predefined rate of inbreeding. J Anim Sci 75:934–940

  55. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

  56. Norman AJ, Putnam AS, Ivy JA (2019) Use of molecular data in zoo and aquarium collection management: benefits, challenges, and best practices. Zoo Biol 38:106–118

  57. Nowell K, Jackson P (1996) Wild cats: status survey and conservation action plan. IUCN/SSC Cat Specialist Group. IUCN, Gland

  58. Oliehoek PA, Windig JJ, Van Arendonk JAM, Bijma P (2006) Estimating relatedness between individuals in general populations with a focus on their use in conservation programs. Genetics 173:483–496

  59. Palomares F, Godoy JA, López-Bao JV, Rodríguez A, Roques S, Casas-Marce M et al. (2012) Possible extinction vortex for a population of Iberian lynx on the verge of extirpation. Conserv Biol 26:689–697

  60. Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research – an update. Bioinformatics 1:6–8

  61. Peña L, Garcia P, Jiménez MA, Benito A, Pérez-Alenza MD, Sánchez B (2006) Histopathological and immunohistochemical findings in lymphoid tissues of the endangered Iberian lynx (Lynx pardinus). Comp Immunol Microbiol Infect Dis 29:114–126

  62. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN et al. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

  63. Pritchard DJ, Fa JE, Oldfield S, Harrop SR (2012) Bring the captive closer to the wild: redefining the role of ex situ conservation. Oryx 46:18–23

  64. Rahbek C (1993) Captive breeding – a useful tool in the preservation of biodiversity? Biodivers Conserv 2:426–437

  65. Redford KH, Jensen DB, Breheny JJ (2012) Integrating the captive and the wild. Science 338:1157–1158

  66. Rodríguez A, Calzada J (2015) Lynx pardinus. The IUCN Red List of Threatened Species.

  67. Rodríguez A, Delibes M (1992) Current range and status of the Iberian lynx Felis pardina Temminck, 1824 in Spain. Biol Conserv 61:189–196

  68. Rodríguez A, Delibes M (2002) Internal structure and patterns of contraction in the geographic range of the Iberian lynx. Ecography (Cop) 25:314–328

  69. Ruiz-López MJ, Gañán N, Godoy JA, Del Olmo A, Garde J, Espeso G et al. (2012) Heterozygosity-fitness correlations and inbreeding depression in two critically endangered mammals. Conserv Biol 26:1121–1129

  70. Russello MA, Amato G (2007) On the horns of a dilemma: molecular approaches refine ex situ conservation in crisis. Mol Ecol 16:2405–2406

  71. Ryder O, Miller W, Ralls K, Ballou JD, Steiner CC, Mitelberg A, et al. (2016) Whole genome sequencing of California condors is now utilized for guiding genetic management. In: International Plant and Animal Genome XXIV Conference, San Diego, CA, 8–13 January 2016

  72. Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol:chloroform. Cold Spring Harb Protoc 2006:pdb.prot4455

  73. Schäfer F, Reiners TE (2017) Long term vs short term impact of founder relatedness on gene diversity and inbreeding within the European Endangered Species Programme (EEP) for the Nepalese red panda (Ailurus f. fulgens). J Zoo Aquarium Res 5:86–91

  74. Seal US, Foose TJ, Ellis S (1994) Conservation Assessment and Management Plans (CAMPs) and Global Captive Action Plans (GCAPs). In: Olney PJ, Mace G, Feistner A (eds) Creative conservation: interactive management of wild and captive animals. Springer Netherlands, Dordrecht, pp 312–325

  75. Simón MA, Gil-Sánchez JM, Ruiz G, Garrote G, Mccain EB, Fernández L et al. (2012) Reverse of the decline of the Endangered Iberian lynx. Conserv Biol 26:731–736

  76. Snyder NFR, Derrickson SR, Beissinger SR, Wiley JW, Smith TB, Toone WD et al. (1996) Limitations of captive breeding in endangered species recovery. Conserv Biol 10:338–348

  77. Templeton A (1986) Coadaptation and outbreeding depression. In: Soule M (ed) Conservation biology. The science of scarcity and diversity. Sinauer Assoc, Sunderland, MA, pp 105–121

  78. The R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  79. Tokarska M, Marshall T, Kowalczyk R, Wójcik JM, Pertoldi C, Kristensen TN et al. (2009) Effectiveness of microsatellite and SNP markers for parentage and identity analysis in species with low genetic diversity: the case of European bison. Heredity (Edinb) 103:326–332

  80. Toro MA, Caballero A (2005) Characterization and conservation of genetic diversity in subdivided populations. Philos Trans R Soc B Biol Sci 360:1367–1378

  81. Vargas A, Breitenmoser C, Breitenmoser U (2009) Iberian lynx ex situ conservation: an interdisciplinary approach. Fundación Biodiversidad and International Union for Conservation of Nature, Species Survival Commission (IUCN/SSC) Cat Specialist Group: Madrid

  82. Vargas A, Rivas A, Sánchez I, Martínez F, Godoy JA, Roldán E et al. (2009) Iberian lynx conservation breeding program - update. Cat News 50:17

  83. Vargas A, Sánchez I, Martínez F, Rivas A, Godoy JA, Roldán E et al. (2008) The Iberian lynx Lynx pardinus conservation breeding program. Int Zoo Yearb 42:190–198

  84. Wahlund S (1928) Zusammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas 11:65–106

  85. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

  86. Wilson EO (1992) The diversity of life. Belknap Press, Cambridge

  87. Witzenberger KA, Hochkirch A (2011) Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers Conserv 20:1843–1861

Download references


Iberian lynx samples were contributed by the Iberian lynx Ex Situ Breeding Programme, the Centro de Análisis y Diagnóstico de la Fauna Silvestre and the LIFE projects LIFE06NAT/E/000209 and LIFE10NAT/ES/570, with authorisation of the Consejería de Medio Ambiente de la Junta de Andalucía. Logistical support was provided by the Laboratorio de Ecología Molecular, Estación Biológica de Doñana, CSIC (LEM-EBD). The study was funded by the contract between the CSIC and the Consejería de Medio Ambiente de la Junta de Andalucía “Caracterización genética de individuos y poblaciones andaluzas de lince ibérico” and by the Spanish Dirección General de Investigación Científica y Técnica through projects CGL2006–10853/BOS, CGL2010-21540/BOS, CGL2013-47755-P, and CGL2017-84641-P. DKR was supported by a PhD contract from the Programa Internacional de Becas “La Caixa-Severo Ochoa”. MCM was supported by a PhD JAE grant from the CSIC (Spanish National Research Council). CS was supported by a Ciência Sem Fronteiras grant from the CNPq (Brazilian National Research Council). Special thanks to David Aragonés from Laboratorio de Sistemas de Información Geográfica y Teledetección, Estación Biológica de Doñana, CSIC (LAST-EBD) for his help with the map, and to P. James Macaluso Jr. for his assistance in the English editing of the paper. We appreciate useful comments and suggestions from Maria Lucena-Perez, Elena Marmesat, Ana Píriz and three anonymous reviewers.

Author information

Conflict of interest

The authors declare that they have no conflict of interest.

Correspondence to José A. Godoy.

Supplementary information

  1. Supplementary Figures S1-S6.

  2. Supplementary Tables S1-S5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5