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Abstract
The evolution of complex traits is often shaped by adaptive divergence. However, very little is known about the number,
effect size, and location of the genomic regions influencing the variation of these traits in natural populations. Based on a
dense linkage map of the common frog, Rana temporaria, we have localized, for the first time in amphibians, three
significant and nine suggestive quantitative trait loci (QTLs) for metabolic rate, growth rate, development time, and weight at
metamorphosis, explaining 5.6–18.9% of the overall phenotypic variation in each trait. We also found a potential pleiotropic
QTL between development time and size at metamorphosis that, if confirmed, might underlie the previously reported genetic
correlation between these traits. Furthermore, we demonstrate that the genetic variation linked to fitness-related larval traits
segregates within Rana temporaria populations. This study provides the first insight into the genomic regions that affect
larval life history traits in anurans, providing a valuable resource to delve further into the genomic basis of evolutionary
change in amphibians.

Introduction

Revealing the genetic architecture behind adaptive pro-
cesses is a fundamental issue in evolutionary biology. In

particular, information about the location, effect size, and
number of loci controlling the life history-related traits is
essential for understanding the mechanisms of evolutionary
change (Lynch and Walsh 1998; Mackay 2001; Barton and
Keightley 2002). In this context, quantitative trait locus
(QTL) mapping has been one of the most widely used tools
to identify genomic regions that control important adaptive
traits in wild populations (Slate 2005; Charmantier et al.
2014; Bendesky et al. 2017).

Larval traits, such as developmental time, size at meta-
morphosis, and growth rate, are thought to be under strong
natural selection (Collins 1975; Berven and Gill 1983;
Houde 1997; Peckarsky et al. 2001; Barton et al. 2014; Eck
et al. 2015) driven by the environmental factors that affect
growth opportunities such as predation, desiccation risk,
and thermal conditions (Laurila and Kujasalo 1999;
Rodríguez-Muñoz et al. 2001; Fischer and Karl 2010;
Tejedo et al. 2010). Among them, temperature is of para-
mount importance in shaping life-history variations
(Atkinson 1994; Gotthard 2001; Angilletta et al. 2004). For
instance, a low temperature slows down the metabolism,
especially in ectotherms, with direct consequences on
growth and development rates. Ectotherms from high alti-
tudes and latitudes often exhibit countergradient variations
(i.e., rapid growth and development rates) in order to
compensate for these unfavourable environmental
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conditions and time constraints (reviewed by Conover et al.
2009). These organisms increase their food conversion
efficiency and allocate their available energy at the expense
of other purposes (Angilletta et al. 2004); thus, a rapid
growth might also entail some trade-offs related, for
example, to locomotor performance (Cano and Nicieza
2006) or immune function (De Block et al. 2008). There-
fore, knowing the genomic basis of growth and metabolic
rates is critical to understand the mechanisms behind the
adaptive divergence in ectotherms. Furthermore, this is
highly relevant to understand how ectothermic organisms
will deal with environmental variations such as climate
change (Atkinson 1994; Angilletta et al. 2004; Umina et al.
2005; Johnston and Bennett 2008).

Amphibians are ectothermic animals distributed world-
wide and they inhabit a wide range of environmental con-
ditions, which make them good models to study adaptive
processes (Miaud and Merilä 2001; Beebee 2005). In
addition, since planned crosses can be easily conducted by
artificial fertilization, the quantitative genetic basis of larval
life history traits can be characterized (e.g., Berven and Gill
1983; Laurila et al. 2002; Palo et al. 2003; Laugen et al.
2005). These studies suggest that many larval traits have a
significant heritable component. For instance, development
time, weight at metamorphosis, and GR exhibit significant
additive genetic variation (Travis 1981; Berven 1987;
Laurila et al. 2002; Palo et al. 2003; Knopp et al. 2007).
However, the magnitude of additive genetic variance and
the strength and direction of their genetic correlations differ
among populations and selective environments (Berven and
Gill 1983; Cano et al. 2004).

In addition to the increasing evidence about the heritable
basis of life history traits, we also need complementary
genetic information to uncover the molecular mechanisms
responsible for adaptive evolution (Conner and Hartl 2004).
For instance, QTL studies inform about the genomic regions
influencing phenotypic variations (Corva and Medrano
2001; Slate 2005; Beraldi et al. 2007; Rothschild et al.
2007; Lv et al. 2016).

Genomic regions controlling body weight and growth
rate have been identified in a large number of endotherms
such as mouse, pig, and chicken (e.g., Kerje et al. 2003;
Jerez-Timaure et al. 2004) and, more recently, in ectotherms
such as nematode and fish (e.g., Gutteling et al. 2007;
Vasemägi et al. 2010; Lv et al. 2016). However, in
amphibians, only development time has been studied in
relation to the evolution of paedomorphosis in Ambystoma
(Voss et al. 2012; Page et al. 2013). The former study
identified three QTLs (met1, met2, and met3) explaining
10–11% of variation in development time by using a link-
age map consisting of 185 molecular markers (Voss et al.
2012). The latter study showed that met1 genotype affected
the expression of 200 genes during larval development,

linking this QTL with thyroid hormone signalling and
mitochondrial energetics (Page et al. 2013). In other
amphibians, no QTL mapping studies have been published
to date, although scans for footprints of selection (Bonin
et al. 2006; Guo et al. 2016) and comparative transcriptome
analyses (Yang et al. 2012) have identified a few candidate
genes potentially related to adaptation to high altitudes. In
addition, the recent publication of a draft genome assembly
and two dense linkage maps for the common frog, R.
temporaria (Brelsford et al. 2016; Palomar et al. 2017),
allow to perform efficiently the genome-wide searches of
QTLs and candidate genes.

Here, we used a high-density linkage map consisting of
7138 molecular markers to identify, for the first time, the
genomic regions controlling the key larval life history traits
in the common frog, R. temporaria. We crossed two indi-
viduals from contrasting environments (i.e., high and low
altitudes) and measured standard metabolic rate, growth
rate, development time, and weight at metamorphosis in
their F1 offspring to estimate the effect size and number of
QTLs associated to these traits.

Materials and methods

Source populations and experimental conditions

A full-sib family was generated by crossing artificially the
parents from two phenotypically and genotypically well-
differentiated populations of R. temporaria (Choda 2014;
see detailed methods in Palomar et al. 2017). These popu-
lations are associated with different mitochondrial lineages
and exposed to contrasting environmental conditions
determined by elevation, hydroperiod, and landscape
structure. The male was captured from a mountain area,
Vega de Candioches, León, (1687 m.a.s.l.) and the female
from a lowland location, river Argonza valley, near Bárcena
Mayor, Cantabria, (551 m.a.s.l.), both in Northern Spain.
Over 500 embryos were obtained by artificial fertilisation
(eggs and sperm were obtained by pressing gently the ani-
mal abdomens, a simple procedure during the breeding
season) and maintained in dechlorinated water at 9 °C. At
Gosner stage 25 (i.e., gill resorption completed and exo-
genous feeding started; Gosner 1960), around 300 tadpoles
were individualized in 0.8 l tanks with dechlorinated water
following a fully randomised design. Larvae were fed with
unrestricted rations of rabbit chow (15% protein, 3% fat,
17% carbohydrate, 10% ash; Cargill España, Martorell,
Barcelona, Spain) until metamorphosis. Animals were
reared under conditions of constant photoperiod (12L:12D)
and temperature (14.0 ± 0.5 °C). Larvae were checked every
day looking for metamorphs (Gosner stage 46). Meta-
morphs were euthanized with an overdose of Benzocaine
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(Ethyl 4-aminobenzoate; Sigma Aldrich, ref.: 112909) and
then frozen at −45 °C.

Phenotypic measurements

Traits measured in this study are connected with fitness and
are related to each other. We measured standard metabolic
rate, which is related to growth and development rates as
well as to the size and age at metamorphosis (Blackmer
et al. 2005; Careau et al. 2008; Artacho and Nespolo 2009;
Burton et al. 2011; Rosenfeld et al. 2015). Standard meta-
bolic rate (SMR) was measured at Gosner stage 33 (SD=
2.97). We used a flow-through respirometry system con-
sisting of 24 cylindrical chambers (54 mm × 16 mm)
immersed in water at a constant temperature of 14 ± 0.5 °C
(for a similar set up, see Álvarez and Nicieza 2005; Cano
and Nicieza 2006). The metabolic chambers were
supplied with oxygen-saturated water at a fixed flow rate of
700 ml/min controlled by a 24-channel high-precision
peristaltic pump (Model ISM934C; ISMATEC, Cole-
Parmer GmbH, Germany). Larvae were unfed for 48h and
then acclimated for 15h at the respirometry chambers prior
to measuring SMR. The tadpoles were kept in darkness and
remained quiescent throughout SMR measurement. We
measured the oxygen consumption in a flow-through system
by using a thermostatted cell (MC 100, Strathkelvin
Instruments Ltd, Glasgow, UK) housing a microcathode
oxygen electrode (Model 1302, Strathkelvin Instruments
Ltd) connected to an oxygen meter (Model SI782 Single/
Dual Channel Meter, Strathkelvin Instruments Ltd). The
electrode was calibrated against air-saturated water
(obtained from the header tank) and against a solution
having zero oxygen saturation (sodium sulphite in
0.01 sodium tetraborate). Bacterial oxygen consumption
was prevented by using ultraviolet lamps. All the equipment
was exposed to ultraviolet light for 30 min before the pro-
cedure. For each tadpole, we measured the oxygen satura-
tion at the outlet of a blank (empty) chamber and at the
outlet of the tadpole chamber over a 5-min period. These
measurements were transferred via Strathkelvin software,
929 Oxygen System v01.02, and recorded in a computer for
further analysis. SMR was calculated as follows:

Vo2 ¼ Vw �ΔCw � So2

where Vo2 (µg/h) is the rate of oxygen consumption, Vw is
the flow rate (ml H2O/h) through the respirometry chamber,
ΔCw is the difference in oxygen concentration between the
blank and the test chamber (µg O2/ml), and So2 is the
solubility of oxygen in water (µg O2/ml) (Álvarez and
Nicieza 2005; Cano and Nicieza 2006). Eventually, peaks in
consumption derived from occasional animal movements
were identified and discarded. As a control for body-size

variation, we used the residuals of the linear regression of
SMR on tadpole mass.

In addition, we weighed the tadpoles weekly over a 4-
week period (at 35, 42, 49, and 56 days after fertilization,
relating to Gosner stages from 26 to 32) with a precision
balance (±1 mg). Since the increase of weight at these
stages was linear (Appendix S1), the the growth rate (GR)
was measured as the slope of the line that described the
linear model between weight and time for each tadpole.
Individuals were also weighed at Gosner stages 42 (W42),
emergence of the forelimbs, and 46 (W46), total reabsorp-
tion of the tail. Developmenttime (DT) was quantified as the
period between fertilization and Gosner stage 42.

Generation of RAD library and bioinformatic
analysis

DNA was extracted from 162 frozen metamorphs with the
DNeasy Blood and Tissue Kit (Qiagen). Restriction site-
associated DNA (RAD) libraries were prepared, genotypes
were called, and a linkage map was constructed as detailed
in Palomar et al. (2017). Briefly, DNA from parents and
progeny was digested with restriction enzymes PstI and
BamHI and ligated to 94 modified Illumina adapters with
T4 DNA ligase. Agarose gel electrophoresis in an E-Gel®
iBase™ Power System was used to do the size selection of
400-bp fragments. These fragments were amplified by PCR,
purified, and sequenced on two paired end lanes (2 × 100)
with the Illumina HiSeq 2000 in an Illumina Genome
Analyzer platform. After quality filter, 91-bp sequences
were obtained. Sire sequences were used to generate a
reference to align the remaining individuals. PCR duplicates
were deleted and sire sequences were clustered and
assembled de novo to obtain this reference. Parent
sequences were aligned against this reference and filters of
number of reads per contig (from 10 to 1000) and maximum
mismatch (10%) were applied. RAD loci containing single
nucleotide polymorphisms (SNPs) fixed for alternative
alleles in parents were discarded while loci containing
heterozygous SNPs in each parent were used to align the
progeny. Heterozygotes were called when the minor allele
count was >10%. In addition to SNPs, 113 microsatellite
markers were amplified in a multiplex reaction as also
detailed in Palomar et al. (2017). All molecular markers
segregating according to Mendelian fashion (X2 test, p
value < 0.05) were assigned according to their segregation
pattern nnxnp, lmxll, efxeg, abxcd, and hkxhk, and the
linkage map was performed under an Logarithm of
Odds (LOD) threshold of eight. After filtering, a total of
61 microsatellites and 7077 SNPs from 162 individuals
were used to construct a linkage map consisting
of 13 linkage groups (for detailed description see
Palomar et al. 2017).
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QTL analysis

We analysed five traits GR, SMR, W42, W46, and DT from
162 offsprings. The QTL analysis was performed using a
half-sib linear regression model (Knott et al. 1996) imple-
mented by the software GridQTL v3.3.0 (Seaton et al.
2006). This analysis was executed separately for each par-
ent, using either sire or dam as the common parent and sex-
specific linkage maps (Palomar et al. 2017). Firstly, we ran
the QTL analysis assuming a single QTL at each linkage
group for each trait. Subsequently, we tested a two-QTL
model in the linkage groups where QTL was detected.
Confidence intervals were calculated based on bootstrap
method on GridQTL. Genome-wise and chromosome-wise
significant thresholds were estimated based on a permuta-
tion test with 10,000 iterations (Churchill and Doerge
1994). QTLs were considered “suggestive” when the
p value was < 0.05 and “significant” when the p value was
< 0.01. Using the mean squared error of the full model
(MSEfull) and mean squared error of the reduced
model (MSEreduced), we calculated the percentage
of phenotypic variance explained (PVE) by each QTL as
PVE= (MSEreduced-MSEfull)/MSEreduced (Knott et al. 1996).
In addition, the phenotypic correlation between traits was
calculated using Pearson correlation implemented by func-
tion cor in software R (R Core Team 2013).

RAD loci containing genome-wide or suggestive QTLs
were used to carry out a blast search using Swiss-Prot
(www.uniprot.org/uniprot/) and NCBI (www.ncbi.nlm.nih.
gov/nucleotide) databases to identify the potential candidate
genes underlying the variation in the studied traits.

Results

We identified 12 QTLs (nine suggestive and three sig-
nificant) for five life history traits (Table 1; Appendix S2;
Appendix S3). We found one significant and two suggestive
QTLs in Rt7B (PVE= 8%), in Rt2 (PVE= 6.8%), and in
Rt7A (PVE= 4.1%), respectively, influencing W46 and
explaining 18.9% of the total variance of this trait. Both
female- and male-based analyses found a significant QTL
for GR in Rt6 explaining 7.6 and 9.2% of the variance,
respectively (Table 1; Fig. 1). In addition, the female-based
analysis identified another QTL for GR in Rt8A (PVE=
4.5%). Suggestive QTLs for SMR were localized in Rt6
(PVE= 6.1%) and Rt10 (PVE= 4.3%), and a significant
QTL was found in Rt4B, explaining 6.5% of the SMR
phenotypic variance.

Interestingly, the analysis of segregating QTLs in
females localized a QTL at 33 cM in Rt7A that affects both
W42 and DT phenotypes, explaining 5.6 and 5.3% of their
phenotypic variances, respectively. This QTL is associated Ta
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to the markers 16243-75_bb_53, 279698-1_bb_r2_78 and
4533-133_bb_60 (Palomar et al. 2017). Furthermore, we
found a relatively strong negative phenotypic correlation
between these two traits (Pearson correlation=−0.62; p
value < 2.2 × 10−16). The phenotypic correlation between
the rest of the traits was DT-W46= 0.19 (p value= 0.02),
DT-SMR=−0.03 (p value= 0.7), DT-GR=−0.49 (p
value= 3.52 × 10−11), W42-W46= 0.23 (p value= 0.002),
W42-SMR= 0.09 (p value= 0.26), W42-GR= 0.55 (p
value= 5.12 × 10−14), W46-SMR= 0.01 (p value= 0.88),
W46-GR= 0.17 (p value= 0.03), and SMR-GR=−0.01
(p value= 0.88). Models based on two QTLs only

supported two suggestive QTLs in Rt7A for DT although
their confident intervals overlap.

Out of the thirteen QTL-associated RAD loci blast search
found significant similarities only for three QTL regions (Rt2-
W46, Rt3-DT, and Rt10-SMR). The suggestive QTL at Rt10
for SMR was close to Exportin-2 protein in Xenopus laevis
(XPO2_XENLA, % identity= 97.436, alignment length 78 bp,
e value= 3.78E-62), while the other two suggestive QTLs for
W46 and DT mapped close to the genes A-kinase anchoring
protein 10 (XM_018557636.1, % identity= 91.95, alignment
length 559 bp, e value= 0), and E3 ubiquitin-protein ligase
TRIM39-like (XM_018567747.1, % identity= 76.235,

Fig. 1 F-test statistic plots of the
three significant QTLs found in
this study (QTL for GR found in
Rt6 was localized in male and
female analysis). The x-axis
shows the position in
centimorgans, cM, in the
chromosome that is represented
below. The lines inside the
chromosome symbolise
molecular markers. The y-axis
corresponds to the F-statistic
value. The line defines the
threshold for p value < 0.01
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alignment length= 1174 bp, e value= 5.05E-158), respec-
tively, in Nanorana parkeri.

Discussion

Based on the recent dense linkage map of the common frog
(Palomar et al. 2017), we have localized, for the first time in
an amphibian genome, regions that control variance in
several key early life history traits such as GR, SMR, DT,
and size at metamorphosis. For all the studied traits, except
W42 (Table 1; Fig.1), we identified more than one segre-
gating QTL explaining a considerable part of the trait
variance.

Despite the possibility of missing loci fixed by the strong
selection (Wilkinson et al. 2013) due to our breeding design
(i.e., F1 family), we have detected multiple QTLs in line
with other mapping studies of important fitness-related traits
(e.g., Andersson et al. 1994; Beraldi et al. 2007; Vasemägi
et al. 2010). The lack of fixation in these loci might be
associated with weaker selection, antagonistic pleiotropy,
epistatic effects, sexual antagonism, or large mutational
target of polygenic traits (Rose 1982; Roff 1992; Fabian and
Flatt 2012; Barson et al. 2015).

The number of loci that influences fitness-related life
history traits and the magnitude of PVE by these loci are
still under debate. A highly polygenic nature has tradi-
tionally been expected for fitness-related traits (reviewed in
Merilä and Sheldon 1999) based on the theoretical expec-
tations behind the infinitesimal model for complex traits
(Fisher 1930; Orr 2005). While some traits fulfil this
expectation (Goldstein 2009; Boyle et al. 2017), other
empirical evidences show that a few loci of large effect can
also influence complex traits (Stinchcombe et al. 2009;
Barson et al. 2015; Lamichhaney et al. 2016). Our study
detected some loci with moderate effects (up to 9% of
variation explained) that might be supporting this last
empirical evidence. Considering the tendency of QTL
methods to miss loci of small effects and overestimate the
QTL effects (Beavis 1998; Matsuba and Merilä 2006;
Rockman 2011; Pardo-Diaz et al. 2015; Palomar et al.
2017), it is possible that many loci with small effects
remained undetected.

At any rate, the total variance explained by the QTLs
found in this study (15.6% for DT, 5.6% for W42, 18.9%
for W46, 16.9% for SMR, and 13.7% for GR) is within the
range of additive genetic variance components estimated in
quantitative genetic studies of other populations of R. tem-
poraria, except for W42. For instance, Laurila et al. (2002)
and Laugen et al. (2005) obtained heritability estimates for
DT, body weight at metamorphosis, and GR ranging from
0.11 to 0.33, from 0.12 to 0.40, and from 0.03 to 0.26,
respectively, among Swedish populations. Therefore, our

QTLs seem to capture well the genetic component of phe-
notypic variation in the studied traits. Assuming that the
detected QTLs may segregate in other populations, our
results also contribute towards understanding the genomic
mechanisms behind the relatively rapid adaptive divergence
in these traits (Laugen et al. 2002; Laugen et al. 2003).

Interestingly, a QTL at 33 cM of Rt7A associated both
DT and W42, suggesting potential pleiotropy. Based on the
homology and synteny of the amphibian genome (Brelsford
et al. 2013; Palomar et al. 2017), this genomic region might
also participate in the joint control of these traits in other
amphibian species and populations. In fact, a genetic cor-
relation between DT and size at metamorphosis has been
reported for Swedish populations of R. temporaria (Laurila
et al. 2002) and North American populations of Rana syl-
vatica (Berven and Gill 1983).

Weight at Gosner stages 42 and 46 has been used often
interchangeably as a measure of size at metamorphosis in
published studies. However, between the emergence of the
forelimbs (Gosner stage 42) and the total reabsorption of the
tail (Gosner stage 46), anurans experience a large number of
ontogenetic changes, such as fluctuations in the concentra-
tion of glucocorticoids that entail the increase of glycogen
storage (Jaudet and Hatey 1984; Rollins-Smith et al. 1997),
maintenance of pronephric degeneration and thyroid enlar-
gement (Fox 1962; Fox 1966), and modifications in the
immune system (Flajnik et al. 1987; Pasquier et al. 1989),
which might affect the weight indirectly. Our study found
different genomic regions controlling weight at Gosner
stages 42 and 46. Thus, our findings illustrate that QTLs
influencing larval weight are not controlled by a fixed set of
loci throughout the process of metamorphosis and are most
likely affected by multiple physiological processes and
pathways (Denver 2009). A similar pattern has also been
found in other organisms such as chicken (Kerje et al. 2003)
or mouse (Corva and Medrano 2001) in which the body
weight measured at different stages have been shown to be
influenced by different QTLs. This result also supports the
suggestion proposed by Walsh (2010) for unifying the
ontogenetic criteria in amphibian studies to use either 42nd
or 46th Gosner stage as the end of the larval period.

Relatively higher SMRs can have a positive contribution
to fitness due to its link with energy acquisition (Careau
et al. 2008; Burton et al. 2011). However, several studies
have also reported negative associations between SMR and
survival, growth, or reproductive output (Blackmer et al.
2005; Artacho and Nespolo 2009). The observation of
conflicting results, together with intertwined trade-offs,
suggests that the relation between metabolic rate and fitness
can be highly complex and likely context dependent (Auer
et al. 2015). Therefore, the genomic regions in Rt4B, Rt6,
and Rt10 controlling SMR constitute the first step to further
investigate this issue. Furthermore, the potential role of
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Exportin-2, a protein that imports/exports other proteins
into the nucleus and participates in cell proliferation and
apoptosis, needs to be explored in this vein.

Finding candidate genes, based on the sequence simi-
larity of short RADseq loci, is challenging in non-model
species. In particular, R. temporaria currently lacks genome
annotation, and its closest annotated genome is that of N.
parkeri, which diverged 90MYA from R. temporaria. The
lack of significant BLAST homologies with our identified
QTLs highlights the value and urgent need of a high-quality
annotated genome for brown frog species (i.e., genus Rana).
Furthermore, another challenge to identifying the candidate
genes is that typical QTL regions extend over millions of
base pairs containing hundreds or even thousands of genes,
which complicates the identification of the causative genes.

At a general level, this study contributes to our under-
standing of the genomic basis of variation in life history
traits. We provide information, for the first time in amphi-
bians, about genomic locations controlling trait variations of
well-known adaptive values. Further research using F2
crosses, larger number of families, and populations would
be required to confirm our findings and evaluate with pre-
cision the additive, dominance effect and epistatic interac-
tions of the localized QTLs. A combination of quantitative
genetic and genomic approaches focused in the same
populations might be particularly powerful. Our results
open the possibility for comparative studies to evaluate
whether the location and effect size of the detected QTLs,
which control the variance of traits essential in the adapta-
tion process, are shared across the distribution range of the
species. Furthermore, QTLs found in this study will serve as
a baseline for further investigation of the genetic basis of
larval life history traits and their role in evolutionary change
and adaptation in amphibians in general.

Data archiving

All the information related to the linkage map is detailed in
Palomar et al. (2017). Marker sequences are available at
https://figshare.com/s/24fa6c7cd2f133467207.
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