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Abstract
Understanding evolution on complex fitness landscapes is difficult both because of the large dimensionality of sequence space
and the stochasticity inherent to population-genetic processes. Here, I present an integrated suite of mathematical tools for
understanding evolution on time-invariant fitness landscapes when mutations occur sufficiently rarely that the population is
typically monomorphic and evolution can be modeled as a sequence of well-separated fixation events. The basic intuition behind
this suite of tools is that surrounding any particular genotype lies a region of the fitness landscape that is easy to evolve to, while
other pieces of the fitness landscape are difficult to evolve to (due to distance, being across a fitness valley, etc.). I propose a
rigorous definition for this “dynamical neighborhood” of a genotype which captures several aspects of the distribution of waiting
times to evolve from one genotype to another. The neighborhood structure of the landscape as a whole can be summarized as a
matrix, and I show how this matrix can be used to approximate the expected waiting time for certain evolutionary events to occur
and to provide an intuitive interpretation to existing formal results on the index of dispersion of the molecular clock.

Introduction

Understanding evolutionary dynamics on general fitness
landscapes remains an important project for theoretical
population genetics (Wright 1932; Kauffman and Levin
1987; Kauffman 1993; Gavrilets 2004). This project con-
sists of two complementary sets of goals. First, there is a
quantitative component: we must be able to mathematically
characterize the dynamics that a fitness landscapes induces
for an evolving population. For instance, we might want to
know the number of mutations fixed before a population
reaches a local fitness maximum (Gillespie 1983, 1984,
1991; Macken and Perelson 1989; Orr 1998; Jain and
Seetharaman 2011; Seetharaman and Jain 2014) or the
expected time for a population to cross a fitness valley
(Iwasa et al. 2004; Weinreich and Chao 2005; Weissman
et al. 2009). Second, there is a qualitative component whose
goal is to simplify the structure of the fitness landscape and
the evolutionary dynamics it induces in order to aid

understanding and allow useful generalizations. Common
approaches in this vein include methods to summarize the
ruggedness of fitness landscapes through correlation dis-
tances and the Walsh-Fourier transform (Weinberger 1990,
1991, Fontana et al. 1993; Stadler 2003; Weinreich et al.
2013; Neidhart et al. 2013; Poelwijk et al. 2016) and
studying epistasis in various other frameworks (Wolf et al.
2000; Kondrashov and Kondrashov 2001; Phillips 2008;
Beerenwinkel et al. 2007; Carneiro and Hartl 2010; Østman
et al. 2011; Szendro et al. 2013; Tenaillon 2014; Ferretti
et al. 2016; Bank et al. 2016; Crona et al. 2017). It also
includes methods meant to summarize the repeatability of
evolutionary trajectories by considering the rank ordering of
genotypes by fitness (Weinreich 2005; Weinreich et al.
2005, 2006), or by looking at the variation between tra-
jectories (Lobkovsky et al. 2011; de Visser and Krug 2014).
The need for this second component arises due to the size of
fitness landscapes available to be analyzed. The fitness
landscapes available today, whether computational (Kauff-
man 1993; Gruner et al. 1996; Wagner 1996, 2005, 2011;
Bornberg-Bauer and Chan 1999; Fontana 2002; Cow-
perthwaite and Meyers 2007) or empirical (Weinreich et al.
2006; Lozovsky et al. 2009; de Visser et al. 2009; Pitt and
Ferré-D’Amaré 2010; Hinkley et al. 2011; Sarkisyan et al.
2016; Wu et al. 2016; Aguilar-Rodríguez et al. 2017),
contain anywhere from 16 or 32 genotypes up to hundreds
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of thousands of genotypes; a full description of the evolu-
tionary dynamics at this scale would be unwieldy at best
and unintelligible at worst. More subtly, these high-
dimensional fitness landscapes may have geometric fea-
tures that are very different from those suggested by
(Wright 1932)'s original pictorial metaphor (Gavrilets and
Gravner 1997; Gavrilets 1997, 2003, 2004, Gravner et al.
2007), and thus developing a new, more accurate set of
intuitions for evolutionary dynamics in high-dimensional
spaces remains an important challenge.

Theses two goals, calculation and comprehension, need
not remain separate. Indeed, one of the signs of a mature
theory is that the same set of quantities can be used for both.
Here, I present a method for both calculating and under-
standing various quantities of evolutionary interest for a
population of constant size evolving on an arbitrary, time-
invariant fitness landscape. However, to develop this theory
we must make two key assumptions. First, we assume that
mutation is weak relative to drift, so that the population is
typically monomorphic and each new mutation that enters
the population is fixed or lost before the next mutation
occurs. In this regime we can model evolution using an
“origin-fixation” model, where evolution takes the form of a
Markov chain on the set of genotypes and the population is
modeled as a single particle that jumps from genotype to
genotype with each substitution (see McCandlish and
Stoltzfus 2014, for a review). Second, we assume a time-
reversible mutation model and allow deleterious substitu-
tions. Under these assumptions the evolutionary process can
be modeled as a reversible Markov chain (Iwasa 1988; Berg
et al. 2004; Sella and Hirsh 2005), a class of mathematical
models for which a simple and elegant mathematical theory
is available (e.g., Kelly 1979; Kielson 1979; Aldous and Fill
2002). Unlike Gillespie’s classical strong-selection weak-
mutation formalism (Gillespie 1983, 1984) where evolution
ends when a local fitness maximum is reached, these
models also capture the transition from the adaptive tran-
sient into a period of long-term nearly neutral evolution
(Hartl et al. 1985; Hartl and Taubes 1996; McCandlish et al.
2015a) where, over much longer time scales, the population
first explores the structure of the fitness landscape as a
whole and then finally transitions into a stationary stochastic
process where all information about the starting genotype
has been lost.

Previously, I have used this framework to visualize the
structure of fitness landscapes (McCandlish 2011), to
characterize the influence of the fitness landscape on the
evolutionary accessibility of genotypes (McCandlish 2013),
and to understand the impact of epistasis on the process of
adaptation (McCandlish et al. 2015b) and the dynamics of
reversion (McCandlish et al. 2016). Here, I will provide a
characterization of what it means for one genotype to be
“nearby” or evolutionarily accessible from another. While

on a fully random landscape one can think about evolu-
tionary nearness using mutational distance (Jain and Krug
2007), in complex fitness landscapes the evolutionary pro-
cess is highly anisotropic, as populations may more fre-
quently snake around on high-dimensional fitness ridges
rather than cross even relatively narrow valleys (van Nim-
wegen and Crutchfield 2000). Nonetheless, in our weak-
mutation/reversible Markov chain framework it turns out
that we can define a correspondingly anisotropic “dynami-
cal neighborhood” around a genotype that reflects how
populations tend to move through the fitness landscape and
which exactly characterizes the set of genotypes that are
“near” to the focal genotype in several well-defined senses.

The key formal object underlying our definition of the
dynamical neighborhood is a matrix known in the Markov
chain literature as the fundamental matrix (Meyer 1975;
Hunter 1983; Aldous and Fill 2002). It captures how being
at a particular genotype changes the expected amount of
time spent at any other genotype. I use the fundamental
matrix to analyze the problem of waiting times for certain
classes of evolutionary events to occur (e.g., arriving at a
genotype with a particular phenotype or experiencing a
certain type of substitution), and apply similar ideas to
analyze the index of dispersion of the counting process
associated with these events. Both analyses come down to
computing the expected number of extra events that will
occur in the future, given that an event just occurred. The
main intuition is that if, e.g., the genotypes that code for a
phenotype are all in each other’s dynamical neighborhoods,
then the times that the population displays that phenotype
will occur in large clumps. Since the index of dispersion is
low for clock-like, regular processes, and high for clumpy,
sporadic processes, such a pattern will tend to result in an
elevated index of dispersion for the associated counting
process. Moreover, the expected waiting time for a popu-
lation to evolve such a phenotype will tend to be elevated
relative to a phenotype that is displayed at more even
intervals. This is because the clumps of time when the
population is fixed for that phenotype are separated by large
temporal gaps where the phenotype is not observed.

In what follows I will first explain the general theory and
then demonstrate the application of these techniques by
analyzing a one-codon fitness landscape (for other analyses
of this landscape, see McCandlish 2011, 2013). See Table 1
for a summary of mathematical notation.

Methods

Population-genetic model

Assume a haploid, asexual population of size N, where
mutations arise sufficiently infrequently that each new
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mutation is typically lost or fixed before the next new
mutation enters the population. We can capture the
dynamics of such a population by defining a transition
matrix P such that P(i, j) is the per-generation probability
that a population currently fixed for genotype i will produce
a mutant of genotype j that is destined to become fixed in
the population (for a review, see McCandlish and Stoltzfus
2014). In particular, if we model evolution as a
Wright–Fisher process, we have:

P i; jð Þ ¼ NM i; jð Þ 1�e�2 f jð Þ�f ið Þð Þ
1�e�2N f jð Þ�f ið Þð Þ if i ≠ j

1�Pk≠i P i; kð Þ if i ¼ j

(
ð1Þ

where M(i, j) is the mutation rate from genotype i to
genotype j, and f(i) is the Malthusian fitness of genotype i.
We assume that the genotypes are path-connected by
mutation and that the mutational dynamics are reversible,
i.e., that for all i, j they satisfy πM(i)M(i, j)= πM(j)M(j, i) for
some probability distribution given by the vector πM.
Then the stationary distribution π such that πTP= πT is
given by:

π ið Þ ¼ πM ið Þ e2 N�1ð Þf ið ÞP
k
πM kð Þ e2 N�1ð Þf kð Þ ; ð2Þ

and π (i)P(i, j)= π(j)P(j, i) for all genotype i and j, so that
the Markov chain defined by P is also reversible (Sella and
Hirsh 2005). Although for clarity we have presented this
discussion in terms of a haploid, Wright–Fisher population
and have used Kimura (1962)’s formula for the fixation
probability, the evolutionary dynamics can also be modeled
as a reversible Markov chain for diploid populations
assuming that the fitness effects of alleles are additive.
One can also use the classical probability of fixation from
Fisher (1930) or Wright (1931) (see, e.g., Berg et al. 2004,
McCandlish et al. 2015a) to produce a model involving only
the compound parameter S= 4Ns, or use the exact fixation
probability for a Moran process (Sella and Hirsh 2005) so
that the Markov chain itself becomes exact in the limit as
the mutation rate approaches zero. The above theory applies
in all these cases with straight-forward modifications to the
formulas for P and π.

Results

The dynamical neighborhood of a genotype

Given that the population starts at some genotype i, in
expectation it spends more time at some genotypes and less
at others than it would have had its initial genotype been
drawn from the stationary distribution π. In particular, in

expectation such a population spends:

Z i; jð Þ �
X1
t¼0

Pt i; jð Þ � π jð Þð Þ ð3Þ

extra generations at genotype j. This matrix Z plays a central
role in the theory of finite state Markov chains and can be
used to calculate many important quantities. For instance,
let EπTi be the expected waiting time for the population to
first become fixed for genotype i given that its initial
genotype is drawn from the stationary distribution, and EjTi
be the expectation of the same waiting time starting from
initial genotype j. Then

EπTi ¼ Z i; ið Þ
π ið Þ ; ð4Þ

and

EjTi ¼ EπTi � Z j; ið Þ
π ið Þ ð5Þ

(see, e.g., Aldous and Fill 2002; Hunter 1983).
In previous work (McCandlish 2013), I argued that EπTi,

the expected waiting time to first arrive at genotype i when
the initial state is drawn from the stationary distribution,
provides a natural index for the “findability” of a genotype
in the sense that the rank ordering of the EπTi implies a rank
ordering on several other aspects of the distribution of
waiting times for the population to arrive at specific geno-
types. In particular, for finite state reversible Markov chains
we have the following relations (Chapter 3, Section 4.1,
Aldous and Fill 2002; McCandlish 2013):

EiTj � EjTi ¼ EπTj � EπTi ð6Þ

and

Pπ Ti<Tj
� �

Pπ Tj<Ti
� � ¼ EiTj

EjTi
; ð7Þ

where the notation Pπ(Ti < Tj) denotes the probability that
the population reaches i before j given that its initial state is
drawn from π. Together, the two above results imply that:

EπTi � EπTj , EjTi � EiTj , Pπ Ti<Tj
� � � Pπ Tj<Ti

� �
:

ð8Þ

Thus, the rank ordering of the expected waiting time to
evolve to a genotype given a stationary start also determines
which of a pair of genotypes is most likely to evolve first
from a stationary start as well as the asymmetry in expected
waiting times from a nonstationary start.

Further analysis of the matrix Z allows us to extend these
ideas to define the “dynamical neighborhood” of a genotype
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i as a set of genotypes that are unusually “near” to i with
respect to the dynamics of an evolving population. In par-
ticular, let us define the dynamical neighborhood of i, N ið Þ,
to be the set of genotypes j such that starting at i increases
the expected amount of time a population will spend at j in
excess of the time it would have spent there starting at
stationarity, i.e., with Z(i, j) > 0. In symbols, let

N ið Þ � j Z i; jð Þ>0jf g: ð9Þ
In Appendix A we show that N ið Þ is a mutationally

contiguous set of genotypes that includes i. Furthermore,
N ið Þ consists exactly of the alternative genotypes j with the
following properties:

1. The probability of being at genotype j is enriched
when starting at i (i.e., Z(i,j) > 0).

2. The probability of being at genotype i is enriched

when starting at j (i.e., Z(j,i) > 0).
3. The expected waiting time to evolve from i to j is less

than the expected waiting time to evolve j from an
equilibrial start (i.e., j 2 N ið Þ , EiTj<EπTj).

4. The expected waiting time to evolve from j to i is less
than the expected waiting time to evolve i from an
equilibrial start (i.e., j 2 N ið Þ , EjTi<EπTi).

where the first two statements follow from the definition of
NðiÞ and the relation π(i)Z(i, j)= π(j)Z(j, i) (which follows
from π(i)Pt(i, j)= π(j)Pt(j, i) and the definition of Z), and the
latter two combine these facts with Eq. (5). Notice that these
relations are symmetric between i and j, so that in addition
we have j 2 N ið Þ , i 2 N jð Þ.

To gain some better intuition about N ið Þ, it is helpful to
consider two limiting cases. First, consider the neutral case
where the space of genotypes are sequences of length l
drawn from an alphabet A and all possible point mutations

Table 1 List of mathematical
symbols

Symbol Interpretation

N Population size

f(i) Malthusian fitness of genotype i

M(i,j) Mutation rate from genotype i to genotype j

Xt Population’s genotype at time t

P(i,j) Probability that Xt= j given that Xt–1= i

πM(i) Stationary probability of genotype i under neutrality

π(i) Stationary probability of genotype i

Z(i,j) Expected extra generations spent at genotype j for a population that starts at genotype i

EπTi Expected number of generations to evolve to genotype i when initial state is drawn from
stationary distribution

EjTi Expected number of generations to evolve to genotype i for a population that starts at genotype j

Pπ(Ti<Tj) Probability of evolving to genotype i before genotype j when initial state is drawn from
stationary distribution

N ið Þ Dynamical neighborhood of genotype i

μ; l;A Mutation rate, sequence length, and alphabet, when assuming complete neutrality and a uniform
rate of point mutations

C(i,j) Probability that an event occurs at time t given Xt–1= i and Xt= j

V(i,j) Probability that an event occurs at time t and Xt= j given Xt–1= i

1 Vector whose entries are all 1

g(i) Probability that an event occurs at time t given that Xt–1= i

c(i) Probability at stationarity that a population is at genotype i at time t given that an event has
occurred at time t

Eπg Rate that an event defined by V occurs at stationarity

EπTV Expected waiting time for an event defined by V to occur when the initial state is drawn from the
stationary distribution

P Set of genotypes that encode a specific phenotype

R∞ Asymptotic index of dispersion of the counting process for the event defined by V

D Diagonal matrix with D(i, i)= π(i)

xi,t(j) Probability that population is at genotype j at time t given that it was at genotype i at time 0

λk, lk, rk The kth largest eigenvalue of P and its associated left and right eigenvectors

τk Time-scale associated λk

uk Embedding axis from (McCandlish 2011) associated with rk
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occur at a uniform rate μ. In this case, there is an analytical
formula for the entries of Z where for fixed l and Aj j the
sign of Z(i,j) depends only on the Hamming distance
between sequences i and j (see Appendix B). Using this
analytical formula, we can plot the maximum Hamming
distance from i still included in N ið Þ (Fig. 1). Intuitively,
one might guess that the sequences in the dynamical
neighborhood of i would be those sequences closer to i than
would be expected for a random sequence, i.e., sequences
with distance less than l Aj j � 1ð Þ= Aj j. The solid lines in
Fig. 1 show that this is reasonable guess but that typically
the neutral dynamical neighborhoods are in fact slightly
smaller. Second, consider the case where at short times the
strong-selection weak-mutation dynamics provide a good
approximation, so that a population starting at i after a short
period is likely to end up at one of n fitness peaks p1,…,pn,
where the probability of first arriving at peak pk is given by
wk. Assuming this adaptation is sufficiently rapid, we then
have Z i; jð Þ �Pn

k¼1 wkZ pk; jð Þ, so that the dynamical
neighborhood of i consists of the genotypes that are enri-
ched when starting at the peaks that populations at i tend to
adapt to. In particular, we expect N ið Þ � Sn

k¼1 N pkð Þ.
It is helpful to compare the dynamical neighborhood of a

genotype i with its mutational neighborhood, that is, the set
of genotypes that i can directly mutate to. These neigh-
borhoods are not necessarily the same. First, the dynamical
neighborhood of a genotype might include other genotypes

many substitutions away. Second, it is easy to construct
examples where the mutational neighborhood includes
genotypes that are not in the dynamical neighborhood. For
instance, this circumstance often arises in multipeaked fit-
ness landscapes where most deleterious substitutions from a
fitness peak result in a return of the population to the same
peak via a reversion or compensatory substitution, but a few
special mutations into the fitness valley have a tendency to
resolve to a different peak (we will see some examples of
this later). Just as the path of a particle is continuous when
its position at each moment remains in the neighborhood of
its last position and discontinuous if it jumps to a position
that is outside the neighborhood of its last position, we can
distinguish between continuous substitutions in genotype
space where the population fixes a mutation that is in the
dynamical neighborhood of the focal genotype and dis-
continuous substitutions where the population fixes a
mutation that is outside its dynamical neighborhood (Fon-
tana and Schuster 1998a, 1998b; Stadler et al. 2001). The
intuition here is that most substitutions are continuous in
that the population remains in the same “region” of the
fitness landscape, such as in the basin of attraction of a
particular fitness peak, but that certain special mutations
move the population to a new region of the landscape, such
as mutations into a fitness valley that tend to resolve via
peak shift rather than reversion. While relatively rare, such
discontinuous substitutions have several unusual properties
which I will highlight in what follows.

The findability of phenotypes and waiting times for
specific subsets of substitutions

It is natural to ask whether the theory for the findability of
genotypes (McCandlish 2013) can be extended to a theory
for the findability of phenotypes. In the context of mod-
eling the evolution of a population under weak mutation
as a reversible Markov chain, we can identify a phenotype
of interest with the subset of genotypes that produce that
phenotype, for instance a phenotype might correspond to
the set of nucleotide sequences that code for a particular
amino acid sequence. Thus, to extend the theory of find-
ability to phenotypes we must calculate the expected time
for a population whose initial state is drawn from the
stationary distribution to first become fixed for any
member of the set of genotypes that produce our pheno-
type of interest. Unfortunately, there is no general, simple,
exact formula analogous with Eq. (4) for the expected
waiting time to arrive at a subset of states. While it is
possible to find the waiting time for a subset of states
using the theory of absorbing Markov chains (Kemeny
and Snell 1976), here I suggest a simple approximation
that provides insight into the features of a phenotype that
make it easy to evolve.

Fig. 1 Size of the dynamical neighborhood for a neutral fitness land-
scapes with Aj j alleles per site as a function of sequence length. Light
gray, gray, and black dots show the maximal Hamming distance from i
within N ið Þ for Aj j ¼ 2; 4; and 20, respectively. Solid lines are again
colored light gray, gray, and black for Aj j ¼ 2; 4; and 20, respectively
and show expected distance from i to a random sequence as a function
of sequence length, demonstrating that this distance can serve as a
crude approximation of the size of N ið Þ

Long-term evolution on complex fitness landscapes when mutation is weak 453



The idea is that a phenotype will typically be found in a
“region” of the fitness landscape. Thus, the times when a
population is fixed for a phenotype will come in clumps.
Furthermore, if the population spends a set fraction of its
time fixed for a particular phenotype, the larger these
clumps are, the larger the gaps between them must be. Thus,
if we can estimate the size of these clumps, we can estimate
the waiting time to evolve a phenotype as the ratio between
the clump size and the stationary frequency of the pheno-
type (Aldous 1989). Furthermore, it seems that the matrix Z
should provide a way to estimate this clump size. In parti-
cular, given that the population is currently at some geno-
type i that codes for our phenotype of interest, we know the
expected excess amount of time that the population will
spend at any other genotype j that also encodes that phe-
notype. Thus, we should be able to develop an estimate of
the clump size by appropriately summing over the entries of
Z.

To develop this idea further, we will consider waiting
times for a somewhat broader category of evolutionary
events that encompasses not only arriving at a genotype that
produces a phenotype of interest, but can include other
evolutionary events of interest such as the waiting time for a
specific substitution (or set of substitutions) to occur or the
waiting time for a mutation to enter the population that
would produce a particular genotype or phenotype. The key
unifying feature of all these events is that they occur with
some fixed probability given the most recent transition of
the evolutionary Markov chain. More formally, if we use Xt

to denote the genotype of the population at time t, for each
pair i, j, let our event occur with probability C(i, j) at time t
given that Xt−1= i and Xt= j. We can define such an event
using a matrix V, where V(i, j)=C(i, j)P(i, j) for some set of
constants 0 ≤ C(i, j) ≤ 1. Thus, for example, if we are
interested in the findability of phenotypes, we can consider
the event of arriving or remaining at our phenotype of
interest, in which case C(i, j) is 1 if j encodes our phenotype
of interest and is 0 otherwise so that the event matrix V is
simply the transition matrix P with the columns corre-
sponding to all phenotypes besides our phenotype of
interest set to zero. But we can also consider other events
such as the event of experiencing a substitution from some
specific genotype i to some other specific genotype j, in
which case C is the matrix of all 0 s except for its i, jth entry
which is 1, and V is the matrix of all 0 s except for its i, jth
entry which is P(i, j).

Now, given a specific choice for this matrix V, we can
derive two other useful vectors. First, let g be the vector
such that g(i) is the probability that an event occurs in
generation t given that the population is at genotype i in
generation t− 1. Then g= V1, where 1 is the vector of all
ones, or in other words g ið Þ ¼Pj V i; jð Þ. Second, let c be
the probability distribution describing the genotype of a

population at stationarity at time t conditional on an event
having occurred at time t. Then, if we write the frequency of
events at stationarity as Eπg= πTg, we can also write cT=
πTV/Eπg, so that c jð Þ ¼Pi π ið ÞV i; jð Þ=Pi

P
k π ið ÞV i; kð Þ.

Assuming stationarity, conditioning on an event occur-
ring means that the location of the population is distributed
as c rather than π. As a result, the population is expected to
spend more time at some genotypes and less time at others
in the short term, relative to if we had let the population start
at stationarity without having conditioned on an event
occurring. These times are given by the vector cTZ, whose
jth entry is given by

P
i c ið ÞZ i; jð Þ. Now, g(j) gives the

probability that an event occurs given that the population is
at genotype j. Thus, the total expected number of extra
events that occur given that a population is at stationarity
and an event has just occurred is given by the sum over all
states of the product of the extra time spent at each state cTZ
and the probability of an event occurring at that state g, i.e.:

X
j

g jð Þ
X
i

c ið ÞZ i; jð Þ
 !

¼ cTZg : ð10Þ

Adding 1 to this estimate to account for the initial event that
we assume has just occurred gives us an expected clump
size of 1+ cTZg. Now, if the expected clump size were one,
and the long-term rate of events was Eπg the expected
waiting time would be approximately 1/Eπg for rare events
Eπg << 1. But our estimated expected clump size is 1+
cTZg times as large, and so the gaps between clumps must
also be 1+ cTZg times as large, suggesting our final
approximation:

EπTV � 1þ cTZg

Eπg
: ð11Þ

Moreover, this result is exact for any event whose
corresponding matrix V is entirely composed of zeros
except for a single row or column (see Appendix C).

This analysis has surprising implications for dynamically
discontinuous substitutions, i.e., substitutions from a genotype
to one of its mutational neighbors that is not contained in its
dynamical neighborhood. As noted before, such substitutions
can often be identified in multipeaked fitness landscapes as
substitutions into fitness valleys that tend to resolve away from
the ancestral peak, resulting in a peak shift. More precisely,
consider the occurrence of substitutions from a particular
genotype i to another particular genotype j that is not in the
dynamical neighborhood of i. The corresponding event matrix
V has only one nonzero element, in particular V(i,j)=P(i, j),
(i.e., V(m, n)=P(i,j) for m= i, n= j and 0 otherwise). At the
time of such an event, the population is assuredly at genotype
j. Thus, cTZg=P(i, j)Z(j, i). Because j=2N ið Þ, Z(j, i) ≤ 0 and so
cTZg ≤ 0, i.e., given that such a substitution has just occurred
we actually expect to have a deficit of additional events over
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the time-scale until the chain again approaches stationarity.
This results in EπTV � 1

Eπg
. In other words, even though dis-

continuous substitutions run counter to the overall dynamical
tendencies of a population evolving on a fitness landscape, and
are thus intuitively unlikely, they also occur in very small
clumps, which results in the waiting time to observe such an
event from a stationary start being shorter than would be
expected based on their overall frequency of occurrence.

Another surprising implication concerns the relationship
between the expected waiting time to evolve to a phenotype
and the mutational robustness of that phenotype, i.e., the
fraction of mutational neighbors of the constituent geno-
types that code for the same phenotype (Wagner 2005,
2008). Intuitively, robust phenotypes should have large
cTZg since once a population arrives at such a phenotype
many mutations produce the same phenotype, resulting in a
longer clump of times during which the population displays
that phenotype, and hence a longer waiting time to observe
that phenotype. Conversely, phenotypes encoded by geno-
types spread broadly around the genotypic space will tend
to be faster to evolve. We can see this by noting that under
weak mutation the clumpiness of arriving or staying at a
genotype that encodes a given phenotype will be dominated
by the event of staying at that phenotype (because we
assume that mutations and hence substitutions occur rarely)
so that for a phenotype encoded by a set of genotypes P we
have g(i) ≈ 0 for i=2P and g(i) ≈ 1 for i 2 P. Thus, in this
case cTZg � 1= Pj jð ÞPk; k′2P Zðk; k′Þ, and this sum is
reduced if some of the Z(k, k′) are negative, as would
typically occur if the elements of P are distant from each
other in genotypic space.

The index of dispersion of the molecular clock for
general events

We have just seen that the term cTZg can be viewed as a
measure of the extent to which events defined by the matrix
V occur in a clumpy manner. Traditionally, the clumpiness
of events in models of molecular evolution has been mea-
sured by the index of dispersion of the associated counting
process. And indeed the formula for the asymptotic index of
dispersion of an event defined by the matrix V can also be
written in terms of cTZg (Appendix D):

R1 ¼ 1� Eπgþ 2cTZg ð12Þ

where R∞ is the limit, as t goes to infinity, of the ratio
between (1) the variance in the number of events that have
occurred by time t and (2) the mean number of events that
have occurred by time t. Because a Poisson process has an
index of dispersion of one, it is common to call a
continuous-time stochastic process overdispersed if its
index of dispersion is greater than one and underdispersed

if its index of dispersion is less than one. In discrete time,
the analog of a Poisson process has geometric waiting times
between events; because R∞= 1−Eπg for such an event, we
will say that an event is overdispersed if R∞ > 1− Eπg and
underdispersed if R∞ < 1− Eπg. Thus, the sign of cTZg
determines whether the event defined by V is overdispersed
or underdispersed.

While formally equivalent expressions for R∞ have
appeared elsewhere in the literature (e.g., Iwasa 1993;
Cutler 2000; Bloom et al. 2007; Raval 2007; Houchmand-
zadeh and Vallade 2016), they have typically been phe-
nomenological (e.g., Cutler 2000) or difficult to interpret
(e.g., Houchmandzadeh and Vallade 2016), so that the main
advantage of Eq. (12) is in interpretability and intuitive
understanding. In particular, the term cTZg has an intuitive
interpretation in terms of the expected number of extra
events that occur given that an event has just occurred, and
furthermore each of the component terms has a clear bio-
logical meaning, since c is the distribution describing the
state of the population just after an event, g describes the
rate at which events occur, and Z describes the neighbor-
hood structure of the fitness landscape. That is, Eq. (12)
makes it clear that the index of dispersion is essentially a
measure of whether having an event occur (c) tends to put
populations in regions of the fitness landscape (Z) where
additional events are more or less likely to occur (g), and
that the magnitude and direction of this effect is captured by
the single compound term cTZg.

Much interest in the literature on the index of dispersion
concerns deriving conditions where the event process is
overdispersed. A sufficient condition for R∞ ≥ 1− Eπg met
for many useful choices of V is that DV1= (DV)T1, where
D is the diagonal matrix with π down its main diagonal (i.e.,P

j π ið ÞV i; jð Þ ¼Pj π jð ÞV j; ið Þ for all i, see Appendix E for
a proof). In words, this means that at stationarity, the
probability of arriving at a state i when an event occurs is
always equal to the probability of leaving state i just before
an event occurs. Clearly this holds for the substitution
process since by reversibility π(i)P(i, j)= π(j)P(j, i) (see
also Houchmandzadeh and Vallade 2016), but it also holds
for any subset of the set of substitutions that is symmetric,
for instance in codon models it holds for both the set of
synonymous substitutions and the set of nonsynonymous
substitutions.

On the other hand it need not hold for other asymmetric
classes of substitutions such as the class of all advantageous
substitutions. Indeed, our analysis so far has identified one
class of substitutions that are guaranteed to be underdispersed
on an individual basis, namely dynamically discontinuous
substitutions to genotypes outside the dynamical neighbor-
hood of their parent genotype. Such individual substitutions
are obviously underdispersed since they have negative cTZg.
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Application to a one-codon fitness landscape

To illustrate the theoretical tools we have developed so far,
we will use them to analyze a one-codon fitness landscape
with selection for serine and against stop codons and
mutation rates based on mutation accumulation results in
yeast from Lynch et al. (2008) (see McCandlish 2011, 2013,
for details and previous results on this fitness landscape). It
will be helpful to incorporate the visualization techniques
that I have previously developed (McCandlish 2011)
because the resulting visualizations integrate well with the
theory described here.

We start by briefly reviewing the visualization technique.
The goal is to produce a low-dimensional representation of
the fitness landscape that best captures the dynamics of the
evolutionary Markov chain. In particular, if we let xi,t(j) be
the probability that a population with initial genotype i is at
genotype j at generation t then we can write

xTi;t ¼ xTi;0P
t ¼ πT þ

Xn
k¼2

λtkl
T
k rk ið Þ; ð13Þ

where λ1= 1 > λ2≥ … ≥λn > 0 are the eigenvalues of P, and
the lk and rk are, respectively, the associated left and right
eigenvectors, normalized so that (rk)

TDrk= 1 and (lk)
TD−1lk

= 1.
The way to understand the visualization method is that for

k ≥ 2, the lk each sum to zero and are best viewed as a set of
deviations from the stationary distribution π each of which
decays independently in time as λtk , i.e., over time-scale τk≡
1/(1− λk). The choice of the initial genotype i determines the
weight on each of these deviations from the stationary dis-
tribution, and the values of these weights are given by the
corresponding rk(i). Over time, the fastest decaying devia-
tions corresponding to large k have essentially decayed to
zero, leaving only the deviations corresponding to small k.
Thus, if we plot each genotype i at, e.g., (r2(i),r3(i)), we get a
low-dimensional visualization of the fitness landscape where
clusters of genotypes correspond to sets of genotypes that
produce similar distributions for the location of the popu-
lation once the quickly decaying deviations have decayed
away. The positions of the genotypes in the resulting plot
thus reflect the most slowly decaying from deviations from
stationarity, which capture the major barriers to diffusion in
the fitness landscape. In practice we rescale the axes of the
visualizations by the square-root of the associated relaxation
time to plot the genotypes at (u2(i), u3(i)), where uk � ffiffiffiffi

τk
p

rk,
so that the axes have units of square-root generations and
squared Euclidean distance optimally approximates EiTj þ
EjTi (see McCandlish 2011 for details and other properties
of the visualizations).

Figure 2 shows the resulting visualization. Because
selection is for serine, the landscape is dominated by the

two mutationally disconnected sets of serine codons, TCN
and AGY shown as white circles. These two sets are
broadly separated along the u2-axis because populations
must cross a fitness valley to get from a TCN serine to an
AGY serine or vice versa, indicating that the most slowly
decaying deviation from the stationary distribution corre-
sponds to an excess probability of being found in one group
of serines or the other. The u3-axis also has an intuitive
interpretation and separates the fit serines from genotypes
several mutations away from either serine cluster.

To get a more detailed view on the evolutionary con-
sequences of starting at any particular genotype, we can use
these visualizations to plot particular rows of Z and hence
display the dynamical neighborhoods of the corresponding
genotypes. These visualizations are shown in Fig. 3 for
three choices of initial genotype, TCA, AAA, and AGT,
and emphasize the regional structure of the fitness land-
scape. We see that TCA and AGT are not in each other’s
dynamical neighborhood, while AAA and AGT are.
Moreover, we can see that starting at AAA leads to an
expectation of spending extra time in the neutral portion of
the landscape and at the AGY serines, but tends to lead to
spending less time at the TCN serines. We can also see that
all of AAA’s mutational neighbors are in its dynamical
neighborhood, but this is not the case for either TCA or
AGT, which each have one mutant neighbor outside their
dynamical neighborhood. This emphasizes the fact that the
probability of a peak shift after a deleterious fixation
depends on the precise position of the deleterious genotype
in the fitness landscape. Many deleterious substitutions will

Fig. 2 Visualization of the one-codon fitness landscape using the
method of (McCandlish 2011). White circles show serine codons,
black circles show all other codons and circle area is proportional to
stationary frequency. Edges denote point mutations. Population size N
= 3000; fitness is 1.001 for serine codons, 0.999 for stop codons and
1.000 for all other codons, and natural selection is modeled using the
exact probability of fixation for a Moran process. Mutation rates are
based on Lynch et al. 2008 (see McCandlish 2011 for details)
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typically result in a return to the same peak in the short
term, but the particular deleterious substitutions that leave
the dynamical neighborhood are those that are least likely to
return to the original peak.

Besides using Z to define a natural notion of neigh-
borhood for genotypes, we also used it to estimate waiting
times for particular events to occur. To investigate the
accuracy of approximating EπTV as (1+ cTZg)/Eπg, we
can compare EπTV, as calculated exactly using the theory
of absorbing Markov chains, with our approximation.
First we will choose V to be the event of arriving or
remaining at each particular amino acid or stop for the
single codon fitness landscape for N= 3000. The
approximation is always an overestimate of the true
waiting time (except for the amino acids with only one
codon, for which it is exact). The maximum error is 7.7%
for serine which is the amino acid with the shortest
expected waiting time (Fig. 4).

In (McCandlish 2013) I discussed an interesting phe-
nomenon for the findability of genotypes in which the sta-
tionary frequency of a genotype is positively correlated with
the clumpiness of the times that a population is fixed for that
genotype. Because the expected waiting time to evolve a
genotype from a stationary start is the ratio of these factors
(Eq. (4)), this results in a decreased range of waiting times
relative to the range of stationary frequencies. Here we
observe the same phenomenon for the findability of amino
acids. In particular, while there is a 349-fold range of
equilibrium frequencies for amino acids and stop, the cor-
responding EπTV vary by only 124-fold.

Besides addressing the problem of findability, we also
developed formulas for the asymptotic index of dispersion
R∞ for general events. In the case of the serine landscape we
have been discussing, for the molecular clock (V(i, j)= P(i,
j) for i ≠ j and 0 otherwise) we have R∞= 2.42. What
accounts for this overdispersion? To better understand the
sources of overdispersion in this fitness landscape, it is

helpful to re-write Z in terms of the lk and rk

Z ¼
X
k�2

τk rk l
T
k : ð14Þ

Using this decomposition, we can see that each deviation
from equilibrium makes an independent contribution to the
index of dispersion:

cTZg ¼
X
k�2

cT τkrkl
T
k

� �
g: ð15Þ

Thus, to the extent that we can identify particular axes in the
visualizations with particular qualitative features of the

Fig. 3 The expected excess or deficit of time a population spends at
each genotype, for three choices of initial genotypes indicated by the
arrows. The dynamical neighborhood of the initial genotype is shown
with white circles corresponding to an expected excess, while other

genotypes experience an expected deficit shown with gray circles, with
the area of each circle proportional to the corresponding time; darker
gray edges connect genotypes where the sign of the effect is the same

Fig. 4 EπTV, as determined numerically using the theory of absorbing
Markov chains, is plotted against the approximation (1+ cTZg)/Eπg for
the single codon fitness landscape with selection for serine and N=
3000. Here, V corresponds to the event of arriving or remaining at a
codon that codes for a particular amino acid or stop. The line y= x is
shown in gray; R2= 0.998
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fitness landscape, we can quantify the manner in which
these features affect the asymptotic index of dispersion.

For the case at hand, the contributions to cTZg are shown in
Fig. 5. We notice immediately that a single deviation from
equilibrium, l3, makes the dominant contribution to the
overdispersion (cT(τ3r3l3

T)g/(cTZg)= 0.49). Looking back at
Fig. 2, we see that the corresponding axis of the visualization,
u3, separates the two clusters of serine codons from a large
neutral plateau consisting of codons that code for other amino
acids. Thus, the elevated index of dispersion largely reflects
the fact that the substitution rate is low when the population is
fixed at one of the two serine peaks, but experiences a higher
substitution rate during the epochs that it wanders the neutral
plane below. To put this another way, given that a substitution
has just occurred, the population is more likely to be on the
neutral plateau than on one of the peaks, and hence is likely to
experience further substitutions in the short term.

Although cTZg is indeed nonnegative when we consider
all substitutions together, we have emphasized that cTZg
need not be positive for certain exceptional classes of
events. To give an example where cTZg is negative invol-
ving more than a single substitution, consider the occur-
rence of substitutions from codons that code for threonine to
the TCN cluster of serines. Because the codons that code for
threonine are of the form ACN, each of these codons is
mutationally adjacent to a serine of the form TCN (the
corresponding substitutions are shown in Fig. 6). For this
class of substitutions, we have R∞= 0.95, so that they occur
in an underdispersed manner. In this case it turns out that by
far the dominant contribution is from cT(τ2r2l2

T)g, corre-
sponding to the axis between the two serine clusters in the
visualization. This makes perfect sense, since after an ACN
to TCN substitution, the population is at the TCN fitness
peak, and thus has an extremely negative value for cTr2.
But, in order to have another ACN to TCN substitution, the

population must first return to a codon that codes for
threonine. This takes a very long time, (time-scale τ2)
because it requires a deleterious fixation for the population
to leave the fitness peak and because the threonine codons
are in a sense closer to the AGY serines, as shown by their
positive values along the r2-axis (positive coordinates along
u2) and the dynamical neighborhood structure of the land-
scape (e.g., none of the threonines are in the dynamical
neighborhood of TCA, while three out of four of the
threonines are in the dynamical neighborhood of AGT, see
Fig. 3). Thus, the fact that a substitution from ACN to TCN
corresponds to a shift from the “basin of attraction” of one
fitness peak to another explains why having had such a
substitution decreases the expected number of these sub-
stitutions that will occur in the future.

Finally, it is interesting to consider the relationship
between mutational robustness and the waiting time for an
event to occur. For instance, the codons that code for serine
come in two clusters, TCN and AGY, and thus exhibit
substantial mutational robustness in that 26% of mutations
from a serine codon lead to another serine codon. How
much easier would serine be to evolve if it were coded for
by six random codons, and how much harder would it be to
evolve if it exhibited the even more robust arrangement of
codons shown by arginine or leucine?

To answer these questions, we modify our example
slightly so that each possible point mutation occurs at rate
10−10 per generation, and consider an ensemble of alter-
native scrambled genetic codes where each codon is ran-
domly reassigned to a different amino acid while keeping
the multiplicity of each amino acid constant. We then cal-
culate the expected waiting time to evolve serine (the uni-
form mutation rate removes the compositional biases from
the running example, so that the equilibrium frequency of

Fig. 5 The contribution to the clumpiness of the molecular clock
corresponding to the deviation from equilibrium given by lk, c

T(τkrklk
T)

g, is shown for k ≥ 2 for the one-codon fitness landscape with selection
for serine and against stop codons. The sum of these contributions is
cTZg. Notice the very large contribution from l3

Fig. 6 A visualization of the one-codon fitness landscape with selec-
tion for serine and against stop codons. Substitutions from ACN
threonines to TCN serines are shown with black arrows
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serine is constant independent of which six codons are
assigned to serine). The results are shown in Fig. 7. We see
that the expected waiting time to evolve serine is longer for
more robust arrangements of serine codons (Pearson cor-
relation= 0.78), and that the arrangements corresponding to
arginine, leucine, and serine itself have extremely high
robustness compared to random arrangements (only 19 of
the 10,000 random arrangements have robustness as great or
geater than serine under the standard code and no
arrangements were observed with robustness as high as
arginine or leucine). The average waiting time to evolve a
serine was 1.6 × 109 generations for random codes, and for
random codes where no two serine codons are adjacent the
expected waiting time was 1.4 × 109. In contrast, the
expected waiting time was 2.0 × 109 generations for the
serine arrangement, 2.3 × 109 generations for the arginine
arrangement and 2.5 × 109 generations for the leucine
arrangement. This shows that the high degree of robustness
conferred by the block structure of the standard genetic
code results in substantially longer waiting times to evolve a
selected phenotype than would be observed under random
genotype–phenotype maps (for more on the role of
robustness and evolvability in the evolution of the genetic
code, see Koonin and Novozhilov 2009, 2017).

Discussion

Whereas the transition matrix of the weak-mutation Markov
chain expresses the local, short-term rules governing the
evolutionary dynamics, the fundamental matrix Z integrates
over time to capture the expected consequences of these
rules. Although as a technical matter many matrices can
play the role of Z in the theory of finite state Markov chains
(see Sections 7.2 and 7.3, Hunter 1983), our choice is based

on a preference for clear and intuitive interpretations: Z(i,j)
is the expected excess or deficit of time that a population
spends at genotype j given that the population starts at
genotype i relative to how much time a population would
have spent at i at stationarity. Even though our presentation
has been in discrete time, almost all of these results extend
to continuous time with some minor modifications (Aldous
and Fill 2002). Furthermore, while we have assumed that
the evolutionary process takes the form of a reversible-time
Markov chain, we expect the methods introduced here to
work well even when strict reversibility is violated. More
specifically, the results for the dynamical neighborhood
depend primarily on the sign pattern of Z (and particularly
that Z(i,j) and Z(j,i) have the same sign) rather than the
exact condition π(i)Z(i,j)= π(j)Z(j,i) guaranteed by reversi-
bility, and Z itself is continuous in the entries of P so long as
a mutational path exists with nonzero probability between
any pair of genotypes. Moreover, Eq. (12) on the asymp-
totic index of dispersion applies exactly to nonreversible
chains as well, demonstrating the general theoretical
importance of our quantifier of clumpiness cTZg.

Based on the matrix Z, we have introduced the notion of
the dynamical neighborhood of a genotype. Investigating
the structure of these neighborhoods provides a powerful
tool for understanding the structure of fitness landscapes as
it allows us to see what the landscape looks like from the
perspective of a particular genotype. This is especially
useful in conjunction with visualizations based on the
eigenvectors of P, as shown in Fig. 3, because the visuali-
zation of the structure of the landscape and the entries of the
rows of Z contain complementary information. The visua-
lizations are low dimensional and approximately right for
all genotypes but discard information from fast time scales
(i.e., from the eigenvectors not used to construct the
visualizations). On the other hand Z itself is high-dimen-
sional, but for any given row of Z we can plot it on the
visualizations to get detailed information on the expected
effect of starting at genotype i that is exact and integrates
over all time scales.

Given an evolutionary neighborhood structure, a natural
question concerns which transitions in observed evolu-
tionary trajectories are continuous (that is remain within the
neighborhood) versus those that are discontinuous (sub-
stitutions of mutational neighbors that are not dynamical
neighbors). Fontana and Schuster (1998a, 1998b) and Sta-
dler et al. (2001) previously proposed a notion of a phe-
notypic neighborhood, where the phenotypic neighbors of a
phenotype are those alternative phenotypes that are pro-
duced by mutation at high rates so that they generically
appear whenever the focal phenotype is present. Dis-
continuous phenotypic changes then corresponded to the
fixation of rare new phenotypes whose discovery requires a
long waiting time from the focal phenotype. (Fontana and

Fig. 7 Relationship between findability and robustness for phenotypes.
Small dots show the expected waiting time to evolve serine versus the
fraction of mutations from serine codons that produce other serine
codons for 10,000 scrambled amino acid codes (horizontal jitter is
added to the robustness for clarity). Pearson correlation= 0.78. Large
dots show the values for serine, leucine, and arginine under the stan-
dard genetic code
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Schuster 1998a, 1998b) found that a single discontinuous
change would often open up new directions of continuous
change, resulting in a burst of substitutions. In our context,
discontinuous substitutions are ones that vastly alter the fate
of an evolving population, transporting it to a new region of
the fitness landscape that it was previously unlikely to reach
in the short term.

Expressing a related view to Fontana and Schuster
(1998a, 1998b) on the role of the biased production of
variation in giving direction to evolution, Schaper and Louis
(2014) presented several approximations for the waiting
time to produce a given phenotype based on a mean field
approximation where the waiting time is inversely propor-
tional to the average rate at which a phenotype is produced
together with a multiplicative term accounting for various
population-genetic factors. Translating our current results
into the case of a population evolving on a network of high-
fitness genotypes, the results here based on cTZg provide a
more nuanced approximation by taking into account the
structure of the network and in a way that automatically
adjusts for population-genetic parameters such as sequence
length and mutation rate.

Previous theoretical treatments of the index of dispersion
of the molecular clock for stationary evolution under weak
mutation have typically emphasized either the structure of
high fitness genotype networks with varying neutral muta-
tion rates (Bloom et al. 2007; Raval 2007; Bastolla et al.
2007), or treated the problem for uncorrelated fitness
landscapes, where clumpiness in the substitution processes
arises due to a pattern of stasis when the population is at
high fitness punctuated by rapid substitutions during the
period when the population is at low fitness (Iwasa 1993;
McCandlish et al. 2014). Our analysis here can accom-
modate both these factors, and indeed we see both at play in
our serine example: overdispersion is driven by having
different substitution rates in different regions of the fitness
landscape, but this difference in substitution rate is driven
by the difference between the lower substitution rate at the
fitness peaks and the higher rate on the neutral plain below.
More generally, because the most slowly decaying devia-
tions from stationarity make the largest contributions to Z
via their large τk, we expect cTZg to be largest when g
covaries with the rk for small rk, which interestingly implies
that cTZg will be maximized when g appears to change
monotonically across our visualizations.

The theory presented here is focused on the expected
long-term dynamics of the weak-mutation Markov chain.
It therefore assumes that the selection coefficients,
mutation rates and population size all remain constant
over the relevant time scales. Moroever, the methods
employed here are based on modeling the evolutionary
process and therefore assume that all relevant sites are
included the model. This contrasts with some techniques

such as the examination of rank orders of genotypes
(Weinreich et al. 2005) that can usefully be applied to
sub-landscapes or in the presence of incomplete data. As
a result, empirical applications of the techniques descri-
bed here must largely be limited to computational models
and genomic segments whose action is conserved and
where the size of the genotypic space is small enough to
allow exhaustive measurements of the fitness for each
possible genotype. Promising applications that fit these
criteria include codon models for sites with conserved
amino acid preferences (Bazykin 2015), conserved tran-
scription factor binding sites (Aguilar-Rodríguez et al.
2017), and splice sites. Another reason that the number of
sites involved in the model must be limited is that we
assume that the total mutation rate is small. This is
necessary in order to model the evolution of the popula-
tion as a Markov chain on the set of genotypes, and we
have leveraged the simplicity and tractability of finite
state Markov chains to produce a relatively simple and
intelligible mathematical theory. Although some analy-
tical progress has been made in modeling the evolution of
finite polymorphic populations on highly simplified fit-
ness landscapes (e.g., Weissman et al. 2009; Goyal et al.
2012; Jain and Krug 2007), we still lack a general theory
that would apply to finite polymorphic populations on
complex fitness landscapes, making it difficult to address
the types of questions we have considered here in that
more realistic context.
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Appendix

(A) The dynamical neighborhood of i is connected and
includes i

We want to show that for a fixed i, the set of genotypes j
such that Z(i,j) > 0 is connected, in the sense that there is a
path l1,…,lk such that Z(i,l1),…,Z(i,lk) > 0 and
P j; l1ð ÞP l1; l2ð Þ � � �P lk; ið Þ>0. In fact, we will show that for a
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fixed choice of genotype i and constant a, the set of geno-
types j with EjTi < a is connected. Because EiTj= (Z(j,j)− Z
(i,j))/π(j) and EπTj= Z(j,j)/π(j), this reduces to the previous
condition for a= EπTi

Suppose to the contrary that the set A of genotypes j such
that EjTi < a is not connected. Then let A′ be the component
of A that contains i (i.e., let A′ be the maximal connected
subset of A containing i), and let A′′ be some other com-
ponent of A. Now, let k be a genotype in A′′ and consider
EkTi. We can write EkTi= ET(1)+ ET(2) where ET(1) is the
expected time for a population that begins at k to first arrive
at a genotype that is not in A and then ET(2) is the expected
remaining waiting time for the population to first arrive at i.
Of course, ET(1) > 0 since the population begins at genotype
k 2 A. Furthermore, ET(2) ≥ a since at T(1) the population is
no longer in A. Thus we have:

EkTi ¼ ET 1ð Þ þ ET 2ð Þ

>ET 2ð Þ

>a

ðA1Þ

which contradicts our original assumption that k 2 A.
Thus, the set of genotypes j such that EjTi < a is connected,
as is the set of genotype j such that Z(i,j) > 0.

We also need to show that i is in its own dynamical
neighborhood, i.e., Z(i,i) > 0. Let
Zt i; jð Þ �Pt�1

m¼0 Pm i; jð Þ � π jð Þð Þ. From Eq. (13), we can
write Zt(i,t) as:

Zt i; ið Þ ¼
X
k�2

1� λtk
1� λk

rk ið Þ lk ið Þ ¼
X
k�2

1� λtk
1� λk

qk ið Þ2 ðA2Þ

which is clearly nonnegative and increasing with t. Now, Z1
(i, i)= 1− π(i), which is positive except in the trivial case,
which we choose to exclude, of a fitness landscape with
only one genotype. Because Zt is increasing with t, it
follows that Z(i, i)= Z∞(i, i) ≥ 1− π > 0, so that i is in its
own dynamical neighborhood.

(B) Analytical formula for Z in the neutral case
In the neutral case, we have P= I− μL, where L is the

Laplacian matrix of the l-dimensional Hamming graph on
Aj j letters. Because the eigendecomposition of L is known
and can be expressed in terms of the Krawtchouk poly-
nomials (Stadler and Happel 1999), we can plug this
eigendecomposition into Eq. (14) to get:

Z i; jð Þ ¼
Xl
k¼1

1
μ k Aj j

Xmin k;df g

q¼0

�1ð Þq Aj j � 1ð Þk�q

Aj jl
d

q

� �
l� d

k � q

� �
;

ðA3Þ

where d is the Hamming distance between sequence i and
sequence j.

(C) Proof that the approximation in Eq. (11) is exact
for any event that either always ends or always begins in
a single genotype

We want to show that EπTV ¼ 1þ cTZgð Þ=Eπg for any V
that is all zeros except that either (A) a single row of V
contains nonzero entries (the event always begins in a
particular genotype i) or (B) a single column of V contains
nonzero entries (an event always ends in a single genotype
i).

First we will consider the expected waiting time until an
event that always begins in genotype i. The expected time
until such an event can be viewed as the sum of two waiting
times: the waiting time to first reach i, and then the waiting
time for the event to occur when starting at i. Thus, we have

EπTV ¼ EπTi þ EiTV : ðA4Þ
Now EπTi is simply Z(i,i)/π(i), and so what we want to know
is EiTV.

Given that the population is at i, the total number of
times the population will be at i before TV is geometrically
distributed, where the success probability is g(i). Thus, on
average there are (1− g(i))/g(i) failures before the first
success. After a failure, the population is distributed as:

P i; 1ð Þ ¼ P i; nð Þð Þ � V i; 1ð Þ ¼ V i; nð Þð Þ
1� g ið Þ ðA5Þ

and one step has occurred. So after a failure, the expected
time to return to i is:

1þP
j

Pði;jÞ�Vði;jÞ
1�gðiÞ EjTi ¼ 1þ Zði;iÞ

πðiÞ �
P
j

Pði;jÞZðj;iÞ

1�gðiÞð ÞπðiÞ

þ
P
j

Vði;jÞZðj;iÞ

1�gðiÞð ÞπðiÞ

¼ 1þ Zði;iÞ
πðiÞ � Zði;iÞþπðiÞ�1

1�gðiÞð ÞπðiÞ

þ cTZg
1�gðiÞð ÞπðiÞ

¼ 1�πðiÞgðiÞ�Zði;iÞgðiÞþcTZg
1�gðiÞð ÞπðiÞ :

ðA6Þ

In addition, there is exactly one success, which takes
exactly one time step. Thus, multiplying the duration for
each failure by the expected number of failures and adding
one for the final success, we have:

EiTV ¼ 1�π ið Þg ið Þ�Z i;ið Þg ið ÞþcTZg
πðiÞgðiÞ þ 1

¼ 1�Z i;ið Þg ið ÞþcTZg
π ið Þg ið Þ :

ðA7Þ
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Plugging Eq. (A7) into Eq. (A4) gives us:

EπTV ¼ Z i;ið Þ
π ið Þ þ 1�Z i;ið Þg ið ÞþcTZg

π ið Þg ið Þ

¼ 1þcTZg
Eπg

ðA8Þ

as required.
Next, let us consider an event V that always ends in

genotype i. We first treat the special case that an event
occurs each time the population transitions into some spe-
cific state i, (that is, we let V(k,j)= P(k,j) for j= i and 0
otherwise). Since the population is always at genotype i
when an event occurs, c is the vector with a 1 in position i
and 0 elsewhere. Furthermore, since an event happens with
each transition into i, g is simply the ith column of P.

Now, we turn to calculating EπTV. Because an event can
only occur on a transition into state i, no event can occur at
t= 0, and so the first possible time for an event to occur is t
= 1. Moreover, because the initial genotype is drawn from
the stationary distribution π at t= 0 the location of the
population is still described by the stationary distribution at
t= 1 and so we have EπTV= 1+ EπTi, i.e.:

EπTV ¼ Z i; ið Þ
π ið Þ þ 1: ðA9Þ

To show that this expression is equal to (1+ cTZg)/Eπg, we
will need the following identity for Z(i,i):

Z i; ið Þ ¼
X1
t¼0

Pt i; ið Þ � π ið Þð Þ ðA10Þ

¼ 1� π ið Þ þ
X1
t¼1

Pt i; ið Þ � π ið Þð Þ ðA11Þ

¼ 1� π ið Þ þ
X1
t¼1

X
k

Pt�1 i; kð ÞP k; ið Þ �
X
k

π kð ÞP k; ið Þ
 !

ðA12Þ

¼ 1� π ið Þ þ
X
k

X1
t¼1

Pt�1 i; kð Þ � π kð Þ
 !

P k; ið Þ
 !

ðA13Þ
¼ 1� π ið Þ þ

X
k

Z i; kð ÞP k; ið Þ; ðA14Þ

where we have used the fact π ið Þ ¼Pk π kð ÞP k; ið Þ and the
definition of Z. Noting that for our choice of V we have
cTZg ¼Pk Z i; kð ÞP k; ið Þ and Eπg= π(i), we can substitute
the above expression for Z(i,i) into Eq. (A9) to obtain

EπTV ¼
1� π ið Þ þP

k
Z i; kð ÞP k; ið Þ

π ið Þ þ 1 ðA15Þ

¼ 1� Eπgþ cTZg

Eπg
þ 1 ðA16Þ

¼ 1þ cTZg

Eπg
ðA17Þ

as required.
To extend this result to events V where events only occur

upon transition to state i but do not occur on every transition
to i, we consider an augmented Markov chain with transi-
tion matrix P* and event V* chosen so that the distribution
of waiting times for V* is identical to the distribution for V,
but we add an auxiliary state n+ 1 so that events only occur
on transitions to state n+ 1 and occur on each such
transition.

In particular, we define P* as

P	 j; kð Þ ¼
P j; kð Þ for j≠i; j≠nþ 1; k≠i; k≠nþ 1

P i; kð Þ for j ¼ i or j ¼ nþ 1; k≠i; k≠nþ 1

P j; ið Þ � V j; ið Þ for k ¼ i

V j; ið Þ for k ¼ n þ 1;

8>>><
>>>:

ðA18Þ
and V* as

V	 j; kð Þ ¼
V j; ið Þ for k ¼ nþ 1; j≠nþ 1

V i; ið Þ for k¼nþ 1; j ¼ nþ 1

0 otherwise:

8><
>: ðA19Þ

Then P* with event V* has dynamics identical to P with
event V except that we have split the state i into two states
so that the population goes to n+ 1 instead of i when an
event occurs. Defining π*, c*, Z* and g* based on P* and V*,
we then have (c*)TZ*g*= cTZg, Eπ	g	 ¼ Eπg, and
Eπ	TV	 ¼ EπTV . Thus,

EπTV ¼ Eπ	TV	 ðA20Þ

¼ 1þ c	ð ÞTZ	g	

Eπ	g	
ðA21Þ

¼ 1þ cTZg

Eπg
; ðA22Þ

as required.
(D) The index of dispersion for generalized events
We will proceed in somewhat more generality than the

main text and consider a general ergodic transition matrix P
with events defined by a matrix V as before. To write down
a formula for R∞, it will be helpful to write down formulas
for EπIt, which is the probability that an event occurs at time
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t given that the initial genotype is a draw from the equili-
brium distribution, and Eπ It1 It2ð Þ, which is the probability
that an event occurs at both time t1 and time t2 given that the
initial genotype is a draw from the equilibrium distribution.
Of course,

EπIt ¼ πTPt�1g ¼ πTg ¼ Eπg ðA23Þ

and for t1 < t2

Eπ It1 It2ð Þ ¼ πTPt1�1VPt2�t1�1g

¼ πTVPt2�t1�1g

¼ Eπgð Þ cPt2�t1�1gð Þ

ðA24Þ

since the probability that an event occurs at time t1 is Eπg,
and given that an event occurs at t1 the distribution of the
location of the population is given by c.

Writing St for the number of events that have occurred
through time t, using Eq. (A23) we have:

EπSt ¼ Eπ

Pt
m¼1

Im

� �

¼ Pt
m¼1

EπIm

¼ tEπg:

ðA25Þ

Furthermore using the general formula for the variance of a
sum of random variables and noting that Eπ Im1 Im2ð Þ ¼
Eπ Im2 Im1ð Þ depends only on |m2−m1| and Eπ(Im)

2= EπIm,
we have:

VarπSt ¼ Varπ
Pt
m¼1

Im

� �

¼ Pt
m¼1

VarπIm þ 2
Pt�1

m1¼1

Pt
m2¼m1þ1

Covπ Im1 ; Im2ð Þ

¼ Pt
m¼1

EπIm � EπImð Þ2
� �

þ2
Pt�1

m1¼1

Pt
m2¼m1þ1

Eπ Im1 Im2ð Þ � EπIm1EπIm2ð Þ

¼ tEπgð1� EπgÞ þ 2 Eπgð Þ Pt�1

m¼1
t � mð Þ cTPm�1g� Eπgð Þ

¼ EπSt 1� Eπgþ 2
Pt�1

m¼1
1� m

t

� �
cTPm�1g� Eπgð Þ

� �
:

ðA26Þ

Concentrating on the last term, we have Eπg= πTg= cT∏g,
where ∏≡ 1πT is a projection matrix corresponding to the
stationary distribution of P. Thus:

Pt�1

m¼1
1� m

t

� �
cTPm�1g� Eπgð Þ

¼ cT
Pt�1

m¼1
1� m

t

� �
Pm�1 � Πð Þ

� �
g:

ðA27Þ

Pulling apart the sum in parentheses, we have

Pt�1

m¼1
1� m

t

� �
Pm�1 � Πð Þ

¼ Pt�1

m¼1
Pm�1 � Πð Þ

� �
� Pt�1

m¼1

m
t : P

m�1 � Πð Þ
� �

:

ðA28Þ

Furthermore,

lim
t!1

Xt�1

m¼1

Pm�1 � Π
� � ¼ Z ðA29Þ

by the definition of Z and

lim
t!1

Xt�1

m¼1

m

t
: Pm�1 � Π
� � !

¼ 0 ðA30Þ

since Pt converges at least geometrically quickly to ∏ entry-
wise for sufficiently large t under Perron–Frobenius theory
(see, e.g., Theorem 1.2 of Seneta 2006) using the facts that
P is primitive and that the Perron eigenvalue of P is 1.

Putting this all together, we have

R1 � lim
t!1

VarπSt
EπSt

¼ lim
t!1

1� Eπgþ 2
Pt�1

m¼1
1� m

t

� �
cTPm�1g� Eπgð Þ

� �
¼ 1� Eπgþ 2cTZg

ðA31Þ

as required.
(E) Sufficient condition for overdispersion
If DV1= (DV)T1 then c=Dg/Eπg. This means that we

can write:

cT τkrklTk
� �

g ¼ τkgTD rklTk
� �

g= Eπgð Þ
¼ τkgT lklTk

� �
g= Eπgð Þ

¼ τk lTk g
� �2

= Eπgð Þ
ðA32Þ

which is nonnegative because the numerator is nonnegative
and the denominator is positive. Thus, if DV1= (DV)T1,
cTZg is also nonnegative, by Eq. (15).
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