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Abstract
In wide-ranging taxa with historically dynamic ranges, past allopatric isolation and range expansion can both influence the
current structure of genetic diversity. Considering alternate historical scenarios involving expansion from either a single
refugium or from multiple refugia can be useful in differentiating the effects of isolation and expansion. Here, we examined
patterns of genetic variability in the trans-continentally distributed painted turtle (Chrysemys picta). We utilized an existing
phylogeographic dataset for the mitochondrial control region and generated additional data from nine populations for the
mitochondrial control region (n= 302) and for eleven nuclear microsatellite loci (n= 247). We created a present-day
ecological niche model (ENM) for C. picta and hindcast this model to three reconstructions of historical climate to define
three potential scenarios with one, two, or three refugia. Finally, we employed spatially-explicit coalescent simulations and
an approximate Bayesian computation (ABC) framework to test which scenario best fit the observed genetic data.
Simulations indicated that phylogeographic and multilocus population-level sampling both could differentiate among
refugial scenarios, although inferences made using mitochondrial data were less accurate when a longer coalescence time
was assumed. Furthermore, all empirical genetic datasets were most consistent with expansion from a single refugium based
on ABC. Our results indicate a stronger role for post-glacial range expansion, rather than isolation in allopatric refugia
followed by range expansion, in structuring diversity in this species. To distinguish among complex historical scenarios, we
recommend explicitly modeling the effects of range expansion and evaluating alternate refugial scenarios for wide-ranging
taxa.

Introduction

Shifts in climate during the late Quaternary altered bio-
geographic patterns of species diversity and endemism
(Sandel et al. 2011), and traces of these historical processes
are embedded in current patterns of genetic diversity
(Hewitt 2000). Phylogeographic analysis therefore repre-
sents a promising tool for investigating mechanisms by
which climatic shifts shape biodiversity (Riddle 2016).
Genetic profiles of many Nearctic and Palearctic taxa, for
example, were strongly impacted by isolation in refugia
during glacial episodes (Hewitt 2000). The existence of
deeply divergent, spatially restricted clades within con-
tinuously distributed taxa has often been interpreted as a
signal of glacial isolation in multiple allopatric refugia
followed by post-glacial range expansion (Provan and
Bennett 2008).

Even so, fully understanding the pattern and process of
Quaternary range shifts using genetic data can be
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challenging, as multiple historical factors can contribute to
current genetic variability. Simulations have demonstrated
that range expansion, for example, can generate levels of
genetic differentiation within the recolonized range that are
equal to or greater than expected in cases of secondary
contact between reciprocally isolated populations (Knowles
and Alvarado-Serrano 2010), complicating the interpreta-
tion of genetic differentiation across large ranges. When
range expansion occurs via serial founder effects, genetic
drift will effectively be accelerated (Slatkin and Excoffier
2012), which can lead to the fixation and spread of rare
alleles (Edmonds et al. 2004; Excoffier and Ray 2008;
Excoffier et al. 2009). While the extent to which range
expansion, in contrast to allopatric isolation, has shaped
genetic diversity in wild populations is poorly known,
several studies have identified signatures of population
expansion related to Holocene range expansion. These
include findings of increased spatial structure and shifts in
allele frequency in the newly colonized range relative to the
ancestral range (Graciá et al. 2013) and spatial sorting of
mitochondrial lineages after expansion from a single refu-
gium (Streicher et al. 2016).

Spatially-explicit coalescent simulation methods (Ray
et al. 2010) have created unprecedented opportunities for
addressing these issues by modeling complex historical
phylogeographic scenarios. By coupling ecological niche
models (ENMs) with these simulation approaches, biogeo-
graphic hypotheses can be generated and tested in a unified
framework (Knowles et al. 2007; Richards et al. 2007).
These coupled approaches can be used to test hypotheses
regarding the relative effects of distance, habitat, and past
climate (He et al. 2013; Massatti and Knowles 2016) in
generating current genetic structure, thus refining under-
standing of nuanced historical patterns and processes.

Researchers employing spatially-explicit simulation
procedures have in practice used a single climate recon-
struction to hindcast species’ historical ranges (e.g., He
et al. 2013; Massatti and Knowles 2016; Knowles and
Massatti 2017). However there is considerable uncertainty
regarding past climate, and modeling past distributions
using alternate climate models or ENM thresholding rules
can result in differing predictions regarding the location and
extent of historic ranges and refugia (Waltari et al. 2007;
Waltari and Guralnick 2009). Thus, different plausible cli-
mate reconstructions can indicate varying levels of allopa-
tric isolation and range expansion. To address this,
Alvarado-Serrano and Knowles (2014) recently reviewed
use of ENMs in phylogeographic studies and stressed the
importance of incorporating uncertainty regarding past
distributions, but acknowledged the lack of an established
method for doing so.

In this study, we used population-level and range-wide
genetic data from the painted turtle (Chrysemys picta), as

well as ecological niche modeling and spatially-explicit
coalescent simulations, to elucidate the phylogeographic
and demographic history of this taxon, and broader
applications. Trans-continentally distributed species, such
as the painted turtle, can be particularly informative for
exploring the effects of broad-scale shifts in climate on
biodiversity, as they often exhibit considerable genetic
structure associated with historic shifts in range, as well as
other ecological factors (Fontanella et al. 2008; Lougheed
et al. 2013). Specifically, we compared current patterns of
genetic diversity with data simulated under three refugial
scenarios, based on alternate reconstruction of past cli-
mate, in a model-testing framework to examine the his-
torical roles of glacial isolation (allopatry) and post-
glacial range expansion. We used three different empirical
datasets that differed in spatial sampling (population-level
versus range-wide) and genetic sampling (mitochondrial
DNA versus nuclear microsatellites) schemes to infer
demographic parameters and the most likely refugial
scenario. We also used cross-validation procedures to
evaluate the accuracy of refugial hypothesis testing and
parameter estimation for each sampling scheme. The
approach taken here represents a promising framework for
distinguishing the effects of isolation and range expansion
and more accurately characterizing the historical forces
structuring biodiversity.

Materials and methods

Study system

The genus Chrysemys is common and broadly distributed
across North America, and exhibits both morphological
and physiological trait variability across its range (Ernst
and Lovich 2009). Traditional taxonomy has recognized
one species (Chrysemys picta) subdivided into four sub-
species (Ernst and Lovich 2009). More recent phylogeo-
graphic research (Starkey et al. 2003; Jensen et al. 2015)
has identified the southern subspecies as a monophyletic
group, resulting in the elevation of this taxon to species
status as C. dorsalis (TTWG (Turtle Taxonomy Working
Group) et al. 2017). We focus on the three northern sub-
species of C. picta, and refer to these throughout as picta,
marginata, and bellii (Fig. 1). These three subspecies dis-
play considerable genetic variability, including multiple
mitochondrial clades exhibiting spatial structure across the
range. However, past research using phylogenetic methods
has been unable to come to a clear consensus regarding the
historical processes that have generated this variability, as
there is a lack of strict monophyly among morphologically
defined subspecies (Starkey et al. 2003; Jensen et al. 2015;
Figure S1).
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Field procedures and sampling

Using permitted procedures, we obtained genetic samples
from ongoing studies covering the full longitudinal breadth
of the C. picta range, including all three northern sub-
species. We obtained blood or tissue samples from two C. p.
picta populations on Staten Island, NY (FK and LP) as well
as from C. p. bellii (NE) and C. p. marginata (IN). All
blood samples were collected via the dorsal coccygeal vein
or brachial artery. Tissue samples from an additional C. p.
picta site in mainland NY (BR) were obtained from the
Ambrose Monell Cryo Collection at the American Museum
of Natural History (AMNH). DNA extractions from blood
and tissue were performed using a DNEasy Blood and
Tissue Kit (Qiagen, Inc., Valencia, CA, USA).

We obtained DNA extracts from additional populations
in Wisconsin (WI) and British Columbia (BC). Field and
lab methods are described in Reid and Peery (2014; for WI)
and Jensen et al. (2014; for BC). These samples were

grouped based on previous population clustering analyses
conducted for these regions using a location prior (Jensen
et al. 2014; Reid et al. 2016). Wisconsin samples were taken
from an eastern population (WIe) located in a zone of
morphological intergradation between C. p. bellii and C. p.
marginata, and a western population (WIw) in the tradi-
tional range of C. p. bellii. BC individuals were also taken
from two localities assigned to separate clusters: the
Thompson-Okanagan cluster in south-central BC (BCs) and
the Sunshine Coast/Gulf Island/Mid-Vancouver Island
cluster in western BC (BCw).

Microsatellite genotyping

Twelve polymorphic microsatellite loci were genotyped at
the AMNH using primers available in the published litera-
ture (Table S1). PCRs were carried out on an Eppendorf
Master cycler following established protocols, and all
reactions used an annealing temperature of 58 °C. Duplicate

Fig. 1 Map showing current range of Chrysemys picta with sampling
sites for this study. Blue lines indicate approximate boundaries for
traditional subspecies, with variation in morphology among species
shown for three representative individuals (C. picta picta from Orange
County, NY; C. picta marginata from Walworth County, WI; C. picta
bellii from Buffalo County, WI). Black dots indicate sampling sites for

the range-wide mitochondrial DNA dataset, with regional groupings
delineated by dashed lines and labeled with numbers. Red diamonds
show locations for populations-level datasets. Four hypothesized
refugial locations are shown: one on the East Coast (EC), one on the
Gulf Coast (GC), one in the Southwestern US/Mexico (SW), and one
broad southeastern refuge encompassing the East and Gulf Coasts (SE)
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samples were included on plates and used as a quality
check.

Microsatellite primers are known to cross-amplify well in
turtle species, likely due to genome conservatism (Engstrom
et al. 2007), and most of the primers used here were
developed in other chelonian groups. We carried out mul-
tiple quality control steps to ensure that these markers
performed reliably and according to the assumptions of
downstream analyses (i.e., no null alleles, minimal linkage,
and adherence to Hardy-Weinberg equilibrium). Micro-
satellite genotypes were manually called and scored using
GENEIOUS version 8.1.2 (Kearse et al. 2012). For con-
sistency and reliability, all genotypes were scored inde-
pendently by two observers and then compared. Genotypes
were coded as missing if the data were unclear. Samples
with missing data were eliminated until there was no more
than 5% missing data for each population. After this initial
screening, MICROCHECKER 2.2.3 (Van Oosterhout et al.
2004) and GENALEX 6.5 (Peakall and Smouse 2012) were
used to check for genotyping errors. We tested each locus
for departures from Hardy-Weinberg and linkage equilibria
at each sampling site using exact tests as implemented in
GENEPOP 4.2 (Rousset 2008). In both cases, we corrected
for Type I error rates using the sequential Bonferroni pro-
cedure (Rice 1989).

Mitochondrial DNA sequencing

We amplified a 662-basepair fragment of the mitochondrial
control region using previously published primers and PCR
conditions (Starkey et al. 2003). Amplification was con-
firmed using gel electrophoresis. PCR products were then
either directly sent for sequencing to Genewiz (South
Plainfield, NJ, USA) or purified using Exosap (Affymetrix,
Santa Clara, CA, USA) and then sequenced at the AMNH.
Each sequence was aligned to published haplotypes (Star-
key et al. 2003; Jensen et al. 2015) using GENEIOUS
version 8.1.2 (Kearse et al. 2012). Sequences that did not
match any previously published sequence were first sear-
ched using NCBI BLAST to confirm that these sequences
were novel. Individuals exhibiting novel haplotypes were
then resequenced for confirmation.

Range-wide mitochondrial dataset

To broaden our analysis we assembled a range-wide dataset
of published mitochondrial control region sequences
(microsatellite or other data were not available range-wide).
We refer to this dataset hereafter as “mtDNA-Range”. For
the mtDNA-Range dataset, we added the sites sampled for
mitochondrial control region in Jensen et al. (2015) and
thinned any sites with more than ten samples to ten. This
resulted in a dataset with a similar number of sequences (n

= 290) distributed over a much larger number of sites (90)
compared to the population-level dataset. We grouped
samples in the mtDNA-Range dataset into nine spatially
contiguous regional samples (Fig. 1), and calculated sum-
mary statistics based on these groupings in order to main-
tain a similar number of statistics relative to the population-
level datasets.

Population genetic diversity

We calculated population-level diversity statistics for
microsatellite and mtDNA datasets using ARLSUMSTAT
(Excoffier and Lischer 2010). For both microsatellite and
mtDNA datasets, we used the number of alleles (K) aver-
aged over all loci as a basic metric of diversity. We also
calculated average heterozygosity (H) for microsatellite data
and average pairwise nucleotide diversity (π) for mtDNA.

Genetic structure, and isolation by distance

The model-based clustering method implemented in
STRUCTURE 2.3.4 (Pritchard et al. 2000) was used to
evaluate range-wide population structure using the micro-
satellite data. Run length was set to 1,000,000 MCMC
(Markov chain Monte Carlo) iterations after a burn-in per-
iod of 500,000 using correlated allele frequencies under an
admixture model with no prior location information. The
most likely number of clusters was determined by varying
the number of clusters (K) from 1 to 15 with 10 independent
runs per value of K, and calculating ΔK (Evanno et al. 2005)
as implemented in Structure Harvester (Earl and vonHoldt
2012). To test for substructure, we grouped populations
according to their cluster membership and repeated the
above analyses on the reduced datasets. Results for the
identified optimal values of K were summarized using
CLUMPP (Jakobsson and Rosenberg 2007) and plotted
using DISTRUCT v1.1 (Rosenberg 2004). We also calcu-
lated codominant genotypic distances for all pairs of indi-
viduals as well as mean distances for all pairs of populations
and conducted principal coordinates analyses (PCoA) on
both distance matrices in GENALEX.

We calculated pairwise FST for microsatellites and
mtDNA using ARLSUMSTAT, which employs the
AMOVA method described in Excoffier et al. (1992). We
calculated the Pearson correlation between genetic dis-
tance and geographic distance using the base statistics
package in R (R Core Team 2015). To evaluate the sta-
tistical significance of the relationship between genetic
and geographic distance, we conducted a distance-based
redundancy analysis (dbRDA) with the R package
vegan (Oksanen et al. 2013) using X and Y coordinates
of each population as predictors (after Kierepka and
Latch 2016).
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Demographic history

We constructed Bayesian skyline plots (BSPs) using the
mtDNA-Range dataset in BEAST v.1.8.0 (Drummond and
Rambaut 2007). The purpose of BSP analyses was twofold:
to (1) estimate the magnitude and timing of population size
changes in C. picta; and (2) identify a plausible mito-
chondrial DNA mutation rate consistent with glacial isola-
tion and post-glacial expansion (Hoareau 2016). As
population structure and overrepresentation of individual
populations can affect inferences made using BSPs (Heller
et al. 2013), we also thinned the mtDNA-Range dataset to
create an additional dataset (mtDNA-Thinned) with a
maximum of 2 individuals per site. Since the BSP analysis
assumes panmixia, changes in the structure of the study
population may influence the inferred timing of population
size changes (Mazet et al. 2016). To consider the possibility
that secondary contact after refugial isolation could be
influencing BSP analyses, we constructed three additional
datasets corresponding to samples taken from the ranges of
the three northern Chrysemys subspecies (as defined in
Jensen et al. 2015). We compared the resulting skyline plots
and assessed congruence between parameter estimates for
all datasets.

All BSP analyses were conducted using the HKY+
gamma+ I mutation model (after Jensen et al. 2015).
Recent estimates of mutation rates are often higher than
ancient rates (Ho et al. 2005). As such, to determine the rate
most consistent with expansion after the Last Glacial
Maximum (LGM), we assessed two per-lineage mutation
rates (either a slow mutation rate of 1.75 × 10−8 or a faster,
doubled mutation rate of 3.5 × 10−8 mutations/lineage/year)
based on the published control region substitution rate of
1.75 × 10−8 substitutions/site/year estimated from the uplift
of the isthmus of Panama for green sea turtles (Chelonia
mydas; Formia et al. 2006). This approach is in line with the
method proposed by Hoareau (2016) for calibrating muta-
tion rates using the inferred timing of assumed demographic
changes.

We reviewed, tested, and used mostly default priors for
skyline plot analyses, with the exception being for skyline.
popSize, where we used a wide uniform prior to account for
the potential range of possible ancestral and current popu-
lation sizes for different geographic subsets (initial value=
1 × 105, prior distribution= uniform (0.5 × 107). Chain
length for each run was 100 million iterations, with the first
10 million chains discarded as burn-in, and chains sampled
every 4000 iterations. The effective sample size (ESS)
estimator was used to diagnose convergence, with ESSs >
200 for all parameters used as indicators of convergence
(Drummond et al. 2006). Effective population sizes (Ne)
were calculated from tau values output by BEAST by
dividing by generation time (11 years, based on mean

generation time estimates of 10.7–12.35 years in Wilbur
1975). We note, however, that the accuracy of the values
reported for Ne could be affected by uncertainty in gen-
eration time and potential variability in generation time
across the range for Chrysemys. The medians of the popu-
lation size distributions at either the median date of the most
recent common ancestor or at year zero were used as esti-
mators of ancestral (NeA) and recent (NeR) population sizes,
respectively. The 97.5 and 2.5% quantiles for posterior
distributions were used to delineate confidence intervals.

Ecological niche modeling

We downloaded C. picta occurrence records from the
Global Biodiversity Information Facility (GBIF) and Vert-
Net (downloaded June 2016) and concatenated the results
into a single occurrence dataset after removing duplicate
localities. To minimize the effect of records potentially
resulting from incorrect identification or introductions, we
restricted the dataset to only those occurrences that inter-
sected with the International Union for Conservation of
Nature (IUCN) range polygon for C. picta (van Dijk 2011).
To reduce the effects of spatial autocorrelation, we then
spatially thinned the occurrence data with the R package
spThin (Aiello-Lammens et al. 2015), which resulted in a
dataset of occurrences with no neighbors less than 10 km
away. We defined the background extent as the area
underlying a minimum convex hull of the occurrence
localities. The convex hull was buffered by one degree to
avoid including areas potentially suitable for C. picta, but
outside of historically occupied regions due to barriers to
dispersal (Anderson and Raza 2010).

Models for current potential distribution were built using
Maxent, a presence-background ecological niche modeling
(ENM) method (Phillips et al. 2006). We included the 19
bioclimatic variables from WorldClim at 10 arcmin reso-
lution, representing monthly climatic averages for current
conditions, as predictors in our models (Hijmans et al.
2005). We then built multiple models with two independent
datasets ranging from simple to complex, and identified an
optimal model based on test data performance on spatial
cross validation using the R package ENMeval (Muscarella
et al. 2014). Model selection for Maxent done in this way
often results in less complex models that use a subset of the
input predictor variables (Merow et al. 2013). To more
accurately evaluate cross-validation error given spatial
structure in the environmental data used in ENM (Roberts
et al. 2017), we employed a spatial partitioning strategy
using the “block” method in ENMeval. To determine
whether any areas in the predicted study extent (southern
Canada, the United States, and northern Mexico) have non-
analog environmental conditions compared to the areas
used to train the model, we ran a multivariate environmental
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similarity surface (MESS) analysis (Elith et al. 2010) using
the R package dismo (Hijmans et al. 2016).

We hindcasted our model to both the Last Glacial
Maximum and the Mid-Holocene (MID) using the World-
Clim bioclimatic datasets for these time periods, masked to
our study extent. As different general circulation models
(GCMs) can have starkly contrasting predictions for certain
areas, we hindcasted to both LGM and MID using three
GCMs available on WorldClim for both time periods
(CCSM4, MIROC-ESM, MPI-ESM-P) and took the stan-
dard deviation to explore the variability among predictions.
To identify potential discrete refugia, we applied a threshold
calculated from the present-day occurrence data to each
hindcasted LGM model. The threshold value chosen max-
imizes the sum of sensitivity and specificity (max SSS; Liu
et al. 2013). The max SSS value was selected as a con-
servative threshold that minimized overprediction outside
the IUCN range polygon and avoided bias by balancing
overprediction and underprediction of suitable habitat in the
past. To ensure that climate conditions in the hindcasted
refugia did not strongly differ from those in the present-day
training extent, we also ran MESS analyses on each GCM
hindcast per time period to assess the degree of non-analog
conditions with the present-day model background training
extent.

Refugial hypothesis testing

To determine the best-supported model of glacial isolation
and post-glacial range expansion in C. picta, we used
spatially-explicit coalescent simulations coupled with
approximate Bayesian computation (ABC) methods. We
defined three alternate historical scenarios based on each
GCM hindcast. To generate habitat suitability raster maps
for simulating range expansion, we first reduced the reso-
lution of our hindcasted potential distribution prediction
grids with an aggregation factor of 5 (resulting in 25 arcmin
resolution) to achieve a manageable number of total cells.
For each model we generated a “refugial” raster in which all
cells with habitat suitability scores greater than or equal to
the max SSS threshold at the LGM and with >1 neighboring
cells above this threshold were considered potential refugial
habitat. We also generated an “expansion” raster, repre-
senting potential habitat through which C. picta may have
dispersed in order to reach its current distribution, by
averaging the LGM and mid-Holocene maps for a given
climate model and considering all cells with averaged
suitability > 0.1 to be potential habitat. We lowered the
habitat suitability threshold for the expansion period to
allow for dispersal through some areas separating potential
past refugia from the current range that had low suitability
values at all three time points considered (LGM, MID, and
present), but were likely suitable at some time during the

Holocene. Finally, we created a “contemporary” raster in
which we assigned all cells within the current IUCN-defined
species boundaries for C. picta as potential habitat. As
inferred habitat suitability was relatively stable between the
contemporary and mid-Holocene time points compared to
the LGM to mid-Holocene (see below), we used this con-
temporary raster to simulate habitat suitability from the mid-
Holocene onward.

Simulations were executed using SPLATCHE v.2.1
(Ray et al. 2010), which first performs a forward-time
demographic simulation followed by a reverse-time coa-
lescent simulation. The forward simulation involved three
phases. For the first phase (“isolation”), beginning at the
last interglacial (130,000 years ago; Dahl-Jensen et al.
2013) and ending at the LGM, only cells considered
potential habitat in the refugial raster were considered
suitable. For the second phase (expansion), beginning at
the LGM and lasting until the mid-Holocene (6000 years
ago), all cells coded as potential habitat in either the
“refugial” or the “expansion” rasters were considered
suitable. For the final (contemporary) phase, lasting from
the mid-Holocene to the present, only cells coded as
potential habitat in the “contemporary” raster were con-
sidered suitable. At the beginning of simulations, a single
deme within each refuge was seeded with 1000 indivi-
duals each, after which populations were allowed to
expand freely according to the parameters of the simula-
tion. The per-generation population growth rate was set to
0.25 (corresponding to approximately 2% growth per
year), with this growth rate based on a life table con-
structed for C. picta (after Wilbur 1975) and consistent
with population growth rates reported by Frazer et al.
(1991) in an expanding population that grew approxi-
mately 50% in two decades. All suitable cells in each
phase were assigned the same carrying capacity (K) and
migration rate (M) for a given simulation. This is a sim-
plification from the iDDC approach that scales carrying
capacity to habitat suitability (He et al. 2013). While
modeled habitat suitability varied widely over the range of
C. picta based on our ENMs, habitat suitability explained
little variability in population densities reported in the
literature for C. picta (Figure S2). We used the stochastic
migration model in SPLATCHE, in which the number of
emigrants from a given deme in a generation is drawn
from a Poisson distribution centered around the number of
individuals in that deme multiplied by the migration rate,
and emigrants migrate randomly into one of the four
adjacent demes, with no friction. To confirm that popu-
lation size trajectories roughly matched those inferred
from mitochondrial DNA data, we summed the number of
individuals in all demes at 500-year intervals and com-
pared the change in population size over time to the
confidence intervals from BSP analyses.
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For the coalescent simulations, a per-generation mutation
rate of 1.925 × 10-7 was used for mtDNA, corresponding to
the slower mutation rate used in BEAST analyses multiplied
by 11 years per generation. For the microsatellite data, a
mutation rate of 8 × 10-4 per generation was used based on a
C. picta pedigree study (Pearse et al. 2002). The proportion
of multi-step mutations was set to 0.22, corresponding to
the average proportion observed over multiple pedigree
studies (Peery et al. 2012). As SPLATCHE simulates hap-
loid genes on the landscape rather than diploid individuals,
simulated microsatellite genotypes were generated by
combining alleles under the assumptions of Hardy-
Weinberg equilibrium (Ray et al. 2010). As such, esti-
mates of Ne and K made using microsatellite data here
indicate the number of gene copies, rather than the number
of diploid individuals. Sampling locations and number of
samples at each site corresponded to the locations and
number of samples in our observed population genetic
dataset.

We conducted simulations using combinations of ten
different carrying capacities (K, in terms of haploid indi-
viduals per deme; from 1000 to 10,000) and ten different
migration rates (M, from 0.001 to 0.01) for each of the three
refugial scenarios. The range of values for demographic
parameters used in simulations was determined after
exploring a broader range of parameters and evaluating the
overlap between the distribution of genetic summary sta-
tistics (see below) for simulated and observed data using the
gfitpca function in the R package ABC (Csilléry et al.
2012). One thousand coalescent simulations were con-
ducted for each combination of migration rate, carrying
capacity, refugial scenario, and sampling distribution
resulting in 300,000 total simulations each for population-
level microsatellites, population-level mtDNA, and range-
wide mtDNA. Given the difficulties associated with pro-
jecting changes in range beyond the last interglacial period,
a final step in which all lineages were combined into a
single small deme (n= 200) for 1000 generations was
included in these simulations to ensure coalescence during
the last interglacial. To determine whether the possibility of
deep coalescence would affect inferences made based on
these simulations, we also conducted an additional set of
simulations (ten for each combination of refugial scenario
and sampling scheme) with a much larger population size
(n= 10,000) and a much longer final duration (12,000
generations) during this final step. Intermediate values were
used for migration rate (M= 0.005) and carrying capacity
(K= 5000) in these simulations.

We used ARLSUMSTAT to calculate summary statistics
for all simulated datasets as well as the observed datasets.
We calculated 125 summary statistics for mtDNA and
120 summary statistics for microsatellites (Table S2). We

then used parameter estimation and posterior probability
functions in ABC to quantify support for demographic
models. All estimates of demographic parameters were
conducted using data from all simulations (i.e., not
assuming a given refugial model), and as such, we averaged
across uncertainty in refugial model selection when esti-
mating demographic parameters. We conducted cross-
validation to evaluate accuracy of parameter estimation
and model selection using the rejection method as well as
the neural net method. The neural net method utilizes
nonlinear regression and importance sampling to improve
inference and avoid loss of precision resulting from use of
large numbers of summary statistics (the “curse of dimen-
sionality”) as well as problems associated with correlations
among variables (Blum and François 2017; Csilléry et al.
2010). We used cross-validation to determine the combi-
nation of estimation method and tolerance level that mini-
mized error (after Beaumont et al. 2002). We conducted
cross-validation of each method using three different tol-
erance levels (0.001, 0.01, and 0.05), as simple rejection
methods are usually most accurate with smaller tolerance
values, while neural net methods are less sensitive to choice
of tolerance and often improve in accuracy with higher
tolerance (Blum and François 2017). One hundred pseudo-
observed datasets (PODS) were randomly chosen from the
simulated data and used to estimate carrying capacity and
migration using the cv4abc function, and 100 PODS from
each of the refugial scenarios were classified using the
cv4postpr function in ABC. Parameter estimation accuracy
was evaluated as mean squared prediction error for K and
M, and refugial scenario assignment error was evaluated as
the frequency at which the true model for a given simulated
dataset was not selected as the most likely model. We also
estimated posterior probabilities for refugial scenarios for
all datasets simulated using deep coalescences. Finally, we
determined support for demographic models using the
observed summary statistics as a target. We used posterior
model probabilities to identify the best-supported model for
each dataset, and Bayes factors to determine the level of
support for each model (Kass and Raftery 1995).

Results

Population-level sampling and genotyping

Sample sizes for each site ranged from 18 to 40 (Table 1).
One microsatellite marker (GmuD70) was discarded after
initial genotyping revealed a high frequency of null alleles.
Three of the eleven remaining microsatellite markers dis-
played significant departures from Hardy-Weinberg equili-
brium in at least one population, as well as in the global test.
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We performed population structure analyses both with and
without these markers and obtained similar results (Figure
S3); as such, all analyses presented here use the full 11-
locus dataset (referred to hereafter at “MSAT-Pop”). We
identified four novel mitochondrial DNA control region
haplotypes that had not previously been described; the
sequences for these haplotypes were deposited in Genbank
(accession numbers MH665354–MH665357). The final
population-level control region dataset is referred to here-
after as “mtDNA-Pop”.

Genetic diversity

For MSAT-Pop, genetic diversity was lower in the western
groups BCw and BCs (K= 4.45 and 6.45; H= 0.43 and

0.62; Table 1) compared to all other sites (K= 7.45 to 9.45;
H= 0.67–0.77). For mtDNA-Pop, WIe exhibited the high-
est haplotype diversity (K= 5, π= 2.21), with other areas
lower in diversity or completely monomorphic (K= 1 to 3,
π= 0 to 0.79; Table 1). Diversity in the mtDNA-Range
dataset showed a longitudinal pattern similar to the MSAT-
Pop dataset, with higher diversity in the three easternmost
zones (K= 7–14; π= 2.41–3.73) and declining diversity to
the west (K= 3–5; π= 0.20–1.88).

Genetic structure and isolation by distance

The Bayesian clustering analyses implemented in
STRUCTURE for the MSAT-Pop dataset revealed strong
evidence for K= 2 (ΔK= 1780), with a secondary peak at
K= 4 (ΔK= 530). At K= 2, populations BR, FK and LP
formed one cluster and all populations to the west were
assigned strongly to a second cluster (Fig. 2). Re-analysis of
this western cluster yielded a peak ΔK value at K= 3, which
resulted in a clustering scheme almost identical to the
scheme identified in the range-wide dataset for K= 4 (Fig.
2, Figure S3). At this value of K, IN clustered strongly with
the two WI populations, NE formed a distinct cluster, and
the two BC populations clustered together. Further analyses
did not identify any substructure within the IN/WI group,
but did identify the two BC populations as distinct clusters
(Figure S3). PCoA showed similar results, and populations
were arranged along the first principal component axis
(explaining 63.6% of variability) from east to west (Figure
S4).

Pairwise FST values for MSAT-Pop ranged from 0.02 to
0.34. FST exhibited a strong correlation with distance (r=
0.85; Fig. 3). Maximum FST values were higher for
mtDNA-Pop (FST= 1 for several comparisons with no
shared haplotypes), and reached an asymptote at much
shorter distances (Fig. 3). dbRDA analyses indicated a
significant association between location and genetic dis-
tance for both microsatellites (p= 0.002) and mtDNA (p=
0.002).

Demographic history

Effective sample size (ESS) values for nearly all parameters
in BEAST analyses were >200, with the only exceptions
being skyline group size parameters for the mtDNA-Range
dataset. As skyline plots for the mtDNA-Range dataset were
very similar to those obtained from the mtDNA-Thinned
dataset (which did reach convergence), for simplicity we
use the results for the mtDNA-Thinned dataset for range-
wide demographic inferences.

Both the range-wide and subspecies datasets showed
strong evidence for population expansion. The lower

Table 1 Number of individuals sampled (n), number of alleles (K),
average number of pairwise differences (π), and average
heterozygosity (H) for population-level (a) and range-wide (b)
datasets based on mitochondrial DNA control region (mtDNA CR)
and microsatellite data

(a)

mtDNA CR Microsatellites

Site n K π n K H

BR 33 1 0.00 36 9.45 0.72

FK 30 1 0.00 31 8.09 0.77

LP 24 2 0.58 25 8.45 0.75

IN 39 2 0.05 40 9.36 0.76

WIe 28 5 2.21 18 8.00 0.75

WIw 36 2 0.79 20 7.45 0.77

NE 33 3 0.37 34 7.82 0.67

BCs 21 1 0.00 22 6.45 0.62

BCw 22 1 0.00 21 4.45 0.43

(b)

mtDNA CR

Zone N K π

1 35 10 3.73

2 44 7 2.41

3 40 14 2.53

4 20 5 1.88

5 26 5 0.82

6 30 3 0.20

7 17 4 0.76

8 32 4 1.10

9 30 4 0.27

BR Black Rock, New York, FK Fresh Kills, New York, LP Long
Pond, New York, IN Dewart Lake, Indiana, WIe Eastern Wisconsin,
WIw Western Wisconsin, NE Gimlet Lake, Nebraska, BCs South-
Central British Columbia, BCw Western British Columbia
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mutation rate (1.75 × 10−8/lineage/yr) gave results more
consistent with demographic simulations (i.e., expansion
shortly after the LGM and lower population sizes during the
most recent glaciation; Fig. 4, Figure S5). The faster
mutation rate resulted in a significant lag between glacial
retreat and population expansion, as well as coalescence
during the glacial period (data not shown). The magnitude
of expansion ranged from 3.5-fold (for C. p. picta

considered alone) to 18.5-fold (for the mtDNA-Thinned
dataset). The estimated expansion period and most recent
common ancestor (MRCA) were both more recent for the C.
p. picta and C. p. bellii datasets than the range-wide dataset,
while the estimated expansion and MRCA were earlier in C.
p. marginata. However, confidence intervals for population
size over time broadly overlapped for all three subspecies
datasets and the range-wide datasets (Figure S5).

Fig. 2 Genetic clustering results based on microsatellite data for a two-
population (K= 2) and four-population (K= 4) scenario for painted
turtles. Barplots show individual ancestry coefficients for each indi-
vidual, and pie charts on the map show approximate location of

sampling sites and aggregated ancestry coefficients for each site based
on K= 4. Distance between eastern sites is exaggerated to prevent
overlap of pie charts (see Fig. 1)

Fig. 3 Pairwise genetic distance (FST) versus geographic distance for
Chrysemys picta based on nuclear microsatellite (circles) and mito-
chondrial DNA data (triangles)

Fig. 4 Bayesian skyline plots for Chrysemys picta showing population
size on a log(10) scale through time, with the timing of the most recent
glaciation shown above the plot. The 95% highest posterior density for
population size from the range-wide analysis (all) is shown in grey
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Ecological niche modeling

The concatenated occurrence dataset from GBIF and Vert-
Net resulted in 3315 unique localities with coordinates, and
removing those that did not intersect with the IUCN range
polygon resulted in 3097 localities. Finally, spatial thinning
by 10 km reduced this number to 1472 localities. The
optimal ENM chosen used 13 of the 19 predictor variables
and performed well on both the training dataset and an
independent dataset of occurrence records (Figure S6). We
projected the optimal model to the full study extent, and the
highest suitability for C. picta ranged from the north-east to
the central Atlantic coast of the U.S., westward to east of the
Rocky Mountains, with pockets in New Brunswick and the
Pacific coast of Mexico (which is likely outside the his-
torical dispersal range; Fig. 5). The MESS results showed
that only areas in western Mexico and Florida were con-
siderably non-analog climatically with the model training
area (Figure S7).

The highest agreement among GCMs for the LGM was
for high suitability on the south-eastern Atlantic coast
northeast of present-day Florida, and there was some
agreement (CCSM4 and MPI-ESM-P) for high suitability
on the Gulf coast between present-day Texas and Florida
(Fig. 6; Figure S7). Across GCMs, the most variability
was along the Gulf coast. The most non-analog areas

across all GCMs were outside of potential refugia in the
north-east U.S. and southern Canada (Figure S7). For the
mid-Holocene, CCSM4 and MPI-ESM-P showed very
similar patterns to the present, while MIROC-ESM
showed possible range expansions to the south, west,
and north (Figure S7).

Demographic parameter estimation and refugial
hypothesis testing

The max SSS threshold value based on current occurrence
data was 0.393. Applying this threshold to the three LGM
hindcasts resulted in three distinct refugial scenarios: an
East Coast-only scenario (EC) for the MPI-ESM-P model; a
scenario with one large Southeastern refuge spanning the
East Coast and Gulf Coast as well as a smaller refuge in the
Southwest (SE+ SW) for the MIROC-ESM model; and a
scenario with distinct East Coast, Gulf Coast, and South-
west refugia (EC+GC+ SW) for the CCSM4 model (Fig.
6). We refer hereafter to the simulations conducted based on
climate hindcasts by these three different refugial config-
urations. These scenarios resulted in different numbers of
demes occupied at the LGM during the demographic
simulations, ranging from a low of 3 demes for the EC
scenario to 42 demes and 108 demes for the SE+ SW and
EC+GC+ SW scenarios, respectively. For all three

Fig. 5 Present-day projected potential distribution for Chrysemys picta in North America based on ecological niche modeling of current occurrence
data with bioclimatic predictors. Sampling sites and the range boundary for the species (white dotted line) are also shown
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scenarios, more demes were occupied in the warmer mid-
Holocene (1027–1147 demes) than at present (828–833
demes).

For both microsatellites and mitochondrial DNA, cross-
validation error associated with estimation of migration rate
and carrying capacity, as well as misclassification of refu-
gial models for PODS, was generally lowest for the neural
net method and a tolerance level of 0.05 (Table S3a).
Parameter estimates for migration and carrying capacity
based on microsatellites were most accurate, and those
based on the range-wide mitochondrial dataset were the
least accurate. Refugial scenario assignment error using the
neural net method and a tolerance of 0.05, on the other
hand, was lowest for the range-wide mitochondrial dataset
(2% of PODS incorrectly classified), although assignment
error was also fairly low for microsatellites (7% of PODS
incorrectly classified) and for the population-level mito-
chondrial dataset (12% of PODS incorrectly classified;
Table S3a). Refugial scenario mis-assignments were mostly
between two-and three-refugia scenarios; PODS generated
using the EC model were almost never assigned to two-or
three-refugia models, and vice versa (Table S3b). For the
simulated datasets conducted using deep coalescences,
assignment accuracy was still high for microsatellites (90%
accurate), but lower for the population-level and range-wide
mitochondrial sampling schemes (53.3% accurate and

67.7% accurate, respectively). This low accuracy was
mainly due to mis-assignment of datasets simulated using
the three-refuge-scenario (Table S3c).

ABC estimates for migration and deme carrying capacity
based on the observed mtDNA-Pop dataset were both low
(K= 1568, 95% CI 0 to 4896; M= 1.3 × 10−3, 95% CI 3 ×
10−4 to 2.6 × 10-3; Table 2, Figure S8). The inferred car-
rying capacity based on the mtDNA-Range dataset was
higher (K= 6430, 95% CI 4735 to 8322), and migration
rates were somewhat higher as well (M= 3.8 × 10−3; 95%
CI 1.5 × 10−3 to 6.8 × 10−3), although confidence intervals
overlap with those from the mtDNA-Pop dataset. The
estimate for carrying capacity based on the MSAT-Pop
dataset was almost identical to the estimate based on the
mtDNA-Pop (K= 1479; 95% CI 66–4280). However, the
microsatellite-based estimate for migration was sub-
stantially higher than the mitochondrial estimate (M= 8.7 ×
10−3; 95% CI= 6.46 × 10−3 to 1.144 × 10−2; Table 2, Fig-
ure S8). All three datasets identified the EC refugial model
as having the highest posterior probability. For the MSAT-
pop and mtDNA-Range datasets, posterior probability for
this model was high (0.94), and Bayes factors identified this
model as strongly supported (BF > 20 for all model com-
parisons). For the mtDNA-Pop dataset, the posterior prob-
ability was lower (0.58) and Bayes factors were <20 for
model comparisons. There was also support for the EC+

Fig. 6 Hindcasted potential
distribution for the Last Glacial
Maximum based on the current
ecological niche model for
Chrysemys picta and three
different general circulation
models. The dark lines indicate
possible glacial refugia based on
the max SSS threshold
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GC+ SW model (posterior probability= 0.379), and sup-
port for this model relative to the EC model was equivocal
according to Bayes factors (BF= 1.516).

Discussion

Testing refugial hypotheses with spatially-explicit
population genetic models

Phylogeographic methods and ENMs provide com-
plementary insights into changes in the distributions of
species in response to past climatic events. Past work
comparing ENM hindcasts of refugia to inferences from
phylogeography has found broad agreement across many
taxa (Waltari et al. 2007; Rödder et al. 2013). However,
these comparisons are often qualitative in nature, using
niche modeling as a secondary or parallel line of evidence
(e.g., Buckley et al. 2010; Beatty and Provan 2010). The
analytical framework described here follows the integrative
distributional, demographic and coalescent (iDDC)
approach described by He et al. (2013). This provides a
means of explicitly linking alternative predictions from
ENMs to genetic simulations, in order to test which
potential refugial configurations and demographic para-
meters related to expansion best explain the current dis-
tribution of genetic variability.

Using the iDDC approach, Knowles and Massatti (2017)
also identified range shifts (as opposed to isolation) as a key
force in structuring genetic diversity in a grasshopper
inhabiting a sky-island system. Our approach differs from
the latter in several key respects. Most importantly,
Knowles and Massatti’s isolation-only scenario used a static
map of habitat suitability for the entire period being

simulated, while all of our alternate refugial hypotheses
incorporated both isolation and dynamic shifts in range via
changes in habitat suitability over time. Our ENM results
indicated large spatial shifts in habitat suitability over time
for C. picta, such that there was almost no overlap between
suitable habitat at the LGM and suitable habitat at the mid-
Holocene and present time points. Consequently, incor-
porating range shifts in all historical models is justifiable
and necessary, both in this situation and likely for similar
analyses involving other widespread species inhabiting
previously glaciated areas.

Another key difference in the analytical framework
employed here is the use of alternate GCMs to parameterize
potential refugial scenarios. Hindcasting ENMs to identify
suitable habitat in the past includes many potential sources
of error, including GCM choice. Using multiple models can
help account for this source of error and identify plausible
past distributions given model uncertainty. In light of our
results, we believe that multiple GCMs should be used to
guide the formulation of alternate hypotheses regarding past
distributions. While other sources of error in hindcasting
exist, we note that the three refugial scenarios used here
capture in large part the variability among GCMs in hind-
casted habitat suitability, including variability in the exis-
tence and extent of suitable habitat in the Gulf Coast and in
the West. The best-supported historical scenario included a
refuge in the area with higher overall stability across model
predictions (the East Coast).

We evaluated three genetic and spatial sampling schemes
for inferring past refugial scenarios, each of which poten-
tially contained different kinds of information. Compared to
mitochondrial DNA sequence data, microsatellites provide
the advantage of multiple rapidly-evolving independent
nuclear loci, but do not retain as much genealogical

Table 2 Results for approximate
Bayesian computation analysis
using summary statistics from
observed data as the target

(a)

Dataset Parameter Median Mode 95% CI

MSAT-Pop K 1479 1397 659–4280

MSAT-Pop M 8.75 × 10−3 8.14 × 10−3 6.46 × 10−3–1.144 × 10−2

mtDNA-Pop K 1568 1220 0–4895

mtDNA-Pop M 1.35 × 10−3 1.27 × 10−3 2.57 × 10−4–3.62 × 10−3

mtDNA-Range K 6430 6067 4735–8322

mtDNA-Range M 3.82 × 10−3 3.19 × 10−3 1.52 × 10−3–6.80 × 10−3

(b)

Dataset EC only SE+GC EC+GC+ SW

MSAT-Pop 0.943 0.036 0.022

mtDNA-Pop 0.575 0.047 0.379

mtDNA-Range 0.939 0.04 0.021

All analyses used the neural net method and a tolerance level of 0.05. (a) Demographic parameter estimates;
(b) Refugial model selection. Refugial models with highest posterior probability are indicated in bold
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information. In our analyses, the mtDNA-Range dataset
provided the greatest accuracy in terms of correctly
assigning PODS to refugial scenarios, but accuracy was
sensitive to the possibility of deep coalescences. The
accuracy of inferences made using the MSAT-Pop dataset,
on the other hand, was slightly lower, but less sensitive to
coalescence time. As all three genetic datasets supported the
EC scenario as the most likely of the three, expansion from
a single refugium seems to be the most plausible scenario
for the history of Chrysemys in the late Pleistocene. How-
ever, the uncertainty associated with inferences made using
mitochondrial DNA datasets and the lack of deeper gen-
ealogical information inherent in microsatellite data leave
open the possibility that genetic diversity in Chrysemys may
also have been shaped by more ancient historical events,
such as changes in range and population size occurring
before the last interglacial period, that are not reflected by
microsatellite data.

We did not include samples from the southern painted
turtle (Chrysemys dorsalis) in this analysis for multiple
reasons, the most practical being the lack of available
population-level data for this species. Additionally, based
on a previous analysis of hindcast range shifts in turtles over
the Quaternary (Rödder et al. 2013), ENMs predict very
little suitable habitat for this species during glacial episodes,
with zero predicted suitable habitat for the LGM. This result
may be influenced by this species’ relatively small current
range and the artificial truncation of the climate envelope
occupied by C. dorsalis at its southern range border at the
Gulf of Mexico. All the same, the inability to accurately
model a refugial range for this taxon at the LGM effectively
prevents its inclusion in the framework used here. The C.
picta and C. dorsalis mitochondrial clades are spatially
distinct and likely split well before the LGM, and likely
before the Quaternary itself (2.7–3.47 million years ago;
Starkey et al. 2003). Although there may be some intro-
gression of C. dorsalis nuclear genes into C. picta, or vice
versa, where ranges of the two taxa overlap (Jensen et al.
2015), we believe that the exclusion of C. dorsalis did not
significantly bias the results of this study, as populations
used for the microsatellite datasets were far north of this
overlap and all three datasets converged on the same refu-
gial hypothesis. However, future studies including C. dor-
salis could be useful in determining the extent of gene flow
among these species after range expansion.

Isolation and expansion as drivers of variability in
widely distributed taxa

Like many widespread taxa, Chrysemys picta exhibits
genetic and morphological variability across its range.
Allopatric isolation in glacial refugia has traditionally been
invoked for generating the spatial segregation of this

variability across painted turtles (Bleakney 1958) as well as
numerous other species (Hewitt 2000). While C. picta
morphotypes have traditionally been interpreted as resulting
from three or more lineages that arose in allopatry (Bishop
and Schmidt 1931; Bleakney 1958), our nuclear genetic
data were more consistent with expansion from a single
refugium. This result suggests that genetic differentiation
during range expansion and isolation-by-distance are a more
likely explanation for current genetic variability than his-
torical isolation in multiple refugia in this species. This
finding reinforces precautions against using morphological
variability as a marker of allopatric isolation in widespread
taxa (Byun et al. 1997). We do not reject subspecies
groupings outright, as some traditional groupings may still
delineate genetically distinct groups; however, our results
suggest a stronger potential role for range expansion, rather
than allopatry, in generating genetic structure for widely
distributed taxa such as Chrysemys picta.

The alternative explanation of genetic and morphological
differentiation via serial founder effects during spatial
expansion of a diverse source population has received
support in a variety of animal taxa, including sea snails
(Acanthinucella spirata; Hellberg et al. 2001), black bears
(Ursus americanus; Byun et al. 1997), and white-footed
mice (Peromyscus leucopus; Ledevin and Millien 2013).
These serial founder effects occur when the impacts of
genetic drift outweigh the effects of gene flow during range
expansion (Slatkin and Excoffier 2012). As such, species
with low effective population sizes and low dispersal rates
(such as turtles) may be particularly good candidates for
experiencing serial founder effects. Indeed, founder effects
have been identified as key to generating patterns of genetic
diversity observed in spur-thighed tortoises (Testudo
graeca) after colonization of the Iberian Peninsula (Graciá
et al. 2013).

Our examination of phylogeography via spatially-
explicit simulations identified a number of factors that
likely structure current genetic diversity in taxa exhibiting
recent range expansions. Declines in genetic diversity on
the wavefront of expansion are a hallmark of range
expansion (Edmonds et al. 2004). In all simulated scenarios,
genetic diversity for both mitochondrial DNA and micro-
satellites was lower for populations at the western edge of
the range (British Columbia), with the most extreme
declines associated with scenarios incorporating lower car-
rying capacity and migration rates. Observed levels of
genetic diversity and divergence in the western populations
examined here were consistent with declines in diversity
towards the edge of the range seen in other species, as
predicted by the central-marginal hypothesis (Eckert et al.
2008).

Mitonuclear discord, in which patterns of mitochondrial
genetic structure differ from patterns of nuclear genetic
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structure, has been observed in other expanding species and
may be a result of stronger genetic drift and thus more
severe serial founder effects in maternally-transmitted
mitochondrial DNA (Streicher et al. 2016). Sex-biased
dispersal patterns, which have been observed in many
species (Greenwood 1980), could also contribute to mito-
nuclear discord. We did observe higher divergences and
stronger isolation-by-distance in mitochondrial DNA com-
pared to microsatellites in population-level analyses,
though, the exact cause of this discord was unclear. Spa-
tially explicit simulations supported somewhat higher dis-
persal rates for microsatellite data compared to
mitochondrial data. Additionally, mitochondrial DNA did
not show the expected pattern of lower effective population
size compared to nuclear loci based on inferred carrying
capacities. However, this theoretical expectation may be
violated in natural populations due to greater skew in male
reproductive success than female reproductive success or
simply due to greater stochasticity inherent in mitochondrial
DNA (Johnson et al. 2003; Ballard and Whitlock 2004).
Taken together, these results provide some evidence for
sex-biased dispersal rather than stronger founder effects as
the cause of mitonuclear discord in this case. However,
inferences of demographic parameters made using mito-
chondrial DNA data were generally less accurate than those
made using microsatellite data, and as such the degree of
sex-biased dispersal and the true causes of mitonuclear
discord remain worthwhile avenues of investigation in this
species.

We did not associate habitat suitability values with
resistance to migration via the “Friction” parameter in
SPLATCHE. Although landscape features, including the
distribution of aquatic habitats, likely influence resistance to
gene flow in this species (Reid et al. 2016), projecting these
features into the deep past was beyond the scope of this
analysis. Integrating the effects of changes in historical
landscape as well as climate into simulations of range
expansion would be useful for future phylogeographic
investigations. Additionally, although we did not see a
strong relationship between climate and population density,
other landscape features (as well as biotic factors such as the
presence of competitor species) could potentially have an
effect on population size. Better characterizing the deter-
minants of population density in Chrysemys and including
these factors in simulations would also result in more rea-
listic simulations of range expansion.

Finally, Chrysemys displays variability in many traits
across its range. Intraspecific variability in body size and
clutch size are independent of morphological subspecies
definitions and are mostly related to latitude and elevation
instead (Iverson and Smith 1993; Lindeman 1997). These
patterns of variability also run counter to the longitudinal
patterns of neutral genetic variability related to range

expansion observed in this species. The latitudinal cline in
body size in particular may reflect local adaptation to tem-
perature (Lindeman 1997) and suggests a strong role for
selection (in addition to the neutral processes of isolation
and expansion examined here) in structuring geographic
variability. Investigating patterns of adaptive genetic
variability using a spatially-explicit framework similar to
the one used here, would greatly improve our knowledge of
how neutral and selective forces interact to produce the full
range of variability observed in expanding populations.
Genomic resources are now available for C. picta (Shaffer
et al. 2013), making this species an ideal model for future
investigations of the genetic basis of local adaptation in
widespread taxa.

Data availability
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Unix scripts used to perform ENM analyses and spatial
simulations have been uploaded to the Dryad Digital
Repository: https://doi.org/10.5061/dryad.8rb35rj.
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