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Abstract
Studying the genetic population structure of species can reveal important insights into several key evolutionary, historical,
demographic, and anthropogenic processes. One of the most important statistical tools for inferring genetic clusters is the
program STRUCTURE. Recently, several papers have pointed out that STRUCTURE may show a bias when the sampling design is
unbalanced, resulting in spurious joining of underrepresented populations and spurious separation of overrepresented
populations. Suggestions to overcome this bias include subsampling and changing the ancestry model, but the performance
of these two methods has not yet been tested on actual data. Here, I use a data set of 12 high-alpine plant species to test
whether unbalanced sampling affects the STRUCTURE inference of population differentiation between the European Alps and
the Carpathians. For four of the 12 species, subsampling of the Alpine populations—to match the sample size between the
Alps and the Carpathians—resulted in a drastically different clustering than the full data set. On the other hand, STRUCTURE
results with the alternative ancestry model were indistinguishable from the results with the default model. Based on these
results, the subsampling strategy seems a more viable approach to overcome the bias than the alternative ancestry model.
However, subsampling is only possible when there is an a priori expectation of what constitute the main clusters. Though
these results do not mean that the use of STRUCTURE should be discarded, it does indicate that users of the software should be
cautious about the interpretation of the results when sampling is unbalanced.

Introduction

Almost all species show some form of genetic structure in
the distribution of genetic variation. Be it a herb with an
extremely limited distribution (Freville et al. 2001), a
widely distributed tree species (Meirmans et al. 2017), or a
planktonic species from the open ocean (Peijnenburg and
Goetze 2013), there may be surprising genetic dis-
continuities across a species’ range. Patterns of population
structure can take many forms, from simple gradients
resulting from limited dispersal to complex hierarchical
patterns resulting from ecological adaptation to local

conditions. Studying population structure can therefore be
used to make inferences about the underlying evolutionary,
historical, demographic, or anthropogenic processes, or a
mixture of these (Lee and Mitchell-Olds 2011; Orsini et al.
2012; Nadeau et al. 2016).

One of the most widely used statistical tools for assessing
population structure based on individual genotypes is the
program STRUCTURE (Pritchard et al. 2000; Falush et al.
2003). STRUCTURE applies assignment of individuals to
populations in a Bayesian framework, assuming
Hardy–Weinberg equilibrium within clusters. While doing
so, it performs a dual role: (1) assigning individuals to
clusters, with the possibility of admixture between clusters,
(2) finding the most suitable number of clusters (K) given
the data. STRUCTURE generally performs both tasks very well
and often gets results with a very intuitive biological
explanation. Nevertheless, the method is not without flaws:
Pritchard et al. (2000) themselves already acknowledged
that STRUCTURE may give rise to spurious clustering in the
presence of isolation by distance (see also Frantz et al.
2009; Meirmans 2012). Furthermore, the inference of the
number of clusters is difficult as there may not be a single
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“optimal” value (Meirmans 2015), and different methods
(Pritchard et al. 2000; Evanno et al. 2005) may yield dif-
ferent estimates (Janes et al. 2017).

Recently, several papers have pointed out that STRUCTURE
is particularly sensitive to unbalanced sampling of popula-
tions (Kalinowski 2011; Neophytou 2013; Puechmaille
2016). With simulated data, even at the correct value of K,
an unbalanced sampling design resulted in incorrect
assignment of individuals to clusters; underrepresented
populations tended to be clustered together even when they
were not genetically more closely related. Conversely, the
most sampled populations were often split into two or more
spurious clusters with many individuals showing some
degree of admixture. Patterns that are remarkably similar to
those in Puechmaille’s (2016) simulations can be observed
when STRUCTURE is run on actual data sets. Puechmaille
himself showed such a bias to be present in the analysis of
Monarch butterflies. A similar pattern was noted earlier in a
study of hybridisation between domesticated and wild
species of cabbage, where the most sampled species
(Brassica rapa) was split into two almost fully admixed
clusters (Luijten et al. 2015). In order to reduce the bias that
comes from unbalanced sampling, Puechmaille (2016)
suggested subsampling the largest sample to match the size
of the smaller ones. This subsampling strategy indeed
removed the spurious clustering that was present in the
largest sample both in Monarch butterflies (Puechmaille
2016) and in Brassica (P. Meirmans unpublished data).

In response to these simulation papers, Wang (2017)
posited that a simple change in the settings of STRUCTURE

may suffice to resolve the bias resulting from unbalanced
sampling. The ancestry model used by STRUCTURE has a
default setting where it is assumed that all source popula-
tions contribute equally to the total sample of individuals.
Obviously, this is not the case when sampling is unba-
lanced. However, an alternative ancestry model can be used
where a separate admixture parameter (alpha) is inferred for
each cluster. Using simulated data and artificially unba-
lanced subsets of real data, Wang (2017) showed that
changing the ancestry model setting improves STRUCTURE’S

performance with unbalanced data sets. Furthermore, Wang
found that reducing the initial value of alpha, to a value of
about 1/K, further improves the results.

In general, it is difficult to assess to what extent a bias
that is present in simulated data is also present in real data
sets. This is because the true situation cannot be known for
real data sets. However, the subsampling strategy suggested
by Puechmaille (2016) and the ancestry model settings
suggested by Wang (2017) do present an opportunity to
assess the incurred extent of the bias since the results of
different methods can directly be compared. This is espe-
cially the case for species where unbalanced sampling
coincides with an a priori hypothesis of divergence: e.g., for

species where a large population is geographically widely
separated from a much smaller population. Such species
allow assessing whether any observed admixture between
large and small populations is the result of bias or rather the
result of unknown biological processes such as long-
distance dispersal, recent fragmentation, or a shared evo-
lutionary history.

Here, I use a data set of 12 high-alpine plant species to
test whether unbalanced sampling affects the STRUCTURE

inference of population differentiation between the Eur-
opean Alps and the Carpathians. The data set is remarkable
in its scope (Gugerli et al. 2008) as all species have been
uniformly sampled on the same regular grid in both
mountain ranges. Even though the Carpathians are stretched
out over a longer arc than the Alps, they have fewer high
peaks and therefore fewer habitats for high-alpine species.
Therefore, the regular sampling design resulted in an
unbalanced data set, with more samples taken from the Alps
than from the Carpathians (Fig. 1). The two mountain
ranges are clearly geographically separated and also their
floristic differences are well described (Tutin et al.
1964–1980). Therefore, it can be hypothesised that the
population samples from these 12 species will generally fall
into two clusters corresponding to the two mountain ranges.
However, Gugerli et al. (2008) found for one of the inclu-
ded species—Carex sempervirens—partial overlap between
the clusters between the Alps and the Carpathians. Such
mismatch between the Structure results and the expectation
may be either because the unbalanced sampling introduces a
bias in STRUCTURE, or because the true divergence is different
than hypothesised. Subsampling the population samples
from the Alps should allow a distinction between these two
possibilities.

Materials and methods

Data

The data were used from the IntraBioDiv-project (Gugerli
et al. 2008; Alvarez et al. 2009; Taberlet et al. 2012), which
contains AFLP data from 39 high-alpine species from the
Alps and/or the Carpathians. From this data set, a subset of
12 species was selected that had a sufficient number of
samples from both mountain ranges. Details of the sampling
and AFLP-protocol can be found in Gugerli et al. (2008)
and Alvarez et al. (2009). The greatest strength of this data
set is that sampling was performed uniformly for all species:
the area was divided into a regular grid with cell sizes of 20°
longitude by 12° latitude (~20 by 22.5 km) and every sec-
ond cell was extensively searched for the presence of all
species. When a species was present, plant material was
sampled from three individuals from a single location
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within the cell along a horizontal transect with 10 m dis-
tance between individuals. The total number of individuals
per selected species ranged from 153 to 408 for the Alps
and from 18 to 80 for the Carpathians (Table 1). Geno-
typing of the sampled individuals followed the standard
protocol from Vos et al. (1995); bands were visualised
either by electrophoresis on 8% polyacrylamide gels or on
automatic capillary sequencers. The number of loci ranged
from 61 for Geum reptans to 234 for Luzula alpinopilosa.

The data used was a slightly expanded version of the
version stored in the Dryad database at: https://doi.org/10.
5061/dryad/s4q6s. The Dryad version was split into sepa-
rate data sets for the Alps and the Carpathians and contained
for each mountain range only those loci that were poly-
morphic within that range. Since the sample sizes were
much smaller in the Carpathians than in the Alps, the result
was that the data set for the Carpathians contained fewer
loci than that of the Alps, even though originally, both data
sets contained the same set of loci. Since loci that are
polymorphic in one range but monomorphic in the other are
informative about the differentiation between the two
mountain ranges, the original data set was used.

STRUCTURE analysis

For every species first a STRUCTURE (version 2.3.4, Pritchard
et al. 2000) analysis was run for the full unbalanced data set,
with all populations from the Alps and all populations from
the Carpathians. The AFLP data were coded as suggested in

the manual by including an extra row at the top that con-
tained for every locus the name of the recessive allele
(which was set to “0” for all loci). Since I was only inter-
ested in the distinction between the Alps and the Car-
pathians, which is expected to be the highest hierarchical
level of clustering, I focused on the results when STRUCTURE

was ran with K= 2. STRUCTURE was run with the admixture
model, with uncorrelated allele frequencies, and without
using the sampling locations as prior information. Changing
those settings—correlated allele frequencies, no-admixture
model, or using the Alps-Carpathian distinction as priors—
did not notably change the results. The Monte Carlo Mar-
kov Chain was run for 100,000 steps, after a burnin period
of 10,000 steps; trial runs suggested that this was enough to
reach convergence. Ten replicate analyses were run for
every data set, and the results of the run with the highest
overall likelihood, according to the ln Pr(X|K) statistic, was
used for interpretation.

To assess any bias resulting from sampling more popu-
lations in the Alps, I used both the ancestry model settings
suggested by Wang (2017) and the subsampling strategy
suggested by Puechmaille (2016). The ancestry model was
changed by setting the parameter POPALPHAS in the “extra-
params” file to a value of 1; in the graphical user interface
of STRUCTURE this corresponds to checking the box labelled
“separate Alpha for each population” under the
“Advanced…” ->“Configure” option of the “Ancestry
Model” settings. Two values of the initial value of alpha
were used—the default of 1.0, and 0.5–, by setting the

Fig. 1 Map of Central Europe showing the Alps and the Carpathians. Squares indicate all cells of the main IntraBioDiv grid where populations
from the 12 species included here have been sampled
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ALPHA parameter in the extraparams file (corresponding to
“Initial Alpha” in the GUI). Besides these parameters,
STRUCTURE was run with the same settings as above.

Subsampling was done for every species separately by
creating 500 subsampled data sets where the number of
sampling locations in the Alps matched the number of
locations in the Carpathians. For every subsampled data
set all Carpathian populations were included plus a random
sample (without replacement) of an equal number of
populations from the Alps. For example, for Arabis alpina
each subsample consisted of 38 populations: 19 from the
Carpathians and 19 from the Alps, the latter randomly
sampled from the 129 Alpine populations. Each subsampled
data set was analysed in STRUCTURE at K= 2 with the same
parameter settings as the full data set, using the default
option to set the random number seed based on the system
clock. Comparing the output of multiple STRUCTURE runs can
be challenging, as the labelling of clusters is arbitrary in
every run. There are algorithmic approaches for solving this
(Jakobsson and Rosenberg 2007), but these require that the
same individuals are present in every replicate, which is not
the case with repeated subsampling. Here, I based the
cluster alignment of the subsamples on the results of the
analysis with the full data set: for every replicate analysis, I
switched the labels in such a way that the sum of squared
deviations between the assignments of the subsampled and
full data were minimised. I then proceeded by calculating
for every location the average assignment to the two clusters

over all subsamples in which the location was included.
These average assignments were then plotted on a map to
provide a visual way to compare them to the assignments
from the full, unbalanced, data set.

A simple test statistic was selected to quantify the degree
to which STRUCTURE returned separate clusters for the Alps
and the Carpathians. This test statistic (βAC) was calculated
by taking the absolute value of the variable coefficient
(“slope”) of an Analysis of Variance with mountain range
as the explanatory variable and the STRUCTURE q-values as
the response variable (calculated using the lm() function in
R). The βAC-statistic is equivalent to calculating for every
mountain range the mean proportion of individuals assigned
to the first cluster, and then taking the absolute difference
between the two mountain ranges. When the two mountain
ranges harbour genetically completely separated clusters,
the value of βAC equals 1; when they contain exactly equal
proportions of the two clusters, the value of βAC equals zero.

For every species, the βAC statistic was calculated on the
STRUCTURE results for the full data set and for all 500
replicate subsamples. When the STRUCTURE results of the full
data set are biased by the unbalanced sampling design, the
value of βAC is expected to be substantially lower for the full
data set than for the subsampled data sets. This is not a
formal statistical test and cannot be used to calculate p-
values, but should nevertheless give a good indication of
whether there is a difference between the analyses of the full
and subsampled data sets. Note that the βAC statistic is

Table 1 Overview and results of the Structure analyses of AFLP data from 12 Alpine species from the Alps and the Carpathians

Species Abbreviation # loci # pops
Alps

# pops
Carp.

FST FSC FCT βAC (full
data)

βAC (Wang,
alpha= 1.0)

βAC (Wang,
alpha= 0.5)

βAC (mean of
subsamples)

Arabis alpina Aal 151 129 19 0.72 0.67 0.13 0.46 0.44 0.44 0.69

Carex
sempervirens

Cse 125 137 22 0.41 0.33 0.12 0.38 0.38 0.38 0.63

Dryas octopetala Doc 101 124 15 0.37 0.22 0.19 0.64 0.65 0.65 0.92

Geum montanum Gmo 93 122 19 0.51 0.35 0.25 0.58 0.59 0.59 0.86

Geum reptans Gre 61 51 8 0.65 0.42 0.39 0.78 0.82 0.82 0.92

Hedysarum
hedysaroides

Hhe 123 76 11 0.86 0.86 0.05 0.17 0.17 0.17 0.37

Hypochaeris
uniflora

Hun 102 59 27 0.52 0.26 0.36 0.80 0.77 0.78 0.76

Juncus trifidus Jtr 88 91 23 0.38 0.28 0.14 0.51 0.51 0.51 0.51

Loiseleuria
procumbens

Lpr 121 90 13 0.40 0.31 0.13 0.09 0.07 0.07 0.74

Luzula
alpinopilosa

Lal 234 82 19 0.45 0.32 0.19 0.76 0.74 0.74 0.69

Saxifraga stellaris Sst 199 101 12 0.52 0.43 0.16 0.56 0.56 0.57 0.88

Sesleria caerulea Sco 70 137 7 0.85 0.85 0.02 0.54 0.50 0.50 0.40

Given are the number of loci, the number of populations sampled in the two mountain ranges, the F-statistics from an AMOVA, and the difference
in the Structure assignments between the Alps and the Carpathians (βAC). The βAC values are given for the analysis of the full data set, the analysis
with the alternative ancestry model (with two initial values of the alpha parameter), and for the analysis where the data set was subsampled to
balance the number of population samples in the two mountain ranges (average shown over 500 replicate subsamples)
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meant to compare the strength of clustering compared to a
priori defined groups (here the two mountain ranges) and
should not be confounded with other summary statistics
such as ΔK (Evanno et al. 2005) and ln Pr(X|K) (Pritchard
et al. 2000) which are meant to compare the clustering at
different values of K. Furthermore, neither the coefficient of
determination (r2) nor the p-values of the LM can be used to
assess the strength of the association between the mountain
ranges and the STRUCTURE results as the former is affected by
unbalanced sampling and the latter by sample size.

For the data analysis, I mostly focused on K= 2 as I
explicitly wanted to assess how well the Structure results
match the a priori expectation of a differentiation between
the Alps & the Carpathians. However, it is also of interest to
investigate other values of K, and to assess which value of K
has the strongest support in each species. To this end,
STRUCTURE was run for every species with K values from 1 to
11, for the full data set and for 100 out of the 500 sub-
sampled data sets. The same settings were used as detailed
above, so with ten replicate runs per value of K. For every
data set, I calculated the ΔK-statistic (Evanno et al. 2005) to
select the value of K with the strongest support.

In addition to the STRUCTURE analysis, a hierarchical
AMOVA (Excoffier et al. 1992) was performed for each
species, with the populations clustered into two groups
corresponding to the two mountain ranges. The main
objective of this AMOVA was to estimate the FCT-statistic,
which quantifies the degree of population divergence
between the Alps and the Carpathians. This was done for
the full data set and for every subsampled data set, using the
function poppr.amova() from the R-package POPPR (Kamvar
et al. 2014). The STRUCTURE and AMOVA analyses were
performed and the results were parsed using custom scripts
in R; these scripts can be found in Dryad package https://
doi.org/10.5061/dryad.nh4366s.

Results

STRUCTURE with unbalanced data sets

When STRUCTURE was run using the full unbalanced data
sets, only a few species showed separate clusters for the
Alps and the Carpathians (Fig. 2, top graph for every spe-
cies). Generally, the populations from the Carpathians were
all grouped in the same cluster (sometimes with a bit of
admixture), but they shared this cluster with multiple
populations from the Alps. It was not always the case that
the Carpathian populations were grouped together with the
populations from the Alps that are geographically the clo-
sest. This is most notable in Arabis alpina and Saxifraga
stellaris where the Carpathian populations cluster together
with the western-most populations from the Alps.

One species (Hypochaeris uniflora) showed a pattern that
was distinctly different in this respect (Fig. 2): here all
populations from the Alps formed a cluster together with
the populations from the Western Carpathians, with the rest
of the Carpathian populations forming the second cluster.
Interestingly, this was also the species where the sampling
was most balanced with 27 populations sampled in the
Carpathians and 59 in the Alps; this represents a ratio of
1:2.2, whereas over all species this is on average 1:7.2.
Hypochaeris uniflora also showed strong genetic differ-
entiation between the two mountain ranges; it had the
second-highest FCT value at 0.36.

STRUCTURE with alternative ancestry model

Changing the ancestry model to infer a separate value of
alpha for each population did not notably change the results.
Plotting the assignments yielded almost exactly the same
patterns (Fig. S1) as the run with the default ancestry model;
the value of the βAC statistic was also close to the value
obtained with the default setting (Table 1). Changing the
initial value of alpha from its default value of 1.0 to a value
of 0.5 also did not have any affect on the results (Fig. S1).

STRUCTURE with subsampled balanced data sets

In nine out of the 12 species, subsampling to create
balanced data sets increased the separation between the
Alps and the Carpathians in the STRUCTURE results as
quantified by the βAC statistic (Fig. 3a). Four of those spe-
cies stood out in that they showed near-complete separation
between the two mountain ranges in the subsampled
balanced data sets, but not in the full unbalanced data sets
(Fig. 2): Dryas octopetala, Geum montanum, Loiseleuria
procumbens, and Saxifraga stellaris. For these species, the
βAC statistic for the unbalanced data set was located in the
lower 2.5% percentile of the distribution of βAC scores for
the subsampled data sets (Fig. 3a). These species therefore
represent cases where the unbalanced sampling design has
lead to a consequential difference in the results. However,
for the other species the difference between the balanced
and unbalanced data sets were only slight. There was also
one species, Luzula alpinopilosa, where STRUCTURE returned
less separation between the two mountain ranges when
sampling was balanced. In the subsampled data sets, the
populations from the Western Carpathians were clustered
together with all populations from the Alps.

Within several species, there was a large degree of var-
iation in the values of the βAC scores among the replicate
subsamples (Fig. 3a, showing the percentiles of the dis-
tribution of q-values across replicates). This variation was
largest in Arabis alpina, where βAC ranged from a minimum
of 0.0042 (almost equal assignment to the two clusters in
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Fig. 2 Maps showing the results of STRUCTURE analyses of AFLP data
for 12 alpine species, for both the full unbalanced data sets and sub-
sampled balanced data sets. Pies represent the assignments (q-values)
to K= 2 clusters, averaged over the three individuals that were

sampled at each location. The maps for the subsampled data sets were
calculated by averaging the assignments over 500 replicate analyses
per species

Subsampling reveals that unbalanced sampling affects STRUCTURE results in a. . . 281



the Alps and in the Carpathians) to a maximum of 0.96
(clustering almost coincided completely with the two
mountain ranges). Other species with notably large ranges
in βAC with the subsampled data include Hedysarum
hedysaroides (0.092–0.94) and Loiseleuria procumbens
(0.15–0.94). The variation in assignments can also be

visualised by calculating the standard deviation across
replicates for every population separately (Fig. 4). This
shows for some species remarkable geographical patterns.
In some species—e.g. Dryas octopetala—the standard
deviation is uniformly low. In other species—e.g. Carex
sempervirens—it was low in some parts of the sampling
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Fig. 3 Divergence between populations from the Alps and from the
Carpathians for 12 alpine species based on the results of STRUCTURE (a;
βAC statistic) and the results of an AMOVA (b; FCT). Asterisks
represent the results of the full data set with unbalanced sampling;

boxplots represent the distribution of the results of the 500 replicate
subsamples where sample sizes from the Alps matched those from the
Carpathians (thick line gives the median; box gives 25% and 75%
percentiles; whiskers give 2.5% and 97.5% percentiles)
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range but high in other parts. Finally, in some species—
most notably Loiseleuria procumbens—it was high
throughout almost the whole-sampling range.

In contrast with βAC, the variation in FCT across sub-
samples was generally much smaller (Fig. 3b; note differ-
ence in scale with 3a). For FCT, the value for the full data set
was also generally very close to the median of the values for
the subsampled data sets; with the exception of Hypo-
chaeris uniflora.

Other values of K

The ΔK-statistic indicated for ten out of the 12 species an
optimal value of K= 2 clusters (lines in Fig. 5). The only
exceptions were Geum reptans and Juncus trifidus, which
both showed the highest value of ΔK at K= 3. In addition,
Carex sempervirens showed a ΔK value for K= 3 that was
only slightly lower than that for K= 2. Despite the general
support for two clusters, most species showed distinct
geographical patterns for the clusters at higher values of K
(Fig. S2, showing up to K= 5), indicating that these may be

well worth a biological explanation, despite not having the
strongest support. The histograms in Fig. 5 show how fre-
quently the different values of K were inferred to be the
optimal value among 100 of the subsampled data sets.
These histograms show that in most species, there was
considerable variation in the optimal values of K among the
subsampled data sets.

Discussion

The results of the analysis of genetic data from 12 alpine
species confirm previous simulation results that STRUCTURE

(Pritchard et al. 2000) may have a bias when population
sampling is unbalanced (Kalinowski 2011; Neophytou
2013; Puechmaille 2016). In four out of the 12 species, the
distinction between the Alps and the Carpathians increased
drastically when the sample sizes from the Alps were
reduced to match those from the Carpathians. Furthermore,
there were several other species that showed a more
moderate increase in the Alps-Carpathians distinction.

Arabis alpina Carex sempervirens Dryas octopetala

Geum montanum Geum reptans Hedysarum hedysaroides

Luzula alpinopilosa Saxifraga stellaris Sesleria caerulea

Loiseleuria procumbens

Fig. 4 Maps showing per sampling location the standard deviation in STRUCTURE assignment over 500 replicate subsamples, where the number of
sampling locations in the Alps was reduced to match the number of locations in the Carpathians
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Whereas these simulation studies used codominant mar-
kers, my analyses used dominant AFLP markers, indicating
that the bias is present with both marker types. The
underlying cause of this bias is very hard to tell, as deter-
mining that would require a very detailed and mechanistic
study of how STRUCTURE works, which is something that
cannot be done with the data used here. In any case, it is
important for researchers to realise that the results from a
STRUCTURE analysis should not be taken at face value,
especially when the results do not match an a priori
expectation.

The subsampling strategy suggested by Puechmaille
(2016) proved very useful for uncovering the bias present in
the STRUCTURE result of these four species. However, one
drawback of this method is that it requires an a priori
assumption of what the actual populations are and which
populations are underrepresented in the sampling. Of
course, if such information is available at the start of the
experiment it would be preferable to try to avoid unba-
lanced sampling in the first place. In practice, however, this
may prove to be difficult as access to sampling sites may be
restricted or simply beyond the budget of the study.

Fig. 5 Inference of the optimal number of clusters according to the
ΔK-statistic (Evanno et al. 2005). For each of the 12 species, the red
line shows the value of ΔK for the full data set (secondary Y-axis); the

histograms show the frequency at which each value of K was inferred
to be the optimal value among 100 of the 500 subsampled data sets
(primary Y-axis)
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Nevertheless, in any case where STRUCTURE gives unex-
pected or biologically difficult-to-explain results the sub-
sampling strategy should be employed.

When there is an a priori expectation of what the
population structure looks like, a STRUCTURE analysis should
always be accompanied by a direct test of the population
structure, for example using an AMOVA (Excoffier et al.
1992). As could be expected, in the data set used here there
was a significant positive correlation (Spearman’s r= 0.69;
p= 0.013) between the FCT statistic returned by an
AMOVA and the βAC statistic that quantified whether
STRUCTURE returned separate clusters for the Alps and the
Carpathians. Interestingly, the correlation coefficient was
slightly higher (Spearman’s r= 0.72; p= 0.008) with the
average value βAC values from the subsampled STRUCTURE

analyses then with the full data; suggesting that the sub-
sampled STRUCTURE analyses matches the result of the
AMOVA slightly better than the STRUCTURE results from the
full data set.

The alternative ancestry model setting suggested by
Wang (2017), where a separate admixture parameter (alpha)
is inferred for each cluster, had very little effect on the
results returned by STRUCTURE. In addition, modifying the
alpha setting did not improve, or affect, the result of
STRUCTURE with unbalanced sampling. The only notable
effect was a slight change in the estimation of the number of
clusters: Geum reptans, which under the default model had
three clusters according to ΔK, showed an optimum of K=
2 under the alternative ancestry model (Fig. S3). The small
affect of the alternative model is surprising since Wang
found that this method was very effective with simulated
genetic data with unbalanced sampling, and also with a real
genetic data set from human populations. One explanation
may be that Wang focused on data sets with multiple
populations—so with higher values of K—whereas I
focused almost exclusively on K= 2. Furthermore, the
alternative ancestry model assumes simultaneous diver-
gence of the clusters from a unique ancestral pool, which
may simply not be applicable to the plant species studied
here.

The subsampling analysis also revealed that in some
species there is a lot of variation in STRUCTURE results,
depending on which populations are included (Fig. 4). This
large variation is clear from the large range in βAC values
across replicates, which in some species nearly ranged from
the minimum value of zero to the maximum value of one. In
addition, there were some strong patterns across the sam-
pling range with some populations showing much higher
variation in cluster assignment then others. In some species,
most notably Geum montanum, the populations with a high
variation in assignment corresponded to populations that
showed admixture in the analysis of the full data set, nicely
illustrating the uncertainty associated with the admixture

process. However, this was not the case for all species. For
example, in Hypochaeris uniflora the populations from the
Western Carpathians are highly admixed in the analysis of
the full data set, but show a low standard deviation in the
assignment of the subsampled data sets. Conversely in
Carex sempervirens (see also Gugerli et al. 2008), the
populations from the Southwestern and South-Central Alps
showed a high standard deviation in assignment across the
subsampled replicates, but little admixture in the analysis of
the full data set. In general, visualising the spatial variation
in assignments across replicate subsamples may be
insightful for pointing out areas where there may be
uncertainty in the assignment. For this, the command line
version of STRUCTURE can be used to automate the process.

In addition to variation in assignments across replicates,
the subsampling analyses also showed a large amount of
variation in the estimates of K. For the full data set, ten of
the twelve species showed an optimal value of K= 2,
according to the ΔK-statistic. This corresponds to the
observation of Janes et al. (2017) that ΔK has a strong
tendency towards K= 2, possibly as it tends to return the
highest hierarchical level when there are multiple levels of
clustering (Evanno et al. 2005). In contrast with this finding
for the full data set, the subsampled data sets showed a
range of K-estimates for the subsampled data sets for most
species. For two species, Arabis alpina and Sesleria caer-
ulea, the estimates even spanned the whole tested range
from K= 2 to K= 10. This dependence on the exact sam-
pling used for a STRUCTURE analysis reduces the reproduci-
bility of the results (see also Gilbert et al. 2012): two studies
on the same species but with slightly different sampling
schemes (even when taken from the same part of the spe-
cies’ range) may show strikingly different results.

Though four species showed a clear distinction between
the Alps and the Carpathians after subsampling, the other
eight species showed partial overlap of clusters between the
two mountain ranges. This indicates that the demographic
history of these species is more complex than a simple
Alps-Carpathians dichotomy. The STRUCTURE clusters also
show many different patterns across species, meaning that
there are few generalities in the phylogeography of these
species. Using partly the same data, Alvarez et al. (2009)
already showed for the Alps that the phylogeographic pat-
terns were strongly dependent on the soil requirements of
the species, with species from calcareous soils showing
different patterns than species from acidic soils. This was
hypothesised to be the result of the different locations of
pleistocene refugia containing the different soiltypes. In
addition, Meirmans et al. (2011) showed how various
ecological and life-history traits differently affected differ-
ent aspects of the genetic population structure of 27 alpine
species. Unfortunately, the IntraBioDiv data set (Gugerli
et al. 2008; Taberlet et al. 2012) only has 12 species with

Subsampling reveals that unbalanced sampling affects STRUCTURE results in a. . . 285



sufficient samples in both the Alps and the Carpathians, so
tests of the influence of the ecology and life-history of these
species on the large-scale genetic patterns would have
limited power with n= 12.

The complexity of the demographic history of these spe-
cies is also apparent when looking at higher values of K (Fig.
S2). For some species, shared Alp-Carpathian clusters are no
longer present at higher values of K; this is most notably the
case for the four species where subsampling drastically
changed the STRUCTURE results. This reflects patterns that
were present in the simulation results of Puechmaille (2016).
Of course, unlike with simulated data, for real data sets as
were used here, one can never be sure whether results from
the subsampled or from the full data are closer to the true
situation. Furthermore, though the data set is only a couple of
years old, the number of loci used is relatively low compared
to today’s standards. Since the simulations of Puechmaille
(2016) and Wang (2017) used comparable numbers of loci, it
remains to be seen whether substantially larger numbers of
loci still lead to bias in the STRUCTURE results. Nevertheless,
the point remains that for several species STRUCTURE gave
consistently different results when subsampling than with the
full data set. From a statistical point of view these results are
jarring since one wishes different permutations of the same
data to give more-or-less the same results. This is the basis of
many time-tried statistical approaches such as bootstrapping,
jackknifing, and separating data sets into a training set and a
validation set. AMOVA’s FCT statistic performed much
better in this respect as the values for the subsampled data
sets were generally nicely centred around the value for the
full data sets.

One of the major limitations of STRUCTURE is that it does
not take the coordinates of the sampling locations directly
into account while clustering. Since in this study the a priori
expectation of separation between the Alps and Carpathians
is distinctly spatial, there is the possibility that the inclusion
of the spatial data could counteract any of the effects of
unbalanced sampling is this case. Multiple methods have
been developed that explicitly use the spatial data in ana-
lyses of population structure (e.g., Dupanloup et al. 2002;
Corander et al. 2003; François et al. 2006), and it would be
interesting to test whether these methods show similarly
biased results as STRUCTURE for this set of species. However,
doing this requires a considerable extra amount of calcu-
lation and is therefore outside of the scope of the current
study.

Recommendations

For one-third of the 12 included species, I found that sub-
sampling the populations from the Alps drastically changed
the results of the STRUCTURE analysis. This confirms previous

results with simulated data sets (Puechmaille 2016; Wang
2017) that STRUCTURE has difficulties uncovering the true
population structure when sampling is unbalanced. To
detect such a bias, it is recommended to use the sub-
sampling approach originally suggested by Puechmaille
(2016) and expanded upon here. Unfortunately, this method
is only applicable when there is an a priori expectation of
the population structure that can be used as a basis for the
subsampling. Based on the results presented here, using the
alternative ancestry model suggested by Wang (2017) is not
recommended, as it did not lead to a visible change in the
results. This is unfortunate as the alternative ancestry model
is much simpler to implement than the subsampling
approach and can be applied without any a priori expecta-
tion. The results presented here do not mean that the use of
STRUCTURE should be discarded: there is abundant evidence
that STRUCTURE can return highly insightful results. How-
ever, it does mean that STRUCTURE does have its limitations
and its results should never be taken at face value. There-
fore, the most important recommendation is to always
interpret the results with great scrutiny and in the light of
available ecological, demographic, and life-history infor-
mation about the species (Meirmans 2015). Visual inspec-
tion of the STRUCTURE results, and comparison with the
spurious patterns shown in the paper by Puechmaille (2016)
may also be of great aid in this. In fact, it was such visual
inspection of the STRUCTURE results for these 12 alpine
species that eventually lead to the production of this paper.
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