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Abstract
Natural and artificial selection have led to substantial variation in the phenotypic traits of different populations. Therefore,
there is a need to develop methods that are based on cross-population comparisons to discover loci related to specific traits.
Here, we suggested a strategy to detect the genome selection signatures between populations based on the partial least
squares (PLS) theory. Using the binary population indicator as the response variable in the PLS analysis, alleles under
selection between populations were identified from the first PLS component. We explored the theory behind the PLS
analysis to reveal its usefulness in detecting the loci under selection. Through the simulation study, the results showed that
the PLS method had a better performance than the FST and EigenGWAS methods. In addition, by using the real data
hapmap3, we found that rs11150606 in PRSS53 gene and rs1800414 in OCA2 gene were under selection between East Asian
populations and three other populations, including African, American, and European populations. We concluded that this
strategy was easily carried out and might supplement for the deficiency of the EigenGWAS method in some cases. To
facilitate the application of this method, we developed an R script that is freely accessible at http://klab.sjtu.edu.cn/PLS/.

Introduction

Identifying the genomic regions associated with phenotypic
variation is a longstanding interest of biologists. An
experimental design based on cross-population comparisons
has been proven to be a useful method to discover loci
related to specific traits (Kim et al. 2015). For example, by
comparing the genome of the Yucatan Miniature pig breed

to other large pig breeds, the signatures of the selection
specific to body size were detected (Kim et al. 2015).

The principal component analysis (PCA) was recently
used to detect the population structure. Based on the algo-
rithm of the PCA analysis, some methods were developed
to detect genome selection signatures (Chen et al. 2016;
Duforet-Frebourg et al. 2016; Galinsky et al. 2016). Among
these methods, Chen et al. (2016) postulated the Eigen-
GWAS for finding loci under selection in structured popu-
lations by using the individual-level eigenvectors as
phenotypes in a linear regression. This method detected the
selection signatures that reflect the differences among
samples in each eigenvector dimension. However, the pre-
vious cross-population comparison information was not
considered in the PCA method.

Therefore, the results calculated by PCA method may not
accurately reflect the selection signatures between popula-
tions, especially when many sub-populations are considered.
For example, assuming that there are two different base
populations and each population is characterized with a dis-
tinct phenotype of tall and short individuals (Table 1), we
should regard A and C as a group (tall) and B and D (short) as
another group if our aim is to detect markers associated with
the height variation. The PCA method does not consider this
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previous cross-population comparison, and if the analysis is
implemented based on the PCA theory, the results obtained
may not reflect the difference between population 1 and 2
(AC and BD). Hence, we aimed to apply the partial least
squares (PLS) using the previous cross-population compar-
ison information to optimize the PCA method.

The PLS is a supervised learning algorithm that uses the
information about the response variables (Y) to construct the
new components of the independent variables (X), and the
extracted principle components obtained are highly asso-
ciated with the response variables (Boulesteix and Strimmer
2007). Therefore, we used the binary population indicator
into the PLS analysis as the response variable. In this study,
we described the details of using the PLS method to explore
the genome selection signatures between populations using
both theoretical and real data. By using the real data, two
scenarios described the PLS performance. Scenario 1 con-
tains two sub-populations, and Scenario 2 contains more
than two sub-populations. In addition, the EigenGWAS and
FST (Weir and Cockerham 1984) methods were compared
with the PLS method.

Materials and methods

Theory

We defined n as the total sample size and m as the number
of genome makers. Let Xij (coded by 0, 1, or 2) be the
genotype of sample i marker j. We defined the sample
information from the different populations as a categorical
variable (Y): one group was 0 and the other was 1. Thus, Y
was a n × 1 matrix. First, we normalized Xij by subtracting
the mean value and dividing the standard deviation of the

marker j. The mean value of the marker j was μj ¼
Pn

i¼1
Xij

n .
The standard deviation value of the marker j was

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðXij�μjÞ2
n�1

r

. The normalized X matrix was denoted

as X1. Similarly, we normalized Y as stated above. The
normalized Y matrix was denoted as Y1.

Let T1 be the first principle component of X1, and let W1
be the first weight vector. Thus, T1= X1W1, and W1TW1=
1. The aim was to detect the W1 that maximized the cor-
relation between T1 and Y1. The covariance between T1 and
Y1 can be written as COVðT1; Y1Þ ¼ 1

nW1TX1TY1,

because X1 and Y1 are normalized (Boulesteix and Strim-
mer 2007). From the PLS algorithm, W1 is the first eigen-
vector of X1TY1Y1TX1 (Wold et al. 2001). It is difficult to
carry out an eigendecomposition on X1TY1Y1TX1 which is a
m ×m matrix. Interestingly, when computing a singular
vector decomposition on matrix Y1TX1, the right singular
vector is the eigenvectors of (Y1TX1)TY1TX1 based on the
singular vector decomposition algorithm (Kalman 2002).
Thus, W1 can be obtained.

W1j shows the coefficient of each marker with respect to
T1. Many methods have been studied to select the variables
(Mehmood et al. 2012). To control the FDR (false discovery
rate), we assumed that the coefficients were Gaussian with a
zero mean (Duforet-Frebourg et al. 2016; Galinsky et al.
2016). Therefore, the variance of the W1j is

VW1 ¼
P

W1j�0ð Þ2
m , and VW1 is 1

m. Thus,
ðW1j�0Þ2

VW1
follows a

Chi-square distribution with one degree of freedom. Then,
the statistic is m(W1j)

2.

Real sequencing data

Hapmap3 data were downloaded from the http://www.ha
pmap.org (Altshuler et al. 2010). The SNPs with missing
values were filtered. Finally, a total of 1184 samples and
363,251 SNPs (the minor allele frequency more than 0.05)
were obtained. These samples came from 11 populations.
The details of these samples are shown in Table S1. The pig
data set was collected from the research of Wang et al.
(2015). A total of 252 Taihu area pigs and 105,550 SNPs
were obtained.

Simulation study

Two simulation studies were performed. In simulation 1, we
used the Hapmap3 data. A total of 1184 human samples and
30,544 SNPs, sampled from the chromosome 1, were used.
In simulation 2, we used the genotype data from the Taihu
area pigs. A total of 252 pig samples and 9690 SNPs
sampled from chromosome 1 were used. In each simulation
study, we assigned genetic effects to 10 randomly selected
markers. We defined the residual error of the phenotypes,
which was drawn from a normal distribution. Then, the
simulated phenotypes were obtained from the model y=
Xkak+ e, where the Xk vector (coded as zero, one and two
for the three genotypes) stores the numerical codes of the
genotypes for all the individuals of marker k. ak represents
the effect of marker k. The residual error e of each indivi-
dual, was randomly sampled from the normal distribution
independently. The individual phenotype value that was
more than the mean value was redefined as “1”. The indi-
vidual phenotype value that was less than the mean value
was redefined as “0”. Then, the response variable was

Table 1 The suppositional group and phenotype information

Group Height (tall) Height (short)

Population 1 A B

Population 2 C D

A, B, C, and D represent the sub-populations
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obtained. We then performed EigenGWAS, FST and our
approach. The PLS method was performed using the theory
stated above. The EigenGWAS was performed by using the
individual-level eigenvector, which has the maximal cov-
ariance with the response variable, as phenotypes in a linear
regression. The individual-level eigenvectors were calcu-
lated by carrying out an eigendecomposition on an X1X1T

matrix (Price et al. 2006). The FST method described by
Weir and Cockerham (1984) was performed. Each simula-
tion study was replicated 10 times. To compare the statis-
tical power of the three methods, the threshold level was set
as 1‰ and 1% of the SNPs with the most extreme values of
the statistics. Then, the empirical statistical power was the
ratio that was between the true SNP numbers detected under
the threshold level and all the true SNP numbers.

Scenario one: two sub-populations

The aim of this scenario was to explore the selection sig-
natures between the CEU (Utah residents with Northern and
Western European ancestry from the CEPH collection) and
TSI (Toscans in Italy) population. The sample size of the CEU
and TSI populations were 165 and 88, respectively. Similar to
the simulation study, the analysis was performed using the
PLS, EigenGWAS, and FST methods. To ensure that there was
no over-fitting, a 10-fold cross validation was performed. We
randomly partitioned the samples into 10 parts of roughly
equal size (9 parts had 25 samples and 1 part had 28 samples).
We then used the 9 parts (X1Training) to predict the group
information of the remaining portion of samples (X1Test).
Using the training data (X1Training, Y1Training), the PLS com-
ponent loading (W1Training) was obtained. Then, T1Training=
X1TrainingW1Training and T1Test=X1TestW1Training. The estimate
group value was obtained according to the mean distance
between the test sample and the two different training groups
in the T1 dimension. After all the parts were predicted, we
estimated the time (et) when the prediction results of the test
samples were accurately predicted. We randomly partitioned
the samples into 10 parts of roughly equal size, and each
partition was done10 times. Then, the predictability was
defined as: Accuracy ¼ Pt¼10

t¼1
et
253.

Scenario two: 11 sub-populations

The aim of this experiment was to explore the selection
signatures between East Asians and other populations,
including African, American, and European populations
(Table S1). We pooled together the CHB (Han Chinese in
Beijing, China), CHD (Chinese in Metropolitan Denver,
Colorado), and JPT (Japanese in Tokyo, Japan) populations
as a group, and the other eight populations were another
group. Similar to the simulation study, the analysis was
performed using the PLS, EigenGWAS, and FST methods.

Results

Simulation study

We found that the statistical power of the PLS method was
higher than the FST and EigenGWAS methods in the two
simulation studies whether the threshold was the top 1‰ or
1% (Table 2). The statistical power of the PLS method was
slightly higher than the FST. The statistical power of the
PLS and FST methods were much higher than the Eigen-
GWAS method. In addition, the statistical powers of the
PLS and FST methods in the human simulation study were
much higher than in the pig simulation study.

Scenario one

For the PLS analysis, the TSI and CEU populations were
clearly distinguished in the first PLS component dimen-
sionality (Fig. 1a). The absolute value of the Pearson cor-
relations (|r|) between the first PLS component and the prior
class information was 0.994 (Table 3). A total of 455 SNPs
having a p-value < 0.001 were detected (Fig. 2a). The most
significant SNPs were located in chromosome 2 and were
associated with the MCM6, DARS, and LCT genes. These
three genes were located across a 68-kb area. Apart from
chromosome 2, another significant SNP (rs916977, P=
2.13E-06, Rank= 43) was also located in the HERC2 gene
in chromosome 15.

To perform the EigenGWAS analysis, the |r| between the
individual-level eigenvectors and the response variable
were analyzed (Figure S1a). The |r| between the first
eigenvector and the prior class information was 0.807,
which was maximal (Table 3). Therefore, the EigenGWAS
was performed using the first eigenvector as the phenotype
information. The most significant areas detected in the
EigenGWAS method were also located in chromosome 2
(Figure S2a). The genetic signals detected by the FST

method are shown in Figure S2b. Considering all of the test
SNPs, the Spearman rank correlation between the FST and
the PLS was 0.978, and the correlation between the FST and
the EigenGWAS was 0.541 (Table 3). In the cross-
validation analysis, the mean accuracy was 100%. The
estimated group values were all correct. One result of the
cross-validation analysis is shown in Figure S3.

Table 2 Statistical power of the two simulation studies

Simulation Threshold EigenGWAS FST PLS

Human Top 1‰ 0.00 0.67 0.81

Top 1% 0.00 0.91 0.94

Pig Top 1‰ 0.00 0.19 0.22

Top 1% 0.02 0.40 0.52
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Scenario two

In the PLS analysis, the East Asians were clearly dis-
tinguished from the other populations in the first PLS
component dimensionality (Fig. 2b). The |r| between the
first PLS component and the prior class information was
0.901 (Table 3). A total of 244 SNPs were explored (p-
value < 0.001) (Fig. 2b). The most significant SNPs were
located in chromosomes X, 16 and 15. In chromosome 16,
the most significant SNP was rs11150606 (ranked as top 2),
which was located in the PRSS53 gene. In chromosome 15,
a significant SNP rs1800414 (ranked as top 8), located in
the OCA2 gene, was identified.

The |r| between the individual-level eigenvectors and the
prior class information of samples are shown in Figure S1b.
The |r| between the second eigenvector and the prior class
information was maximal, which was 0.790 (Table 3).
Therefore, the EigenGWAS was performed using the sec-
ond eigenvector as the phenotypes. In the EigenGWAS
analysis (Figure S4a), the rank orders, from small to large p-
value, of rs11150606 and rs1800414 were 46 and 62,
respectively. In the FST analysis (Figure S4b), the rank
orders, from the large to small FST statistic, of rs11150606
and rs1800414 were 11 and 68, respectively. By consider-
ing the entire test SNPs, the Spearman rank correlation
between the FST and the PLS was 0.975, and the Spearman
rank correlation between the FST and the EigenGWAS was
0.269 (Table 3).

Fig. 1 The population distribution in the PLS component. a The
projected first PLS component for the CEU and TSI populations.
b The projected first PLS component for the 11 human populations.
The sampled populations were the following: East Asian (CHB, CHD,

JPT); European (CEU, TSI); American (African ancestry in Southwest
USA, ASW; Gujarati Indians in Houston, GIH; Mexican ancestry in
Los Angeles, MEX); and African (Luhya in Webuye, LWK; Maasai in
Kinyawa, MKK; Yoruba in Ibadan, YRI)

Table 3 The Pearson correlation results and the Spearman rank
correlation results in the human data set

Term Scenario 1 Scenario 2

|r|(Eigenvector, Y)
a 0.807 0.790

|r|(T1, Y)
a 0.994 0.901

Rank correlation (EigenGWAS, FST)
b 0.541 0.269

Rank correlation (PLS, FST)
b 0.978 0.975

aDenotes the maximal absolute Pearson correlation between the
individual eigenvectors and the prior class information
bDenotes the Spearman rank correlation

Fig. 2 The Manhattan plot of the PLS results.The x-axis represents the
SNPs, and the y-axis is the −log10(p). The red line in the middle is the
genome-wide significant level at a p value of 0.001. a The SNP results
of the PLS method in Scenario 1. b The SNP results of the PLS
method in Scenario 2
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Discussion

PLS is a supervised method that is specifically established to
address the problem of making good predictions in multi-
variate problems (Mehmood et al. 2012). The PLS framework
selects the component that has the maximal covariance with
the response variable. In our study, the response variable was
the binary code for two groups, and the important variables
were selected according to SNP coefficients. Through the
simulation study, the results showed that the PLS method
identified the genetic selection signatures and had a better
performance than the FST and EigenGWAS methods. In
addition, the statistical power of the FST was higher than the
EigenGWAS. The previous cross-population comparison
information was not considered in the PCA method. Thus, the
results calculated by the PCA method may not actually reflect
the selection signatures between the populations. This may be
the reason why the statistical power of the EigenGWAS
method was lower than the FST and PLS methods. Compared
to the FST method, the PLS method combines both the theory
of the PCA and a correlation analysis. For the large variable
data in the genetic selection signatures analysis, the relation-
ships between variables were not considered in the FST ana-
lysis, since it was a single locus statistic. Thus, this might be
the reason why the statistical power of the FST method was
lower than the PLS method in the simulation study. The
cross-validation analysis was implemented considering the
fact that the PLS method might suffer from the over-fitting
problem for the large variables and the small sample data. In
the cross-validation analysis, the estimate group values were
all correct. This result might reflect the credibility of the PLS
method in our study. Using this strategy, we detected selec-
tion signatures in a cross-population comparison design based
on the real sequencing data.

In Scenario 1, the aim was to explore the selection sig-
natures between the TSI and CEU populations. We
retrieved well-known signals of adaptation in humans that
were associated with lactase persistence (LCT) (Segurel and
Bon 2017) and eye color (HERC2) (Sturm et al. 2008) (Fig.
1). In Scenario 2, we detected two significant SNPs,
namely, rs11150606 and rs1800414. The two SNPs were
missense variants. It is reported that rs11150606 influences
hair shape, and the effect of this locus is demonstrated in a
real molecular experiment (Adhikari et al. 2016). Therefore,
considering the difference in the hair shape between East
Asians and other populations, rs1800414 should be regar-
ded as the true selection signature between the East Asians
and other populations. It is reported that rs1800414 was
associated with pigmentation in East Asians populations
(Edwards et al. 2010). Interestingly, this SNP is not found at
high frequencies of this polymorphism in any population
outside of East Asia (Yuasa et al. 2011). These studies
reflect that rs1800414 should be regarded as the true

selection signature between the East Asians and other
populations. Thus, from the results of Scenarios 1 and 2, we
concluded that our strategy was feasible for exploring the
genome selection signatures between populations.

Furthermore, the EigenGWAS and FST methods were
compared with the PLS method. EigenGWAS regards the
individual-lever eigenvector as the phenotype of the
genome-wide association study. Based on the PCA theory,
the eigenvector was extracted from the genotype informa-
tion. Thus, we hypothesized that the individual-lever
eigenvector may not actually reflect the information of the
cross-population comparison and demonstrated this in the
real study cases. Scenario 1 and Scenario 2 were a cross-
population comparison design. We found that the correlation
between the individual-level eigenvectors and the response
variable was lower than the correlation between the PLS
component and the response variable. In addition, the SNP
rank correlation between EigenGWAS and FST was lower
than the correlation between PLS and FST (Table 3). The FST

method is the most wildly used for exploring selection sig-
natures between populations (Vatsiou et al. 2016). Con-
sidering the robustness of the FST analysis, less bias might
be identified in this method. Thus, the EigenGWAS method
in Scenarios 1 and 2 might identify much bias results. From
the results of the Spearman rank analysis in Scenarios 1 and
2, the PLS method was extremely similar to the FST method.
The reason for this result might be that the prior information
was also considered in the FST analysis as it was in the PLS
method. Although the prior information was regarded as a
categorical variable in the PLS analysis, a continuous axis
(the PLS component) was obtained (Fig. 1) as in the PCA
method. The continuous axis might provide useful infor-
mation of the genetic variation within groups (Price et al.
2006). Therefore, in this respect, the EigenGWAS and PLS
methods had a better performance in visualization in com-
parison with the FST method.

Another advantage of the PLS analysis in exploring the
genetic selection signatures was the lower computing
complexity. To carry out the EigenGWAS analysis, the
individual-level eigenvectors need to be calculated first.
Then, this is followed by the estimation of the SNP effect
one after the other through a genome-wide association
study. In addition, to carry out the FST analysis, the SNP
effect needs to be calculated one by one. However, in the
PLS analysis, all of the SNPs effects were generated at the
same time from the SVD analysis on the matrix Y1TX1. A
computer with the CPU of Intel(R) Core(TM) i5-4460
3.20 GHz and RAM of 8.00 GB was used to analyze the
Scenario 1 data. We wrote the R script, and the analysis was
performed in the R platform (x86_64-w64-mingw32/x64).
The time it took generate the analysis from the input of the
genotype data files to the output of the SNP p-value files
was approximately 45 s. During the analysis, it took just 3 s
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for the execution of the SVD analysis. In addition, in order
to facilitate the application of the PLS strategy, we devel-
oped a freely accessible R script and provided example data.
It is freely accessible at http://klab.sjtu.edu.cn/PLS/.

Finally, as a summary of our work and a prospect for a
possible extension, multiple response variables were con-
sidered in exploring the genetic selection signatures. In this
paper, we applied partial least squares to explore the gen-
ome selection signatures between the populations. Through
the simulation study, the results showed that the PLS
method had a better performance than the FST and Eigen-
GWAS methods. Using real human genome data, we
demonstrated that it was feasible and fast to explore the
genome selection signatures using partial least squares in a
cross-population comparison design. However, a single
response variable was considered in the analysis. For some
special study cases, i.e., if the aim of the study design is to
detect genetic differences among multiple populations,
multiple response variables should be prepared. We suggest
that the response variable should be created as a matrix.
Each column is a binary indicator vector representing the
presence (“1”) or absence (“0”) of the population indicated.
Then, the genetic difference among multiple populations
might be detected.
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