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Abstract
Genomic selection is expected to enhance the genetic improvement of forest tree species by providing more accurate
estimates of breeding values through marker-based relationship matrices compared with pedigree-based methodologies.
When adequately robust genomic prediction models are available, an additional increase in genetic gains can be made
possible with the shortening of the breeding cycle through elimination of the progeny testing phase and early selection of
parental candidates. The potential of genomic selection was investigated in an advanced Eucalyptus nitens breeding
population focused on improvement for solid wood production. A high-density SNP chip (EUChip60K) was used to
genotype 691 individuals in the breeding population, which represented two seed orchards with different selection histories.
Phenotypic records for growth and form traits at age six, and for wood quality traits at age seven were available to build
genomic prediction models using GBLUP, which were compared to the traditional pedigree-based alternative using BLUP.
GBLUP demonstrated that breeding value accuracy would be improved and substantial increases in genetic gains towards
solid wood production would be achieved. Cross-validation within and across two different seed orchards indicated that
genomic predictions would likely benefit in terms of higher predictive accuracy from increasing the size of the training data
sets through higher relatedness and better utilization of LD

Introduction

Shining gum, Eucalyptus nitens (Deane & Maiden), is the
most important commercial eucalypt species in New Zeal-
and, with an advanced breeding programme moving
towards its fourth generation (Klápště et al. 2017). The New
Zealand E. nitens breeding programme is an open-
pollinated (OP) breeding population, therefore, some inac-
curacy in breeding values is expected due to unknown
paternal contribution and plausible pedigree errors. Pre-
cisely recorded pedigrees and known ancestors of the
breeding population individuals are prerequisites for accu-
rate genetic evaluation and consequently, efficient breeding
programme management and boosted genetic gain in forest
tree species.

Genomic selection was proposed as a tool to predict
individual breeding values on the basis of information from
high-density genetic marker panels through multiple
regression models (Meuwissen et al. 2001). Development of
next generation sequencing technologies such as genotyp-
ing by sequencing (Elshire et al. 2011) or exome capture
(Neves et al. 2013) has allowed implementation of genomic
technologies in species with missing reference genomes
such as forest trees (Resende et al. 2012a; Resende et al.
2012b; Ratcliffe et al. 2015; El-Dien et al. 2015; Beaulieu
et al. 2014a).

High-density genotyping of a sufficiently large sub-
sample of the target breeding population offers a tool for
more precise selection of breeding candidates (Resende
et al. 2012b) by fitting marker-based relationship matrices
instead of documented pedigrees (Nejati-Javaremi et al.
1997; Van Raden 2008). The advantage of marker-based
relationship matrices is that gaps are filled in pairwise
relatedness in forest tree pedigrees, which leads to an
increase in the accuracy of genetic parameters and more
precise selections of breeding candidates (Zapata-Valen-
zuela et al. 2013; Isik et al. 2016; Müller et al. 2017; Tan
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et al. 2017). The genomic prediction model generally cap-
tures: (1) shared genealogy, (2) co-segregation and (3)
linkage disequilibrium (LD) between markers and quanti-
tative trait loci (QTL). The contribution of each of these is
affected by the genetic architecture of a trait, genomic
marker density and marker distribution and effective
population size (Habier et al. 2013). The accuracy of
genomic prediction also depends on a trait’s heritability,
training population size and the effective number of chro-
mosomal segments, defined as the function of a trait’s
genetic architecture (distribution of QTLs) and decay of LD
along the chromosome (Hayes et al. 2009). The level of
relatedness between training and validation population is
also an important factor affecting the accuracy of genomic
breeding values (Habier et al. 2010; Scutari et al. 2016).

Eucalyptus nitens has been grown predominantly for
pulp wood production with short rotations in Southland, the
southernmost region of New Zealand and the major E.
nitens plantation area. Breeding objectives have been for
improved growth and form (Wilcox 1980; King and Wilcox
1988), whilst wood quality traits have not been the focus of
breeding until recently, with an increasing interest in the use
of E. nitens for higher value solid wood products. Similar
trends in breeding of eucalypt species for wood quality have
been reported in previous studies (Raymond 2002; Kube
2005; Kube and Raymond 2005; Grattapaglia and Kirst
2008; Hamilton et al. 2009). Earlier research efforts on
implementing molecular genetics in breeding of E. nitens
have included QTL trait locus and candidate gene approa-
ches for growth and vegetation traits; and wood quality
where a number of candidate genes for wood quality and
QTLs for growth and vegetative propagation traits were
identified (Thumma et al. 2010a, 2010b). Initiation of
genomic estimated breeding values were proposed in the
latest breeding plan of E. nitens in New Zealand, with a
focus on solid wood production. Implementation of geno-
mic estimated breeding values is expected to accelerate the
rate of genetic progress for the breeding objective traits
because of greater accuracy of genetic evaluation and the
shorter generation interval than in traditional breeding
(Resende et al. 2012; Resende et al. 2012b).

The objective of this study was to investigate the
improvement in accuracy of genetic evaluation for growth,
form and wood quality traits when using marker-based
breeding values with GBLUP methodology compared to
pedigree-based BLUP in an advanced E. nitens population.
Firstly, the aim was to estimate heritability and accuracy of
pedigree and marker-based breeding values within and
across the progeny of two seed orchards. Secondly, the aim
was to compare predictive accuracy of BLUP and GBLUP
estimated breeding values within and across the seed
orchards. Finally, implications of the results for the

breeding programme and the next steps in the research will
be discussed.

Materials and methods

Materials

The E. nitens population used in this study was established
as an OP progeny test of families from two independent
seed orchards, Waiouru and Tinkers. The number of
families in the progeny test originating from the Waiouru
seed orchard was 90, and the number of families in the
progeny test from the Tinkers seed orchard was 25. In the
current study, 51 and 100% of the families were represented
from the Waiouru and Tinkers seed orchards, respectively.
Outline of the breeding programme history is described by
Klápště et al. (2017).

The third generation progeny trial used in this study was
located in the South Island of New Zealand. The total
number of individuals in the trial was 3600, with a sub-
sample of 691 individuals representing 72 families with
1–24 (average of 9.6) individuals per family used for
genomic prediction analysis for which genomic information
and phenotypic trait records were available. The Waiouru
seed orchard was represented by 431 genotyped individuals
with effective population size of 133.2, while the Tinkers
seed orchard was represented by 236 genotyped individuals
with effective population size of 64.7. The effective popu-
lation size (NE) was estimated in terms of status number as
following NS ¼ 1

2θ, where Ɵ is group co-ancestry of indi-
viduals (Lindgren et al. 1996). The remaining genotyped
individuals represented Australian Tree Seed Centre orch-
ard (ATSC) as control trees in the progeny test. Trees in this
progeny test were assessed at age six for tree height, dia-
meter at breast height (DBH) and stem straightness. These
same trees were assessed at age seven for the following
wood quality traits: wood density, wood stiffness, wood
shrinkage and growth strain. Methodology to measure wood
quality traits is described in detail by Klápště et al. (2017).

Genomic data was generated by extracting DNA from
the leaf tissue of 691 individuals from the progeny trial
using the commercially available NucleoSpin® 96 Plant II
kit (Machery-Nagel, Dϋren, Germany) (Telfer et al. 2013)
and sent to GeneSeek, Inc. (a Neogen company, Lincoln,
NE, USA) for genotyping. Genotyping was undertaken
using the Illumina Infinium EUChip60K SNP chip (Silva‐
Junior et al. 2015) with SNP calling performed on the basis
of multi-taxa and Maidenaria section reference. Both call
algorithms produced a similar number of SNPs (58,307 vs.
58,323). The marker data were filtered for genTrain score >
0.5, GenCall > 0.15, minor allele frequency > 0.01, SNP call
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rate > 0.6 and pairwise LD in terms of a composite estimate
(r2 < 0.9), with 12,236 SNPs selected to train genomic
prediction models. The missing data were imputed through
expectation-maximisation algorithm implemented in
“rrBLUP” package (Endelman 2011). The spectral decom-
position of the realized relationship matrix showed a clear
segregation of each seed orchard population with Australian
Tree Seed Centre (ATSC) families in between. This reflects
the differences in the genetic background of these popula-
tions due to different selection strategies (Fig. 1). LD

decreased to 0.2 within 3 kb in Waiouru and within 5 kb in
Tinkers (Fig. 2).

Methods

The genetic parameters were estimated using linear mixed
models implemented in the ASReml-R package (Butler
et al. 2009). Two models using either a pedigree or marker-
based relationship matrix were investigated and compared.
A pedigree-based model (BLUP) was used as follows:

y ¼ Xβþ Z1uþ Z2rþ Z3r sð Þ þ e ð1Þ
where y is a vector of measurements, β is a vector of

fixed terms such as intercept and seed source, u is a vector
of additive genetic effects (breeding values) following
var uð Þ � Nð0; σ2aAÞ, where σ2a is additive genetic variance
and A is the average numerator relationship matrix (Wright,
1922), r is a vector of random replication effects following
var rð Þ � N 0; σ2r I

� �
where σ2r is replication variance and I is

the identity matrix, r(s) is set nested within replication
following var r sð Þð Þ � N 0; σ2r Sð ÞI

� �
where σ2rðsÞ is set nested

within replication variance. Set is an incomplete block
effect within a replicate where the equal number of families
were allocated to each set within a replicate. A vector of
random residuals is e following var eð Þ � N 0; σ2eI

� �
, where

σ2e is residual variance, X and Z1, Z2 and Z3 are incidence
matrices assigning fixed and random effects to measure-
ments in vector y (Klápště et al. 2017). The model
accommodating a marker-based relationship matrix
(GBLUP) was performed using the previous Eq. (1), but the
average numerator relationship matrix A was substituted by
a marker-based relationship matrix G which was estimatedFig. 1 Spectral decomposition of the genetic marker-based relationship

matrix

Fig. 2 Linkage disequilibrium decay with physical distance in base pairs within Waiouru (left plot) and Tinkers (right plot) samples
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as follows:

G ¼ ZZ′
tr ZZ′½ �=n ð2Þ

where Z is M – P, M is the marker matrix with geno-
types coded 0, 1 and 2 for alternative allele homozygote,
heterozygote and reference allele homozygote, respectively,
and P is a vector of twice the reference allele frequency, tr
[ZZ’] is a trace of the matrix defined in nominator and n is
the number of markers (Forni et al. 2011). Heritability
represents the proportion of a trait’s variance explained by
genetic factors and can provide inference about the potential
efficiency of any genetic improvement (Falconer and
Mackay 1996). Narrow-sense heritability was estimated as:

bh2 ¼ bσ2abσ2a þ bσ2e ð3Þ

where σ2a is additive genetic variance and σ2e is residual
variance. The accuracy of breeding values represents cor-
relation of their estimates obtained from the model [1] with
their true breeding values which are commonly unknown.
The theoretical accuracy of breeding values is estimated
using the following formula:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PEV

Giiσ2a

s
ð4Þ

where PEV is prediction error variance (Mrode 2014)
and Gii is the diagonal element of the marker-based rela-
tionship matrix for the ith individual and is substituted by Aii

in the pedigree-based scenario.
A 10-fold cross-validation performed through 30 repli-

cations was used as independent evaluation, and was per-
formed at an individual level, and within, between, and
across seed orchards. The resulting predictive accuracies
indicate the efficiency of the marker-based model as a
prediction tool for breeding values based solely on marker
information. Such a scenario reflects the main advantages of
genomic selection in breeding programmes: the elimination
of the testing phase (establishment of progeny trials) from
breeding cycles and selections based only on genetic mar-
kers. It was estimated as follows:

rp ¼ cor EBVGEBVð Þ ð5Þ
where EBV is the vector of breeding values estimated by
the pedigree-based model and GEBV is the vector of
breeding values predicted in cross-validation using the
marker-based model.

The full efficiency of genomic selection was investigated
by comparing genetic gains per generation using pedigree-
based estimated breeding values (BLUP) with genetic gains
using genomic marker-based estimated breeding values

(GBLUP). Both of these individual based estimated genetic
gains included the availability of phenotypic records for all
traits. The mean value of BLUP and GBLUP breeding
values of the 20% of selected individuals was the mea-
surement for the estimated genetic gain.

Results

Estimates of heritability and accuracy of breeding
values

Pedigree-based analysis showed low to moderate within seed
orchard heritabilities in both seed orchards (Table 1).
Pedigree-based estimated heritabilities were higher at Tinkers
than at Waiouru for radial wood shrinkage, tangential air-dry
wood shrinkage and wood stiffness at 1.4–3m traits, but
lower for all other traits at Tinkers. Marker-based within seed
orchard heritabilities was also low to moderate, and generally
higher at Waiouru than at Tinkers, except for tangential air-
dry wood shrinkage and growth strain (Table 1).

Across seed orchard heritability estimates were generally
higher using marker-based breeding values than pedigree-
based with only a few exceptions (Table 2). Reconditioned
radial wood shrinkage, DBH, height and stem straightness
indicated lower heritability estimates using marker-based
models than when pedigree-based models were used. The
highest heritabilities were estimated for wood shrinkage and
wood density traits. The lowest heritability estimates were
obtained for DBH and height and were relatively similar
with both pedigree and marker-based methods.

Marker-based breeding values had consistently higher
accuracies than pedigree-based breeding values. Generally,
accuracies of breeding values were higher for both seed
orchards when using marker-based rather than pedigree-
based estimated breeding values. However, there were some
inconsistencies, with the Tinkers seed orchard showing
lower genomic breeding value accuracies for radial wood
shrinkage, DBH and height than for the same traits using
pedigree-based models, reflecting the pattern in heritability.

Cross-validation

The cross-validation analysis showed no, or very low,
predictive accuracy for breeding values for one seed orchard
when based on a model trained in an alternative seed
orchard, using pedigree-based or marker-based models
(Table 3). Within seed orchard predictive accuracy, how-
ever, improved considerably for both seed orchards and for
the majority of traits when using marker-based models.
Pedigree-based models resulted in lower predictive accu-
racy for most of the traits within Waiouru seed orchard
compared with Tinkers seed orchard, but this trend was not
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so obvious with marker-based models. Across seed orch-
ards, predictive accuracies were higher for marker-based
analysis than for pedigree-based predictions for the majority
of traits.

Estimates of genetic gains

Generally estimated absolute genetic gains per generation
were as expected higher when using GBLUP breeding
values rather than BLUP breeding values (Table 2). The
estimated genetic gains reflected the magnitude of herit-
ability for the traits. The largest difference in genetic gains
between BLUP and GBLUP was for growth strain in the
upper part of the log, which is one of the most important

trait in selection for solid wood production of this species.
Stem straightness was the only trait that had a significantly
lower genetic gain when using GBLUP than BLUP.

Discussion

The benefits of using information from genomic markers in
the genetic evaluation were apparent in the current study,
where both within seed orchard and across seed orchard
estimations supported the use of GBLUP over BLUP pre-
dictions. The reduced number of SNPs after filtering still
provided sufficient genomic information to perform effi-
cient marker-based predictions, which improved breeding

Table 2 Estimates of narrow
sense heritability (h2) with their
standard errors (se) and breeding
value accuracies (r) and
estimated genetic gains per
generation (ΔGBLUP, ΔGGBLUP)
across seed orchards

Trait BLUP GBLUP

h2 se r ΔGBLUP h2 se r ΔGGBLUP

Radial air-dry wood shrinkage (%) 0.31 0.116 0.59 0.25 0.33 0.073 0.68 0.29

Radial reconditioned wood shrinkage (%) 0.41 0.128 0.66 0.16 0.31 0.071 0.67 0.15

Tangential air-dry wood shrinkage (%) 0.37 0.123 0.63 0.56 0.50 0.073 0.77 0.79

Tangential reconditioned wood shrinkage (%) 0.44 0.131 0.68 0.28 0.49 0.070 0.77 0.34

Wood density (kg/m3) 0.44 0.130 0.68 17.66 0.46 0.067 0.76 20.29

Diameter at breast height (mm) 0.09 0.085 0.34 2.35 0.08 0.052 0.42 2.87

Height (m) 0.09 0.085 0.34 0.12 0.08 0.052 0.42 0.15

Stem straightness (score) 0.28 0.115 0.57 0.47 0.19 0.064 0.57 0.39

Wood stiffness 1.4–3.0 m log (km/s) 0.24 0.108 0.52 0.07 0.29 0.070 0.65 0.09

Wood stiffness 3.0–6.0 m log (km/s) 0.12 0.094 0.39 0.04 0.17 0.063 0.55 0.07

Growth strain 1.4–3.0 m log (mm) NA NA NA NA 0.23 0.065 0.60 2.28

Growth strain 3.0–6.0 m log (mm) 0.16 0.101 0.44 1.46 0.24 0.068 0.60 2.69

NA Log likelihood not converged

Table 1 Estimates of narrow sense heritability (h2) with their standard errors (se) and breeding value accuracies (r) within seed orchards

Trait Waiouru Tinkers

BLUP GBLUP BLUP GBLUP

h2 se r h2 se r h2 se r h2 se r

Radial air-dry wood shrinkage (%) 0.26 0.110 0.55 0.35 0.074 0.70 0.52 0.141 0.73 0.22 0.062 0.60

Radial reconditioned wood shrinkage (%) 0.25 0.110 0.54 0.33 0.073 0.68 0.58 0.146 0.77 0.24 0.063 0.62

Tangential air-dry wood shrinkage (%) 0.22 0.106 0.51 0.20 0.066 0.58 0.31 0.117 0.59 0.37 0.072 0.71

Tangential reconditioned wood shrinkage (%) 0.51 0.139 0.73 0.50 0.067 0.78 0.43 0.132 0.68 0.39 0.070 0.72

Wood density (kg/m3) 0.54 0.141 0.74 0.52 0.068 0.79 0.34 0.117 0.62 0.42 0.061 0.74

Diameter at breast height (mm) 0.00 0.00 0.00 0.14 0.062 0.51 0.29 0.112 0.57 0.03 0.039 0.29

Height (m) 0.00 0.00 0.00 0.14 0.062 0.51 0.29 0.112 0.57 0.03 0.039 0.29

Stem straightness (score) 0.41 0.130 0.66 0.19 0.063 0.57 0.11 0.089 0.37 0.12 0.059 0.48

Wood stiffness 1.4–3.0 m log (km/s) 0.28 0.112 0.56 0.34 0.072 0.69 0.35 0.120 0.62 0.24 0.060 0.62

Wood stiffness 3.0–6.0 m log (km/s) 0.19 0.100 0.48 0.30 0.071 0.66 0.15 0.099 0.44 0.18 0.057 0.56

Growth strain 1.4–3.0 m log (mm) NA NA NA 0.21 0.064 0.59 NA NA NA 0.25 0.061 0.62

Growth strain 3.0–6.0 m log (mm) 0.25 0.111 0.53 0.23 0.066 0.60 0.24 0.111 0.52 0.30 0.066 0.66

NA Log likelihood not converged
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value accuracies when compared with pedigree-based eva-
luations. A gain in accuracy of breeding values would likely
be even more substantial when increasing the size of
training population by additional genotyping. Grattapaglia
and Resende (2011) estimated that the impact of training
population size on the accuracy of genomic breeding values
would increase up to a sample size of 2000. However, the
effect of the training population size on accuracy of
breeding values also depends on genomic marker density
and the number of QTL controlling the trait (Grattapaglia
and Resende 2011). The size and composition of the
training sets and the number of SNPs were found more
important factors in genomic prediction, than statistical
methodology or the genomic location of markers, i.e genic
vs. intergenic in eucalypts for growth and wood traits (Tan
et al. 2017). Similarly, there were no noticeable differences
between statistical methodologies used in maritime pine
when comparing GBLUP and Bayesian methods (Isik et al.
2016). Depending on the importance of LD in contributing
to accuracy of genomic predicted breeding values, Bayesian
models may perform better than GBLUP for which the
decay of the prediction accuracy tends to be larger, espe-
cially when the training data set is relatively small (Habier
et al. 2010).

Forest tree breeding programmes are generally in the
very early stages compared to animal and crop breeding
programmes with faster generation turnover (Grattapaglia
and Kirst 2008; Isik 2014). This causes genetic parameter
estimates to be less accurate, as it is not always possible to
take into account complete pedigrees, identify specific

genetic groups or consider data since the selection began.
Our analysis found that a marker-based predictions
improved the accuracy of genetic parameter estimates, and
also resulted in higher predictive accuracies in cross-
validation evaluations than pedigreed-based breeding
values. The likely source of this improvement is the utili-
zation of all the available information in the populations
through a complete pairwise marker-based relationship
matrix accounting for realised genetic relationships between
individuals (Zapata-Valenzuela et al. 2013). This, in con-
junction with the faster progress in genetic improvement
and delivery, are the major benefits to the implementation of
genomics in forest tree breeding (Grattapaglia and Resende
2011).

In our study, the genomic information was available only
for those individuals in the progeny test but not for their
parents. Therefore, further improvement of genetic para-
meters through pedigree reconstruction cannot be achieved.
Pedigree reconstruction is able to recover unknown rela-
tionships and correct inconsistencies in documented pedi-
grees (Doerksen and Herbinger 2010; El-Kassaby et al.
2011; Telfer et al. 2015; Vidal et al. 2015; Tan et al. 2018).
More accurate genetic relationship information would
increase the precision of genetic parameter estimations, and
can be further explored through dense marker arrays that
capture Mendelian sampling terms through the construction
of a marker-based relationship matrix (Habier et al. 2007;
Hayes et al. 2009; VanRaden 2008). In Eucalyptus hybrids,
as a result of pedigree inconsistencies, genomic predictions
outperformed pedigree-based predictions, which were

Table 3 Predictive accuracy from cross validation scenarios on individual BLUP and GBLUP breeding values within the Waiouru (W) and Tinkers
(T) seed orchards and across the both seed orchards (WT)

Cross validation scenario BLUP → Training Validation Cross validation scenario GBLUP→Training
Validation

Trait W
→
T

W
→
W

T
→
W

T
→
T

WT
→
WT

W
→
T

W
→
W

T
→
W

T
→
T

WT
→
WT

Radial air-dry wood shrinkage (%) −0.01 0.22 −0.03 0.35 0.29 0.03 0.33 0.00 0.36 0.34

Radial reconditioned wood shrinkage (%) −0.07 0.12 −0.12 0.26 0.19 0.03 0.21 0.04 0.31 0.26

Tangential air-dry wood shrinkage (%) −0.09 0.13 0.03 0.20 0.16 0.08 0.19 0.08 0.37 0.26

Tangential reconditioned wood shrinkage (%) −0.07 0.28 −0.02 0.18 0.27 0.07 0.38 0.07 0.38 0.38

Wood density (kg/m3) −0.03 0.36 −0.01 0.27 0.32 0.02 0.49 0.03 0.52 0.46

Diameter at breast height (mm) 0.15 0.13 0.10 0.43 0.28 −0.03 0.26 0.04 0.13 0.22

Height (m) 0.19 0.13 0.10 0.42 0.27 −0.03 0.26 0.04 0.15 0.21

Stem straightness (score) −0.09 0.04 −0.04 −0.01 0.02 −0.01 0.05 −0.04 −0.04 0.02

Wood stiffness 1.4–3.0 m log (km/s) 0.10 0.25 0.02 0.31 0.28 0.04 0.33 −0.02 0.38 0.33

Wood stiffness 3.0–6.0 m log (km/s) −0.06 0.28 0.02 0.16 0.21 0.03 0.32 −0.04 0.24 0.25

Growth strain 1.4–3.0 m log (mm) 0.29 0.22 0.13 0.27 0.24 −0.01 0.30 −0.01 0.36 0.30

Growth strain 3.0–6.0 m log (mm) 0.23 0.27 0.14 0.19 0.24 −0.05 0.35 −0.07 0.40 0.35
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largely underestimated (Tan et al. 2017). Sib-ship recon-
struction was previously applied to the population used in
this study by Klápště et al. (2017), who estimated the pro-
portion of selfs being 4% in the population, with DBH and
growth strain being the traits affected by inbreeding
depression. Implementing sib-ship reconstruction increased
genetic parameters and breeding value accuracies for the
traits under inbreeding depression, and was consequently
regarded as a useful tool to cull inbred individuals or selfs
from the breeding population (Klápště et al. 2017). How-
ever, sib-ship reconstruction is not able to recover all
classes of relatedness present in advanced breeding popu-
lations, and rather parentage reconstruction should be used
when possible (Klápště et al. 2017).

Exceptionally low heritability for DBH and tree height in
the current study is probably reflecting the composition of
the training data set that is a selected subsample of the
population. This resulted in a reduced genetic variance
where the GBLUP implementation did not achieve any
improvement in heritability estimates for those traits either.
Between seed orchards, the marker-based predictions
showed generally lower heritability estimates in Tinkers
compared with Waiouru. This is interpreted as being a
consequence of a higher selection intensity applied in the
Tinkers population compared with Waiouru, which resulted
in partial fixation of the genetic variance. The opposite
overall trend for heritability estimates between the seed
orchards was seen in the pedigree-based predictions. This
difference can be explained by pedigree-based analysis
overestimating additive genetic variance when a reference
population is small. The across seed orchard estimates for
heritability and breeding values accuracy converted to
intermediate values between the within seed orchard esti-
mates. Surprisingly, a larger sample size did not result in a
higher accuracy of genetic parameters, which is attributed to
be a consequence of merging two populations with different
selection histories and smaller relatedness (Habier et al.
2013). The comparison of LD decay showed a strong dif-
ference between populations, which probably resulted in
lack of marker effects transferability between merged
populations.

Cross-validation was performed at an individual level to
dissect the effects of genetic relationships, co-segregation of
alleles, and LD between markers and QTL, three factors that
genomic prediction is based on (Habier et al. 2013). The
cross-validation captured all of the effects and showed a
higher predictive accuracy in the Tinkers seed orchard
compared to the Waiouru. This result was somewhat con-
trary to the estimated heritability and the accuracy esti-
mates. The higher predictive accuracy in the Tinkers
population can be explained by lower effective population
size and larger haploblocks, which are built in populations
created under higher selection intensity (supported by

slower LD decay), and thus the whole genetic complex can
be efficiently captured even by a sparse marker array
(Ødegård and Meuwissen 2014). Transferability of this kind
of prediction model is highly reduced, and can be seen in
the cross-validation between seed orchards. As a result,
when training the Waiouru seed orchard, a slightly higher
predictive accuracy was found. However, the effect is lim-
ited due to lack of connectivity when using only one seed
orchard as a training population to predict the other. The
across population cross-validation again produced inter-
mediate predictive accuracies between the seed orchards,
but did not improve the estimates compared to the Tinkers
population, in spite of an increase in training population
size. Cross-validation performed in the same generation
may not be ideal to estimate predictive accuracy for forward
selection in the future breeding (Isik et al. 2016), whereas
cross-validation over generations would likely result com-
parably better predictions (Isik et al. 2016). The accuracy of
GEBVs varies depending on the training population size as
well as the degree of genetic relationship between the
training and validation population (e.g. Habier et al. 2010;
Isik et al. 2016; Durán et al. 2017), which is recommended
to be as high as possible. The relatedness is also a driver for
building stronger LD through larger haploblocks and longer
independent chromosomal segments, since the effective
number of chromosomal segments is the outcome of the
effective population size and length of the genome (Hayes
et al. 2009). LD is the main contributor to the accuracy of
GEBVs that is persistent over generations, therefore in case
of the existence of considerable LD, a requirement for
updating the phenotypes across generations is not so high
(Habier et al. 2010). In spite of this, relying only on the
accuracy originating from LD would result in smaller
genetic gains than when the accuracy is based on both LD
and relatedness between training and selection populations
(Habier et al. 2007). Generally, it is highly recommended to
capture a large proportion of the genetic variability in
training populations in order to build robust genomic pre-
diction models, making it important to keep a broad range
of genetic material in training populations. Increasing the
training population size does not only improve accuracy
through higher relatedness but also through the increasing
LD along the larger training population size (Habier et al.
2010). In genomics-based breeding programmes, the
breeding archive should be established independently of the
production seed orchards due to different requirements on
genetic diversity vs. genetic gain trade-offs to utilize
genomics at maximum efficiency (Grattapaglia and Resende
2011).

Genotype by environment interaction (GxE) plays a
significant role in forestry tree breeding (Li et al. 2017), and
is an important factor affecting transferability of prediction
models. GxE would decrease the accuracy of genomic
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predicted breeding values as is the case also for pedigree-
based estimations when genotypes are not stable across
environments (Zapata-Valenzuela et al. 2013). GxE is a
population and trait specific source of variation in forest tree
breeding where both unstable genomic predictions
(Resende et al. 2012b; Resende et al. 2012; Beaulieu et al.
2014a) as well as stable genomic predictions across envir-
onments have been reported (Lenz et al. 2017).

Estimated absolute genetic gains based on GBLUP
breeding values per generation indicate that genomic
selection would significantly improve the efficiency of
selection for solid wood properties. The major benefit of
genomic selection in accelerating the rate of genetic
improvement would be derived from the ability to shorten
the generation interval through the very early selection at
the seedling stage (Resende et al. 2012, Beaulieu et al.
2014b). Improvement in selection efficiency was estimated
at 50% in eucalypts if the breeding cycle was halved
(Resende et al. 2012), and at 53–112% in loblolly pine
(Resende et al. 2012b). Between 65 and 110% genetic gains
were predicted for wood and growth traits in white spruce
when relatedness between training and prediction data set
was high, but lower as the relatedness decreased (Beaulieu
et al. 2014b).

The potential to make faster selections by skipping
progeny testing should be pursued in this E. nitens breeding
population. A question remains as to how well prediction
models perform after several breeding cycles (Resende et al.
2012), and how often the prediction models must be
updated with new infusions of phenotypic data. Another
aspect for consideration when using genomic prediction
models are age-age correlations, since transferability of
genomic models may be possible only when the selections
are made at the same ages (Resende et al. 2012b). Addi-
tional genotyping from other progeny testing sites in the
current population is recommended to ensure genomic
prediction models are stable across sites. Further research
on implications of genomic selection in this E. nitens
breeding population is required to find the best possible
methodology, including additional data infusions of wider
breeding population that will reflect better the future
selection population than in the current study. We expect
further data infusions to result in considerably higher pre-
dictive accuracy of genomic breeding values compared to
pedigree-based methods. Increasing the training population
size as well as applying different statistical methods that can
account efficiently for the accuracy due to LD may give
further confidence in implementing GEBVs in the breeding
programme (Habier et al. 2010). The benefits of genomic
selection per unit of time for tree growers will be con-
siderable, and therefore cost-effective ways to apply geno-
mics in the operational breeding should also be the focus of
future research.

Conclusions

This study showed that a significant improvement in
breeding value accuracy and genetic gains for selection of
wood properties in E. nitens was possible by implementing
genomic marker-based prediction compared to pedigree-
based prediction. The greatest improvement in genetic
parameters was obtained for tangential air-dry wood
shrinkage and growth strain, which are the key traits in
selection for solid wood production in eucalypts. Wood
shrinkage traits had moderate heritabilities, which mainly
increased further with genomic prediction.

Results from cross-validation analysis implied that further
infusions of additional seed-orchard material into the training
data would be useful to increase the efficiency of genomics in
the selection, regarding breeding value accuracy and pre-
dictive accuracy. Further analysis, including more progeny
trial sites to investigate the transferability of these models
across generations and environments is recommended.
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