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Abstract
Examining how the landscape may influence gene flow is at the forefront of understanding population differentiation and
adaptation. Such understanding is crucial in light of ongoing environmental changes and the elevated risk of ecosystems
alteration. In particular, knowledge of how humans may influence population structure is imperative to allow for informed
decisions in management and conservation as well as to gain a better understanding of anthropogenic impacts on the interplay
between gene flow, genetic drift, and selection. Here, we use genome-wide molecular markers to characterize the population
genetic structure and connectivity of Ipomoea purpurea (Convolvulaceae), a noxious invasive weed. We, likewise, assess the
interaction between natural and human-driven influences on genetic differentiation among populations. Our analyses find that
human population density is an important predictor of pairwise population differentiation, suggesting that the agricultural and/
or horticultural trade may be involved in maintaining some level of connectivity across distant agricultural fields. Climatic
variation appears as an additional predictor of genetic connectivity in this species. We discuss the implications of these results
and highlight future research needed to disentangle the mechanistic processes underlying population connectivity of weeds.

Introduction

Elucidating routes and levels of migration between popu-
lations is essential to understand the forces that shape its
evolutionary trajectory (Barrowclough 1980; Slatkin 1985).
Landscape features, such as rivers, mountain ranges, crop
fields, and urban areas, can impact levels of gene flow
between populations by determining dispersal rates and
routes (McRae 2006; Cushman et al. 2006) as well as
influence the likelihood of successful establishment of
immigrants (Wang and Bradburd 2014; Sexton et al. 2014).
Landscape features can also indirectly condition the effect

of gene flow by influencing local effective population sizes
(Wright 1949; Slatkin 1985). Consequently, the landscape,
loosely defined as an area with spatially variable biotic and
abiotic factors (Holderegger et al. 2010), influences the
levels of effective gene flow among populations (Clobert
et al. 2012). In this way, the landscape plays a pivotal role
in the evolution of species.

In contrast to species that depend almost exclusively on
natural dispersal agents, species in heavily human-
dominated ecosystems may exploit human activities to
maintain gene flow among populations and expand their
ranges (Everman and Klawinski 2013; Fountain et al.
2014). Such species may be capable of maintaining popu-
lation connectivity over vast geographic ranges (Trakhten-
brot et al. 2005) by overcoming landscape features that
would otherwise represent natural barriers. Such species
would, thus, be able to attain dispersal distances that could
be orders of magnitude greater than those dependent pri-
marily on natural dispersal agents (Mack and Lonsdale
2001; Ricciardi 2007). By facilitating dispersal, humans
have the potential to condition the balance between drift and
selection (Slatkin 1985; Lenormand 2002), introduce
genetic variation to local populations (Kolbe et al. 2004),
prevent local extinction or favor recolonization (Fountain
et al. 2014), and alter the overall genetic constitution of
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populations (Bataille et al. 2011). Human-aided migration
—intentional or unintentional—is particularly prevalent in
plants (Hodkinson et al. 1997; Auffret and Cousins 2013),
where it has had major impacts on the distribution of spe-
cies and stability of communities (Simberloff 2013 and
references therein). Despite our knowledge of both human
and natural factors influencing dispersal, there remains a
gap in our understanding of the relative influence of each on
the distribution of genetic variation among populations of
many (if not most) plant species.

A particularly amenable study system to fill this knowl-
edge gap comes from agricultural weed populations. Agri-
cultural weeds experience a highly dynamic landscape
characterized by frequent spatial rearrangements and chan-
ges in the physical environment (e.g., expansion of agri-
cultural front, increased fragmentation, crop rotation,
agricultural chemical use) (Menchari et al. 2007; Meehan
et al. 2011). At the same time, natural features such as cli-
mate, soil type, and topography likely also play a significant
role in structuring populations (Cimalová and Lososová
2009; Navas 2012). Under these conditions, human-aided
migration may be critical for weedy plant success (Epperson
and Clegg 1986). However, we have limited knowledge of
how or if weedy plant populations are able to maintain
connectivity through the complex landscape matrix.
Addressing this limitation would improve our understanding
of the underlying processes governing connectivity of weed
populations and also offer practical tools to deal with the
economic problems that weeds impose (on the order of 33B
USD per year in US agriculture alone; Pimentel et al. 2005).

As a first step into investigating the interplay between
natural factors and human activities on structuring genetic
diversity in weed populations, we estimate the intensity and
extent of migration and evaluate how multiple landscape
features influence genetic connectivity of Ipomoea pur-
purea, one of the most troublesome weeds in US agriculture
(Webster and Nichols 2012). Specifically, we ask the fol-
lowing questions: (1) what is the overall population struc-
ture of I. purpurea, and (2) which natural and/or human-
influenced landscape features—soils, elevation, climate,
landcover, crop types, human population density—may act
to promote or constrain genetic connectivity between
populations of this weed? Answering these questions offers
a deeper understanding of the multiplicity of population
structure drivers that influence noxious weeds.

Materials and methods

Study system

Ipomoea purpurea, the common morning glory, is a nox-
ious agricultural weed (Defelice 2001; Fang et al. 2013) that

has a widespread distribution across highly heterogeneous
landscapes in the Eastern, South- and Mid-western regions
of the United States (Culpepper 2006; Webster and Nichols
2012). It is a self-compatible annual bumblebee-pollinated
vine and is found primarily in agricultural fields and dis-
turbed areas (Tiffin and Rausher 1999; Baucom 2008), as
well as cultivated flower gardens and yards (Defelice 2001).
I. purpurea is one of the most problematic agricultural
weeds of southeastern agriculture (Webster and Nichols
2012), and exhibits variable levels of resistance to the
commonly used herbicide glyphosate (Kuester et al. 2015).
This species is also a major concern for conservation given
its naturalization in multiple regions throughout the world
and its aggressiveness as an invasive (Chaney and Baucom
2012; Fang et al. 2013).

Data compilation

To capture the plausible effect of both natural and disturbed
landscapes on structuring genetic diversity in I. purpurea,
we compiled a diverse set of GIS data for the continental
US from a variety of sources (Table S1). These data include
human activities (human population density—estimated by
imposing a 10 × 10 km grid on the 2010 Census Blocks’
population count, U.S. Census Bureau, Department of
Commerce, landcover, planted crops, and roads) as well as
natural factors such as elevation, climate (19 variables
summarizing central tendencies and variability patterns in
temperature and precipitation), and soil characteristics (8
variables summarizing the texture, pH, and organic and
inorganic content of the top 20 cm of soil). Focusing on
both sets of data allowed us to assess the relative influence
of natural and human effects on structuring I. purpurea’s
populations. We, first, processed all these data into land-
scape layers at a common spatial resolution of 10 km2 and a
common spatial extent around the US states with available
samples (Fig. 1). This spatial resolution was chosen to
maintain a practical balance between scale and analytical
manageability given available computational resources. To
reduce dimensionality, we opted to perform two separate
Principal Component Analyses on the 19 climatic and 8 soil
layers, respectively. We opted to examine all variables,
despite their wide range of autocorrelation with each other,
to avoid introducing any a priori bias in our variable
selection. For all subsequent analyses we kept the resulting
first two principal components of each of these analyses,
which accounted for over 78% of the variance in each case,
and primarily summarized temperature temporal gradients
and precipitation seasonality, and soils’ pH, sandiness, and
grain size, respectively (Table S2).

We compiled data from a panel of 15 previously opti-
mized Simple Sequence Repeats (SSR) loci (Molecular
Ecology Resources Primer Development Consortium et al.
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2013) to examine the genetic connectivity of populations of
I. purpurea. These data (Kuester et al. 2015) encompass a
total of 597 individuals from 31 localities (with a minimum
of 8 individuals per locality) (Fig. 1; Table S3), collected in
2012 from farms across the range of I. purpurea in the
United States (Kuester et al. 2015). In addition, to obtain a
more comprehensive representation of the genome of I.
purpurea, we generated a Next Generation Sequencing
(NGS) dataset from an additional set of individuals (10
individuals each from 6 localities represented in the SSR
dataset, plus 2 additional localities in close geographic
proximity to localities in the SSR dataset, for a total of 8
populations; Fig. 1).

To generate the NGS dataset, we constructed a genome-
wide Genotype By Sequencing (GBS) library. DNA was
extracted using a standard CTAB protocol (Doyle and
Doyle 1987) from leaf or cotyledon tissue. A nextRAD
GBS library was developed by SNPsaurus (Oregon, USA).
Seven ng of genomic DNA per sample were first frag-
mented using a Tagment DNA Enzyme (Illumina; Cali-
fornia, USA) and then ligated to short adapter and barcode
sequences using a partial Nextera® reaction (Illumina;
California, USA) before being amplified using Phusion®

Hot Start Flex DNA Polymerase (New England Biolabs;
Massachusetts, USA). The PCR program used includes an
initial step of 3 min at 72 °C, followed by 30 s at 98 °C, and
five cycles of denaturation at 98 °C for 10 s, annealing at
63 °C for 30 s, and extension at 72 °C for 3 min. The 80
dual-barcoded PCR-amplified samples were pooled and the
resulting libraries were purified using AMPure XP beads
(Agencourt Bioscience Corporation; Massachusetts, USA)

at 0.7 × . The purified library was then size selected to 350-
800 base pairs and sequenced using two runs of an Illumina
NextSeq500 sequencer (Genomics Core Facility, University
of Oregon).

The resulting sequences were analytically processed
using the SNPsaurus nextRAD pipeline (SNPsaurus, Ore-
gon, USA; Siliceo-Cantero et al. 2016). Specifically, reads
of 16 randomly selected individuals (of the 80 sequenced)
were combined to create a pseudo-reference genome. This
was done after removing loci with read counts above
20,000, which presumably corresponded to repetitive
genomic material, and loci with read counts below 100,
which presumably corresponded to off-target or read errors.
The filtered reads were aligned to each other using BBMap
(Bushnell 2014). All parameters were set to default values
with the exception of minimum alignment identity, which
was set to 0.93 to identify alleles, as this threshold has been
found to work well for non-reference species (SNPsaurus,
Oregon, USA). A single read instance was chosen to
represent the locus in the pseudo-reference. This resulted in
a total of 263,658 loci. All reads from each of the 80
individuals were then aligned to the pseudo-reference using
BBMap (Bushnell 2014) and converted to a vcf genotype
table, using default settings in Samtools (Li et al. 2009) and
bcftools (Li 2011) except for quality score (we filtered out
nucleotides with a quality score of 10 or worse). The
resulting vcf table, which contained 9774 GBS tags, was
further filtered using vcftools (Danecek et al. 2011) to
remove tags with less than 5 high quality base calls and with
more than 20% missing data or an average of less than 20
high quality base calls. We then called single nucleotide

Fig. 1 Distribution of Ipomoea
purpurea’s sampled localities.
Sample sizes for both SSR (left)
and SNP (right) datasets are
indicated in parentheses (locality
numbers are given in squares).
Elevation is provided as
background. IN Indiana, NC
North Carolina, OH Ohio, SC
South Carolina, TN Tennessee,
VA: Virginia
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polymorphisms (SNPs) on this dataset using vcftools
(Danecek et al. 2011) keeping only those with a minimum
minor allele frequency of 0.02, a minimum read depth per
individual of 5, and a maximum 15% of missing data. This
resulted in a final panel of quality-vetted 8210 SNPs (Fig.
S1) that we used in all subsequent analyses.

Population structure analyses

We first conducted a series of analyses to characterize the
overall genetic structure of I. purpurea populations. All
analyses were run separately for the SSR and SNP datasets
given their intrinsic differences and distinct geographic
coverage (Fig. 1; Table S3). In addition, we repeated all
population structure analyses using just the subset of 6
localities where SSR and SNP datasets are both available.
Running separate analyses using these two reduced datasets
that include only localities in common for both marker sets
(referred as SSRc and SNPc, hereafter) allowed us to
determine if the differences between marker types was due
to differences in sample size (SSR= 24 localities; SNP= 8
localities) or geographic coverage (Fig. 1). Similarly, to
determine if the differences uncovered between marker
types were due to SNP sequencing or genotyping error, we
repeated all population genetic analyses after doing a more
stringent SNP quality filtering by removing SNPs with a
genotype quality score below 20 or a minimum read depth
of 10. After having done this, we checked again for the
amount of missing data per SNP locus and remove those
with more than 15% missing individuals.

We then assessed population structure independently for
all five different datasets (full SSR and SNP datasets,
common-localities-only SSRc and SNPc datasets, and the
more stringent SNP dataset). First, to characterize popula-
tion differentiation we estimated expected and observed
heterozygosity (He and Ho, respectively), and FST using
GenAlEx v6.5 (Peakall and Smouse 2012) (because similar
global FST and RST estimates were obtained for the SSR
datasets, we opted to report FST values only to allow direct
comparisons with the SNP datasets). We also tested for
significant deviations from Hardy–Weinberg equilibrium in
Arlequin (Excoffier and Lischer 2010) and for genetic
neutrality using PopGenome (Pfeifer et al. 2014) in R (R
Core Development Team 2016). We then estimated con-
temporary effective population size for each sampled
locality in NeEstimator v2 using the excess heterozygous
method (Do et al. 2014). We performed this latter analysis
to assess the possibility that differences in local population
size underlie differences in genetic variability (Weckworth
et al. 2013) and/or promote asymmetric effective migration
rate (Nm).

In addition, to further examine genetic structure we
assessed population admixture and spatial genetic clustering

using TESS (Chen et al. 2007). For this, as suggested in
TESS’ documentation, we first added small random noise to
the geographic coordinates of each individual using its
“Generate Spatial Coordinates” function. TESS was then
run using the admixture algorithm and a BYM model
(Durand et al. 2009a, 2009b) with 10 runs per K value, and
without using geographic weights. The TESS model with
the lowest Deviance Information Criterion (DIC) at which
the DIC-vs-K curve plateaus was chosen as the optimal
model (Durand et al.2009a, 2009b). K values tested ranged
from two to the maximum number of sampled localities.
Additionally, following Wang et al. (2009), we com-
plemented these analyses with Analyses of Molecular
Variance (AMOVA; Excoffier et al. 1992) run in GenAlEx
(Peakall and Smouse 2012) using 9999 permutation repli-
cates. We ran these AMOVAs either partitioning the var-
iance into regions based on the spatial genetic clusters
previously identified—to quantify the fraction of the genetic
variance explained by these clusters, or leaving it
ungrouped (i.e., no regions), for comparison. Specifically,
for the 4-level AMOVAs, the region assigned to each
population corresponded to the most frequent spatial cluster
(i.e., geographical assignment output; Durand et al. 2009a,
2009b) among those assigned to the individuals pertaining
to that population.

Additionally, we investigated population connectivity by
estimating levels of recent migration between sampled
localities through the identification of individuals of mixed
ancestry using BayesAss (Wilson and Rannala 2003).
BayesAss is a program that uses individual multilocus
genotypes and a Markov Chain Monte Carlo (MCMC)
algorithm to probabilistically distinguish between immi-
grants and long-term native individuals (Wilson and Ran-
nala 2003). We ran BayesAss for 6 million generations
using default parameter settings, and discarded the first two
million generations as burn-in (Dyer 2009). For each mar-
ker dataset, we repeated this analysis three times (for a total
of 18 million generations) and combined the results from
the three replicates for our final inference. Then, using a
posterior probability cut-off of 0.75 we assign individuals’
ancestry. We chose this cut-off value as a minimum cred-
ibility score to simultaneously maximize sample size and
reliability (more stringent thresholds show similar differ-
ences between marker sets; results not shown). It is
important to note that because of computational limits we
had to randomly subsample our set of SNPs to 400 SNPs for
this analysis. The same subsampled set was used for the full
and reduced (SNPc) analyses.

Landscape genetics analyses

To identify the likely landscape features underlying overall
population structure of I. purpurea, we evaluated the
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association between landscape features and genetic differ-
entiation based on the full datasets. First, we estimated
conditional genetic distances (Dyer et al. 2010) using
GeneticStudio (Dyer 2009). Briefly, conditional genetic
distances are measures of pairwise genetic distance derived
from population networks, constructed based on the degree
of genetic similarity between sampled localities (Dyer and
Nason 2004). They reflect genetic similarity between
localities that better capture direct gene flow (i.e., direct
migration) as opposed to connectivity driven by step-wise
migration through intervening localities (Dyer 2015). The
complexity of the associated conditional genetic network
was summarized by their vertex connectivity (White and
Harary 2001), whereas the congruence between networks
derived from different marker sets was measured by their
structural congruence (a measure of whether the number of
congruent edges between networks is greater than expected
by chance) (Dyer 2009).

To assess the association between landscape features and
population differentiation, we first converted each landscape
layer (climate, crops, elevation, landcover, population
density, roads, and soils layers; Table S1) into landscape
resistance layers. To do this, each landscape feature in these
layers was assigned a resistance value that reflects the dif-
ficulty that each feature offers to the movement of gametes
or individuals. In contrast to previous studies that typically
rely on expert opinion for resistance assignment, we utilized
an unbiased statistical optimization to avoid the sensitivity
of results to subjective resistance assignment (Spear et al.
2010). Specifically, resistance values were optimized
through a genetic algorithm approach (Mitchell 1996).
Briefly, in this search algorithm a population of individuals
with traits encoded by unique combinations of model
parameters (resistance assignment proposals in our case) is
allowed to compete with each other based on the fitness
associated with the traits it carries (Peterman et al. 2014).
Specifically, in Peterman’s (8) implementation of this
algorithm, which we followed here, individuals’ fitness is
estimated by the relative quality of a MLPE.lmm model
(Maximum Likelihood Population Effects—Linear Mixture
Model). This model evaluates the association between
pairwise genetic distance and landscape cumulative resis-
tance between localities, estimated in Circuitscape (Shah
and McRae 2008). Individuals with parameter settings (i.e.,
resistance assignments) that result in better models, as
measured by a DIC score, are preferentially represented in
the following generation. Offspring modifications intro-
duced by mutations (i.e., small resistance assignment per-
turbations) allow for exploration of the parameter space.
The algorithm was stopped once 25 generations have passed
without significant improvement in fitness.

We implemented Peterman’s (8) algorithm (package
ResistanceGA; Peterman 8) in R (R Core Development

Team 2016) allowing for the independent optimization of
each of our landscape layers. The optimal resistance land-
scapes identified in this way were then used to run a final
univariate MLPE.lmm model to characterize the association
between landscape features and conditional genetic dis-
tances between localities. Because the roads-associated
resistance was not recovered as significant for either marker
dataset, we dropped this layer for all subsequent analyses.
Finally, to identify the simultaneous contribution of natural
and human-driven landscape features to population differ-
entiation in I. purpurea we ran Multiple Regression on
Distance Matrices (MRDM; Legendre et al. 1994). Before
running these MRDM models, we standardized all opti-
mized resistance layers to mean of zero and variance of one
(Dyer et al. 2010). These final regressions included geo-
graphic distance as a null model predictor as well as
effective population size and were run in R (package eco-
dist; Goslee and Urban 2007) using 10,000 permutations to
assess significance. We accounted for multiple testing by
applying a false recovery rate correction (Benjamini and
Hochberg 1995) using the function p.adjust in R (R Core
Development Team 2016).

These landscape genetic analyses, aimed at identifying
the relative influence of natural and human-related land-
scape features on I. purpurea’s connectivity, show several
differences between SSR and SNP datasets (see below).
Nonetheless, we expect that association patterns that are
robust between datasets should accurately reflect the impact
of landscape features on gene flow, independent of possible
biases introduced by marker idiosyncrasies. Therefore, we
focus below on the common biological findings between
marker types, while also denoting the most relevant
differences.

Results

Population structure

The initial genetic analyses indicated that I. purpurea sam-
pled localities were not in violation of Hardy–Weinberg
equilibrium (Fig. S1c, d), as evidenced by the small differ-
ence between expected and observed heterozygosity (mean
He= 0.294 ± 0.014 and 0.250 ± 0.001; mean Ho= 0.291 ±
0.009 and 0.260 ± 0.001, respectively, for SSR and SNP
datasets). Levels of expected and observed heterozygosity
for the SSR dataset were only slightly greater than those
estimated for the SNP dataset. Likewise, the estimated mean
effective population size per sampled locality was only
slightly greater and more variable for the SSR dataset than
for the SNP dataset (13.71 ± 5.59, 9.49 ± 0.13, respectively),
but in neither case was there salient evidence of a plausible
source-sink dynamic, as judged by the similar effective sizes
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among populations. Average pairwise FST estimates between
datasets were also similar (0.151 and 0.140, respectively, for
SSR and SNP datasets; Fig. S2).

Interestingly, we found that estimates of recent ancestry
differed between SSR and SNP datasets. The analysis of the
SSR dataset indicated that recent migration among localities
seems to be more widespread, with only four localities
being primarily constituted of native individuals (Fig. 2a).
Across localities, on average 73.65% of individuals were
inferred to be 1st or 2nd generation immigrants. In com-
parison, analysis of the SNP dataset showed that most
populations seem to have a more limited number of recent
immigrants, and that the relatively few inferred immigrants
(on average 27.42% of individuals) did not come exclu-
sively from geographically proximate localities (Fig. 2d).
Accordingly, pruned (i.e., with non-informative branches
removed) SSR and SNP conditional genetic networks (Dyer
and Nason 2004) indicated different underlying patterns of

genetic connectivity (structural congruence= 0.108; Fig.
2b, e). While both were fully closed, the SSR-based net-
work was more interconnected (vertex connectivity: 5) than
the SNP-based network (vertex connectivity: 0). Further,
based on the best TESS models (Fig. S3), widespread
admixture was recovered in the SSR dataset (median indi-
vidual maximum Q-score= 0.51), whereas minimal
admixture was identified in the SNP dataset (median indi-
vidual maximum Q-score= 0.73) (Fig. 2c, f). It is important
to note that this latter result was consistent across models
for different K values (Fig. S4 and S5). Finally, grouping
individuals according to the corresponding TESS-identified
spatial genetic clusters in AMOVA analyses only slightly
reduced the variance explained solely by geographic loca-
tion in both datasets (Table 1).

Similar to our results from the entire datasets, when we
subset the SSR and SNP dataset to the 6 localities in
common (SSRc and SNPc datasets), we found no major

Fig. 2 Inferred population connectivity. The recent immigration his-
tory of each sampled locality (sink) is depicted according to the
locality they were inferred to have originated from (source) (a, d). The
grayscale of each cell in these plots depicts the relative proportion of
individuals in the sink population that were estimated to be recent
immigrants from each locality along the x-axis. Cells on the minor
diagonal correspond to the proportion of native individuals. Pruned

conditional genetic networks (b, e) and posterior estimates of admix-
ture proportion identified by TESS analysis (c, f) are also displayed.
The top row shows SSR-based results, the bottom shows the SNP-
based results. Locality numbers follow Fig. 1. Localities shared
between SSR and SNP datasets are denoted by gray-shaded arrows
(for a similar figure based exclusively on these shared localities, see
Fig. S6)
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differences in genetic estimates between the SSRc and
SNPc datasets (Table S4), and we again identified differ-
ences in the underlying population structure (Fig. S6).
Specifically, the SNPc dataset was characterized by a
smaller percentage of recent immigrants (28.25%) than the
SSRc dataset (44.93%) (Fig. S6a, d), and the corresponding
genetic networks were also different from each other
(structural congruence= 0.002)—with the SSR-based net-
work being more connected (vertex connectivity= 2) than
the SNPc-based network (vertex connectivity= 0) (Fig.
S6b, e). Finally, as for the full data, a more admixed genetic
composition of individuals was recovered in the SSRc
dataset (median individual maximum Q-score= 0.71) than
in the SNPc dataset (median individual maximum Q-score
= 0.85) (Fig. S6c, f). Also, further confirming the limited
spatial structure in this species, using TESS-identified spa-
tial genetic clusters as regions in AMOVA analyses barely
reduced the variance explained solely by geographic

location when compared to a null model with no regions
assigned (Tables S5).

Similarly, when using a more stringently filtered SNP
dataset, which comprised 5811 SNPs, we found that this
reduced dataset produced highly similar results to the ori-
ginal SNP dataset (percentage of recent immigrants=
25.94%, genetic network vertex connectivity= 0, average
individual maximum Q-score= 0.71, and percentage
explained by TESS-groupings= 7.31%). Hence, these
results using a more rigorous SNP dataset further support
the differences in population structure inferences between
SSR and SNP data.

Landscape genetics

Both the SNP and SSR datasets provide evidence that
human-impacted landscapes play an important role in
shaping genetic connectivity in I. purpurea. In both sets of

Table 1 Analysis of molecular variance (AMOVA) of SSR and SNP data

Effect F-statistic Variance explained F-value P-value

SSR SNP SSR SNP SSR SNP

Regions FRT 0.61% 8.51% 0.006 0.085 0.001 0.001

Localities FSR 10.53% (11.06%) 6.10% (13.02%) 0.106 0.067 0.001 0.001

Individuals (among) FST 38.27% (38.33%) 24.85% (25.31%) 0.112 (0.111) 0.146 (0.130) 0.001 (0.001) 0.001 (0.001)

Individuals (within) FIS 50.56% (50.61%) 60.54% (61.67%) 0.431 (0.431) 0.291 (0.291) 0.001 (0.001) 0.001 (0.001)

Total FIT 100% (100%) 100% (100%) 0.494 (0.494) 0.395 (0.383) 0.001 (0.001) 0.001 (0.001)

The contribution of spatial clusters (regions), localities, and individuals is shown. For comparison, results from an AMOVA analysis with no
region category defined are presented in parentheses

Table 2 Summary of landscape genetics models

Feature MLPE.lmm MRDM

SSR SNP SSR SNP

Intrinsic variables

Geographic distance 0.187* (0.052) / 12.303 [8] 0.780* (0.055) / 0.396 [4] 0.051 (0.121) 0.255* (0.056)

Population size (Ne) – – -0.550 (0.001) -2.650* (0.051)

Natural environment variables

Climate PC1 0.243 (0.034) / 10.356 [3] 0.967 (0.045) / 0.032 [2] 0.533* (0.064) 1.782 (0.517)

Climate PC2 0.205 (0.048) / 12.030 [7] 0.814* (0.055) / 1.560 [7] -0.029 (0.978) 21.443* (0.075)

Elevation 0.244 (0.034) / 10.742 [4] 0.840* (0.054) / 1.423 [6] -0.607 (0.480) -31.789* (0.095)

Soil PC1 0.208 (0.039) / 11.378 [6] 1.044 (0.045) / 0.471 [5] 0.305 (0.510) 15.789 (0.038)

Soil PC2 0.320 (0.018) / 8.139 [2] 0.941 (0.045) / 0.284 [3] 0.187 (0.703) -6.838 (0.476)

Human-impact variables

Crops -0.226 (0.134) / 14.491 [9] 0.858* (0.054) / 15.371 [8] 0.154 (0.526) 0.360 (0.840)

Landcover 0.582 ( < 0.001) / 0 [1] 1.358 (0.003) / 39.775 [9] 0.340 (0.218) 3.887 (0.184)

Population density 0.227 (0.034) 10.821 [5] 0.912 (0.045) / 0 [1] -0.519* (0.095) -3.271 (0.037)

Model coefficients are reported followed by associated p-value (in parenthesis) and, for MLPE.lmm models, followed by AICc difference and
ranking (in square brackets). Significant coefficients are in bold, marginally significant coefficients are marked with an asterisk.
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MLPE.lmm models, null (geographic distance), natural
(climate, elevation, and soils), and human-related land-
scapes (landcover and human population density) were
identified as significant (p <= 0.05) or marginally sig-
nificant (0.05 < p <= 0.1) predictors of genetic differentia-
tion between localities. Interestingly, the variables with the
greatest association coefficient and lowest AICc value in
both the SSR and SNP models were human-related vari-
ables (landcover and human population density, respec-
tively; Table 2). However, when considering all variables
together in a multivariate manner—while accounting for
geographic distance—human population density, local
effective population size, and different aspects of climate
were the only variables that remained as significant or
marginally significant predictors of genetic differentiation
across both SSR and SNP datasets (Table 2). In contrast,
elevation and soil were identified as significant or margin-
ally significant predictors only in the SNP dataset. Both
multivariate regressions also differed in the proportion of
the variance explained (MRDM R2 for SSR and SNP
dataset were 0.109 (F1,29= 3.654, p-val.= 0.063) and 0.532
(F1,6= 1.932, p-val.= 0.113), respectively). While some
caution is needed when interpreting these multivariate
models given the range of autocorrelation among predictor
variables, their general agreement with our univariate
models further support these latter results.

In summary, across datasets, results indicated that
human-population-density resistance was robustly asso-
ciated with differentiation among I. purpurea’s populations,
with sparsely to moderately populated areas identified as
more conducive areas for migration and potential corridors
available between all regions (Fig. S7b). In contrast, cli-
matic variables produced potential barriers to gene flow,
with temperature temporal gradients isolating the north-
ernmost localities from the rest in the SSR dataset, and
precipitation seasonality isolating the eastern and western
localities in the SNP dataset (Fig. S7a). Finally, local
effective population size was also a significant predictor in
both datasets, with population size inversely associated with
genetic differentiation (Table 2).

DISCUSSION

Our results reveal that broadly distributed populations of I.
purpurea are not genetically isolated from each other. They
also suggest the existence of long-distance and putatively
human-mediated migration between localities. At the scale
of our analyses, the regional agricultural matrix does not
seem to have an overarching impact on population con-
nectivity in this species, despite I. purpurea’s tight link to
agricultural fields. Instead, genetic connectivity in this
species seems to be primarily influenced by climate and

human population density. Effective population size (Ne)
also appears to influence population connectivity in this
species, which suggests a plausible additional effect of
genetic drift on the effectiveness of gene flow (Weckworth
et al. 2013). Taken together, these results highlight the
significant interplay between human-driven and natural
landscapes in structuring I. purpurea populations.

Population connectivity patterns

Despite I. purpurea’s expected low natural seed dispersal,
due to heavy, gravity-dispersed seeds, and large and patchy
distribution, we found evidence of limited genetic differ-
entiation through the species’ range and overall weak geo-
graphic structure. In fact, population differentiation was
uneven (pairwise FST values ranged from 0.02 to 0.24), and
only partially dependent on the geographic distance
between populations. Further, genetic networks for both
datasets were fully closed, suggesting the existence of direct
or indirect gene flow among all sampled populations. In line
with this finding, admixed individuals were present in all
sampled localities (although levels of admixture vary for
SSR and SNP datasets), and several instances of recent
short- and long-distance migration were recovered. Never-
theless, the evidence of interconnectedness we uncovered is
likely also influenced by the shared evolutionary history of
populations and, thus, shared ancestral genetic variation
likely confounds our estimates of genetic differentiation
(Marko and Hart 2011). Given the relatively recent invasion
of the US by I. purpurea and its inclusion in horticultural
trade (Fang et al. 2013), it is possible that historical con-
nectivity between populations due to human transport
maintained gene flow between populations after its intro-
duction into the US (Mack 1991). Alternatively, recurrent
colonization from few genetically similar sources might
instead have resulted in partial homogenization of otherwise
isolated populations (Dlugosch and Parker 2008). To dis-
entangle the relative contribution of recent gene flow from
that of historical patterns of population connectivity,
empirical estimates of inter-population migration (e.g.,
through the use of pollen traps) or direct measurements of
gene flow (e.g., paternity analysis) would be needed.

Our estimates of differentiation as well as heterozygosity
and allelic richness differ from other agricultural weedy
species. Specifically, our estimates suggest that I. purpurea
has lower genetic diversity (as measured by allelic richness,
Rs, and/or heterozygosity, He) than primarily outcrossing
annual weeds (e.g., ragweed [Rs: 5.85, He: 0.76] Genton
et al. 2005, and annual sunflower [Rs: 4.05, He: 0.51]
Muller et al. 2011), including many broadly distributed
invasives (Dlugosch and Parker 2008). Its genetic diversity
is also lower than other mixed-mating species such as
downy yellow violet [He: 0.32] (Culley and Wolfe 2001)
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and common lungwort [Rs: 3.41, He: 0.60] (Meeus et al.
2012). This finding is potentially explained by both differ-
ences in the specifics of the reproduction system, as out-
crossing and primarily outcrossing plants often show greater
genetic diversity than plants with mixed or primarily selfing
reproduction (Hamrick and Godt 1996), and the recent
population bottlenecks likely experienced by I. purpurea
(Kuester et al. 2016).

Genetic differentiation found in this study (as measured
by FST), on the other hand, was relatively low for a broadly
distributed gravity-dispersed plant (Hamrick and Godt
1996). This contrasts with many broadly distributed weeds,
which show moderate to high FST values (0.15–0.48) likely
due to dispersal limitations over distances above those
commonly allowed by natural dispersal agents (Schmidt
et al. 2009; Treier and Müller-Schärer 2011). This is the
case, for example, of invasive weeds such as weedy Silene
(Barluenga et al. 2011) that rely on specialist pollinators or
seed dispersers that might not be present in the invaded
range. Considering the natural history of I. purpurea—
heavy seeds, bumblebee pollination (Osborne et al. 1999;
Schulke and Waser 2001), and strong agricultural and
horticultural ties (Defelice 2001), this finding suggests that
human-aided dispersal presumably contributes to maintain
connectivity in this species.

Landscape features influencing population
connectivity

Our assessment of the association between population dif-
ferentiation and landscape resistance identified several pre-
dictors of population connectivity. Of the landscape features
examined, climate and human population density are the
only robust predictors, suggesting a role for both human
activities and climatic barriers in shaping population con-
nectivity in this species. Specifically, our results suggest that
while climatic variables provide some resistance to migra-
tion, scarcely to moderately populated areas (i.e., those
corresponding with rural areas) offer potential corridors
between all sampled regions. The existence of climatic dis-
persal barriers presumably arises in response to physiologi-
cal preferences or local adaptations of the species (Cimalová
and Lososová 2009); humans seem to oppose these natural
limitations and help I. purpurea overcome climatic barriers
(e.g., by allowing dispersal between northern and southern
populations that are separated by areas of high temperature-
related resistance to gene flow). Indeed, human-mediated
migration is expected to be particularly prevalent among
wild populations of species with commercial value such as I.
purpurea (Mack 1991; Defelice 2001).

Population connectivity of species in human-dominated
environments is potentially also affected by human-induced
changes in population size (Méndez et al. 2014). Specifically,

by influencing population size, anthropogenic activities con-
dition the effectiveness of migration as it depends on migra-
tion relative rate (Nm) (Wright 1931). Furthermore,
population size differences influence the overall dispersal
spatial dynamics because the number and direction of
migrants depend on local population sizes (e.g., proportio-
nately greater number of migrants move from densely to
sparsely populated areas than vice versa; Lenormand 2002).
In line with these expectations, we found that effective
population size is also a significant predictor of population
differentiation in this species. Considering the prevalence of
weed management practices (e.g., tillage, herbicide applica-
tion) and their effect on weed populations (Kuester et al.
2016), it is likely that these anthropogenic activities play a
significant role in controlling the rate of population differ-
entiation in weeds by manipulating population size. Thus, all
evidence suggests a predominant role of human activities in
shaping I. purpurea’s current genetic structure.

Relatively few studies have explored how landscape
features impact population connectivity in weeds at large
spatial scales, making it hard to evaluate how distinctive I.
purpurea’s response to climatic and anthropogenic factors
may be from that of other weeds. Yet, simulations modeling
short-distance dispersal based on spatial distances and
landscape configuration have identified dispersal cap-
abilities and landscape use (including availability of dis-
turbed habitats and distribution of crop types) to be the most
prevalent determinants of local level connectivity in several
weed systems (Woolcock and Cousens 2000; Fénart et al.
2007; Will and Tackenberg 2008). For instance, using a
~10 km2 aerial photograph to inform a spatial mechanistic
model of Canadian horseweed’s interfield dispersal, Dauer
et al. (2009) showed that distribution of suitable habitat
primarily determined the rate and extent of this weed’s
dispersal at this spatial scale. In agreement with these pre-
dictions, empirical data show that local dispersal in moun-
tain pasture weed is heavily influenced by the spatial
distribution of human-dominated landscapes and the
opportunities for interfield contamination (Treier and Mül-
ler-Schärer 2011). Yet, while neither landcover nor crop
types distribution were identified as significant predictors in
our multivariate analyses, we cannot rule out the possibility
of high local gene flow at the scale of contiguous agri-
cultural fields mediated by these landscape features given
the scale of our analyses.

Marker-specific inferences

Our results identified interesting differences between marker
types in terms of the inferred population structure of I. pur-
purea. The differences uncovered between datasets are at first
glance unexpected as all loci in a species’ genome evolve
under a common evolutionary history (Payseur and Cutter
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2006). Nevertheless, differences between marker types have
been similarly observed in other studies (Dixon et al. 2011;
Martin et al. 2016). For example, several studies have
recovered FST estimate differences when using SNP or SSR
loci on the same set of samples (Coates et al. 2009; Gärke
et al. 2012), presumably due to mutation rates and genomic
representation differences of SSR and SNP loci (Payseur and
Cutter 2006; Coates et al. 2009). Here, the population struc-
ture differences we uncovered may likewise be related to
marker-specific rates of mutation, drift and/or marker-specific
biases—such as greater ascertainment bias on SSR data (Väli
et al. 2008; Defaveri et al. 2013)—and not likely caused by
the different SSR and SNP dataset sampling. Because of these
intrinsic marker differences, both markers could provide
complementary information (Payseur and Cutter 2006). While
our identification of robust environmental predictors of
genetic differentiation for SSR and SNP datasets—despite
differences in underlying population genetic patterns—is
encouraging, further work is needed to reconcile traditional
landscape genetics studies based on a few highly variable
markers with increasing landscape genomics studies based on
thousands of SNPs.

Conclusions

While our results suggest that I. purpurea experiences
moderate inter-population connectedness and potential
long-distance dispersal, we cannot rule out the influence of
historical relatedness on the observed genetic patterns. To
determine the amount of current-day gene flow that occurs
between populations, direct estimates of gene flow need to
be examined. Regardless, the limited population structure
recovered as well as the identification of human population
density as a significant predictor of population differentia-
tion calls attention to the need for investigating the possible
impact of human-mediated gene flow on the evolutionary
path of this species—including its response to selection and
the likelihood of further naturalization. In particular, it
remains to be investigated whether the pattern of maintained
connectivity we identify here could facilitate the success of
this weed (e.g., by introducing relevant genetic variants;
Kolbe et al. 2004) or reduce the fitness of local populations
(Keller et al. 2000). What seems clear from this study is that
human-aided migration presumably is an important com-
ponent of gene flow between populations, which may
counter the isolating effects of natural environmental bar-
riers and genetic drift.
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