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Abstract
Lung cancer is the leading cause of cancer deaths in both men and women in the US. While most sporadic lung cancer cases
are related to environmental factors such as smoking, genetic susceptibility may also play an important role and a number of
lung cancer associated single-nucleotide polymorphisms (SNPs) have been identified although many remain to be found.
The collective effects of genome-wide minor alleles of common SNPs, or the minor allele content (MAC) in an individual,
have been linked with quantitative variations of complex traits and diseases. Here we studied MAC in lung cancer using
previously published SNPs data sets (US and Finland samples) and found higher MAC in cases relative to matched controls.
A set of 5400 SNPs with MA (MAF < 0.5) more common in cases (P < 0.08) and linkage disequilibrium (LD) r2= 0.3 was
found to have the best predictive accuracy. These results identify higher MAC in lung cancer susceptibility and provide a
meaningful genetic method to identify those at risk of lung cancer.

Introduction

Lung cancer is the leading cause of cancer death in both
men and women in the U.S and an estimated 158,040
Americans are expected to die from lung cancer in 2015,
accounting for approximately 27% of all cancer deaths
(CDC, 2014). The most common environmental risk factor
for sporadic lung cancer is smoking and radon (Alberg and
Samet, 2003). However, there are large variations in an
individual’s susceptibility to lung cancer and the heritability
of lung cancer is estimated to be 8–14% (Czene et al., 2002;
Hemminki et al., 2001). Only a fraction of smokers (~15%)
will develop lung cancer in their lifetime, and non-smokers

also can develop lung cancers (Spitz et al., 2003). A number
of cancer genes such as K-ras, p53, Rb, EGFR, HER2-neu
have been identified whose mutations contribute to lung
cancers (Ding et al., 2008; Iggo et al., 1990; Johnson et al.,
2001; Paez et al., 2004; Takahashi et al., 1989).

Efforts to identify quantitative susceptibility loci in lung
cancer have mostly involved genome-wide association
studies (GWAS) and identified a number of lung cancer risk
single-nucleotide polymorphisms (SNPs; Amos et al., 2008;
Landi et al., 2009; Ryan et al., 2015; Zhu et al., 2008).
However, they account for a very small fraction of lung
cancer cases and their mechanisms of action remain largely
unknown (Gibson, 2012).

Known predictive models of lung cancers mostly use
smoking status, radon exposure, and family history (Spitz
et al., 2007). However, these models cannot predict pre-
birth risk or risk long before incidence. Researchers have
also used a set of susceptibility loci to create a genetic risk
score to better predict lung cancer risk (Jostins and Barrett,
2011; Li et al., 2012; Weissfeld et al., 2015). But these
predictions were generally poor and not meaningful for
clinical use. It has been shown that many complex traits or
diseases are associated with an accumulation of enormously
large numbers of variants of small effects (Boyle et al.,
2017; Purcell et al., 2009).

An allele can be a major allele or minor allele (MA)
according to its frequency in the population and the minor
allele has frequency <0.5. Most known risk alleles are MAs
(Park et al., 2011). We have shown that the collective
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effects of a genome-wide collection of MAs in an individual
are linked with risk for Parkinson’s disease (Zhu et al.,
2015), reproductive fitness (Yuan et al., 2014), diabetes
(Gui et al., 2017; Lei and Huang, 2017) and schizophrenia
(He et al., 2017). The MA content (MAC) of an individual
may be at optimal balance with negative selection on both
too high or too low MAC values (Yuan et al., 2014). MAC
has also been linked with lung cancer in a mouse lung
cancer model (Yuan et al., 2014). Lung cancer is a complex
disease with causal factors not yet completely identified.
Thus, we suspected that MAC may play a role in lung
cancer. If a few major effect mutations can cause cancer, it
is not unexpected that numerous minor effect mutations or
the so called passenger mutations may also increase cancer
risk (Gibson, 2012; McFarland et al., 2017).

We here aimed to study the overall level of genome-wide
randomness in lung cancer cases relative to controls as
measured by total MA amounts in an individual. We also
attempted to identify a set of MAs that can predict lung
cancer risks.

Materials and methods

SNPs data sets

We downloaded from database of Genotypes and Pheno-
types (dbGaP) (https://www.ncbi.nlm.nih.gov/gap) one case
control GWAS data set, phs000336.p1.v1. Its dbGaP web
page described 5699 cases and 5818 controls, but in fact,
only ~3900 controls and ~3800 cases were available to be
downloaded, and it consisted of SNPs data sets from five
Illumina platforms: (1) HumanHap240Sv1.0 (genotyping
~30 cases and ~1100 controls at 243,991 Oligos/SNPs), (2)
HumanHap300v1.1 (genotyping the same individuals as
HumanHap240Sv1.0 at 317,503 Oligos/SNPs), (3)
HumanHap550v3.0 (genotyping ~770 cases and ~850
controls at 561,466 Oligos/SNPs), (4) Human610_-
Quadv1_B (genotyping ~3000 cases and ~1800 controls at
620,901 Oligos/SNPs), (5) Human1M-Duov3_B (genotyp-
ing ~150 controls at 1,199,187 Oligos/SNPs).

Since the data set 1 above shared only ~330,000 SNPs
with other platforms data sets, it was excluded. In addition,

identical individuals were also removed, who were geno-
typed by both Human610_Quadv1_B and Human-
Hap550v3.0 platforms. The remaining samples (6576
individuals [3782 cases and 2794 controls] with 551,741
SNPs overlapped) were genotyped by Illumina
Human610_Quadv1_B or Human1M-Duov3_B or
HumanHap550v3.0 platforms. They came from three stu-
dies: (1) the Cancer Prevention Study II Nutrition Cohort
(CPS-II) (enrolled in the U.S.), (2) the Alpha-Tocopherol,
Beta-Carotene Cancer Prevention Study (ATBC) (enrolled
in Finland), and (3) the Prostate, Lung, Colon and Ovary
Study (PLCO) (enrolled in the U.S.) (1994; Calle et al.,
2002; Hayes et al., 2005; Landi et al., 2009). So, these
individuals were from US and Finland. Cases were admitted
based on chest X ray examination. Participants are all
European descendant. We also downloaded from 1000
Genomes Project (1kGP) (http://www.internationalgenome.
org) involving 2504 individuals from multiple population
groups with a total of ~84.4 million variants (Auton et al.,
2015).

Subjects selection

Principal components analysis (PCA) is common in asses-
sing population structure and genetic background. While the
chosen thresholds based on PCA to exclude outliers were
somewhat arbitrary in common practice, our priority was to
include as many samples as possible when no clear genetic
substructures could be found as visually judged from the
PCA plot. We used the software GCTA to calculate the
value of principal components of each sample and figures
were plotted with R version 3.2.2. We removed individuals
that appeared to be outliers. As illustrated in Supplementary
Figure S1, even though all individuals are of European
descent, US samples and Finland samples were clustered
differently. So we performed separate analyses for these two
different sets of samples. For the 3580 US samples, we
selected these PC value ranges: −0.005 < PC1 < 0.015,
−0.01 < PC2 < 0.005, and −0.04 < PC3 < 0.01 (Supple-
mentary Figure S2A and S2B). For the 2996 Finland sam-
ples, we selected these PC value ranges: −0.02 < PC1 <
0.03, −0.03 < PC2 < 0.02, and −0.04 < PC3 < 0.04 (Sup-
plementary Figure S3A and S3B). For 1kGP samples, PCA
was also performed (Supplementary Figure S2C and S2D,
Supplementary Figure S3C and S3D).

SNPs quality control (QC)

We next performed a SNP-level set of QC steps. SNPs were
filtered by removing those with >5% non-informative calls
in the population, and those not following the Hardy-
Weinberg equilibrium in either the case group or the control
group (P < 0.0001 chi square test), and those with MAF <

Table 1 Number of individuals and SNPs in the final (post-QC) data
set

Description US data set Finland data set 1kGP

Cases Controls Cases Controls Controls

Participants 1209 968 1139 860 308

SNPs 511,807 511,807 512,363 512,363 ~390,000

The number of cases and controls from each cohort in the final analysis
are listed. SNP refers to the number of SNPs that passed QC
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0.01. Only autosome SNPs were used. Samples with >10%
missing SNPs and non-founders were excluded (i.e. only
parents were retained in cases where their children were
also sampled). Overall, these steps resulted in two data sets
with ~510,000 SNPs (from 551,741 in phs000336.p1.v1).
The description of cleaned up data sets is shown in Table 1.

Statistical analysis

Minor allele frequency (MAF) refers to the frequency at
which the second most common allele occurs in a given
population. MAs were defined as those alleles with MAF <
0.5 in the control group. The MAC of an individual is the
number of MAs divided by the total number of SNPs
examined (Yuan et al., 2014). We used a custom script to
calculate the MAC values of case and control groups
(https://github.com/health1987/dist). Difference in the
average MAC value was compared by t test. PLINK was
used to calculate a linkage disequilibrium (LD) (r2) score
for each pair of SNPs in a window of 200 kb SNPs, and one
SNP from the pair was excluded if r2 > 0.4. To justify this r2

threshold, we also tested the results at other r2 levels (i.e. r2

= 0.05, r2= 0.1, r2= 0.2, r2= 0.3, r2= 0.4, r2= 0.5, r2=
0.6, r2= 0.7, r2= 0.8 r2= 0.9 and r2= 1).

For each GWAS data set (the US data set and the Finland
data set), we used PLINK (Purcell et al., 2007) to perform
logistic regression test, which allows for multiple covariates
when testing for disease trait SNP association, and obtained
regression coefficient (beta) and asymptotic P-value for
each SNP. A positive regression coefficient (beta) means
that the minor allele increases risk mean. Logistic regression
details including getting beta of SNPs using PLINK (Purcell
et al., 2007) have been reported previously (Hagenaars
et al., 2017).

Risk prediction model

Since the US cohort includes 2177 individuals (1209 cases
and 968 controls) and was a bit more than the 1999 indi-
viduals (1139 cases and 860 controls) in the Finland cohort,
so we only performed risk prediction analysis in the former
data set. The US data set was randomly separated into
training (716 cases/590 controls), validation 1 (242 cases/
193 controls), and validation 2 (251 cases/185 controls)
cohorts at a ratio of 6:2:2.

Using logistic regression test, we obtained regression
coefficient (beta) for each SNP in the GWAS data set that
was used as the training set. Since a positive beta means that
the minor allele increases risk mean, we used four methods
to create genetic risk score (GRS): (1) adding up the
weighted value of each risk allele regardless whether the
beta was positive or negative, (2) adding up the non-
weighted value of each risk allele regardless whether the

beta was positive or negative, (3) adding up the weighted
value of each risk allele with positive beta, and (4) adding
up the non-weighted value of each risk allele with positive
beta.

wGRS ¼
Xn

i¼1

betaSNPi þ 0:5 �
Xm

j¼1

betaSNPj ð1Þ

SNPi represents MAs in homozygous state and SNPj
represents MAs in heterozygous state. A custom script was
used to calculate the total weighted genetic risk score
(wGRS) according to equation (1).

GRS ¼
Xn

i¼1

SNPi; ð2Þ

where the GRS was the total number of MAs of SNPs
chosen. For each locus, SNPi is 0, 1 or 2 depending on
whether the site was homozygous major alleles, hetero-
zygous, or homozygous minor alleles. We obtained GRS of
individuals by using a custom script according to equation
(2) (Supplementary Materials).

wGRSpositive ¼
Xn

i¼1

betaSNPi þ 0:5 �
Xm

j¼1

betaSNPj ð3Þ

Only SNPs with positive beta were considered for
equation (3).

GRSpositive ¼
Xn

i¼1

SNPi ð4Þ

Only SNPs with positive beta were considered for
equation (4).

Based on the logistic regression test, we also obtained
asymptotic P-value for each SNP in the GWAS training set.
In order to obtain a best model for risk prediction, SNPs at
19 different P-values (<0.001, <0.003, <0.005, <0.007,
<0.009, <0.01, <0.02, <0.03, <0.04, <0.05, <0.06, <0.07,
<0.08, <0.09, <0.1, <0.3, <0.5, <0.7 and <1) in training data
set were chosen at first among all SNPs studied here (i.e. 19
risk prediction models were created). In addition, to avoid
overfitting of the prediction model on the training set from
which the SNPs set was derived, LD clumping was per-
formed in the training cohort. Different SNPs were chosen
to construct the genetic risk score (GRS) at different P-
value thresholds (same as above) and different LD r2

thresholds (r2= 1, r2= 0.9, r2= 0.8, r2= 0.7, r2= 0.6, r2

= 0.5, r2= 0.4, r2= 0.3, r2= 0.2, r2= 0.1 and r2= 0.05) (i.
e, 19 × 11= 209 models were created). Here, 19+ 209=
228 models were built. So, the final total number of models
was 4 × 228= 912 models for the US training data set (716
cases/590 controls), taking into account of four methods
(wGRS, GRS, wGRSpositive and GRSpositive) and 228 models
per method.
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Risk prediction evaluation

We performed the internal validation twice to estimate the
predictive power of the models; in the first phase, a models’
performance was evaluated based on validation 1 data set
(242 cases/193 controls); only those performing well could
enter the second phase in which the models were evaluated
based on validation 2 data set (251 cases/185 controls);
results from validation 2 were used to quantify model per-
formance. Each experiment’s discriminatory capability was
evaluated using the receiver operating characteristic (ROC)
curve. We then calculated the AUC using GraphPad Prism
6 and the “pROC” R package. In order to obtain a MA set
performing well in risk prediction by using one of the four
methods (wGRS, GRS, wGRSpositive and GRSpositive), 228
models were respectively constructed for each method
based on P-value from logistic regression test and LD
clumping r2 or no LD clumping. We then obtained AUC of
each model in the validation 1 data set.

The model performing well and stably in two internal
validation experiments was chosen as the final prediction
model for each method. The Hosmer–Lemeshow test is a
statistical test for goodness of fit for logistic regression
models, which is used frequently in risk prediction models
(Alba et al., 2017; Hosmer et al., 1997; Krag et al., 1998).
We used “RSADBE” R packages and “pscl” R packages to
perform the Hosmer–Lemeshow goodness-of-fit test (HL
test) for assessing this model calibration; calibration refers
to the accuracy of absolute risk estimates (Alba et al., 2017);
when the P-value from this test is larger than 0.05, the
model can be considered as well calibrated.

Comparison with existing methods

Since GRS proposed above is also a sort of polygenic risk
score (PRS) (Purcell et al., 2009), assuming the collective
effect of many SNPs, we compared its prediction accuracy
with other PRS-based methods (such as PRSice (Euesden
et al., 2015), LDpred (Vilhjalmsson et al., 2015), and
AnnoPred (Hu et al., 2017)). For PRSice (Euesden et al.,
2015; Hagenaars et al., 2017), SNPs were first chosen based
on passing both LD pruning (0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1) and GWAS p-value thresholding
(0.001, 0.003, 0.005, 0.007, 0.009, 0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.3, 0.5, 0.7, 1). Polygenic
scores were then calculated by summing up alleles asso-
ciated with lung cancer, weighted by odds ratio from
logistic regression test. For LDpred (Vilhjalmsson et al.,
2015), SNPs were screened first using different fractions of
causal variants (1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003,
0.0001); the posterior effect size of each SNP was then
inferred based on odds ratio and LD information followed
by risk score calculations. AnnoPred (Hu et al., 2017) is

similar to LDpred but leverages functional annotations to
reevaluate SNPs effect. All the evaluation and identification
for models were performed in the two phased internal
validation as we did for GRS.

Pathway enrichment analysis

We used ANNOVAR (Wang et al., 2010) to annotate the
genes associated with the set of risk SNPs identified by the
above analysis. We used WebGestalyR (Wang et al., 2013)
tool to check the pathways associated with these genes in
the Kyoto Encyclopedia of Genes and Genomes database
(KEGG). The enriched pathways in the risk SNPs set were
compared by chi square test with a group of SNPs chosen
randomly.

Risk prediction in other population

For the model performing the best in the US population, its
predictive value was also estimated in another independent
cohort (the Finland population).

Results

Enrichment of minor alleles in lung cancer cases

We used a previously published GWAS data set of lung
cancer case and control cohorts for our studies (Landi et al.,
2009). The cleaned data sets after removing genetic outliers
were described in Table 1. Total number of samples used
here was 2348 cases and 1828 controls including the US
cohort and the Finland cohort. In each cohort, we used the
control data set for identifying minor allele status, and
calculated the MAC value of each individual.

For the US samples who were all of European descent,
there were 511,807 autosomal SNPs after QC. For SNPs set
with MAF < 0.5 (including 511,547 SNPs), the average
MAC value of controls was significantly lower than that of
cases (Fig. 1a and Table 2). We further performed the MAC
analyses by using subsets of SNPs. After filtering by LD at
different r2 levels (Table 2), we obtained many subsets of
autosomal SNPs. For example, when r2= 0.05, there were
21,974 SNPs, and the average MAC value of controls was
also significantly lower than that of cases (Table 2). The
results were similar in other subsets of various r2 levels
(Table 2).

In addition, we repeated the MAC analysis by comparing
the cases of the US cohort with a different control group, the
European group of 1kGP (Auton et al., 2015). The US
cohort shared 398,279 with 1kGP. Based on PCA (Sup-
plementary Figure S2C and S2D), 210 unrelated individuals
from 1kGP remained after removal of outliers. They were
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similar to the US group in genetic background and mostly
Northern and Western European ancestry (CEU) and Iber-
ian ancestry of Spain (IBS). Among the 398,279 SNPs
shared with 1kGP, only 7348 SNPs showed different MA
status between the US control group and 1kGP. The
majority of these 7348 SNPs had MAFs near 0.5 (~99.8%
SNPs with MAF > 0.4), which would make the MA
assignment less certain, and were hence excluded. We
further removed those SNPs with MAF= 0.5 or MAF= 0
in the US control group or 1kGP group. For the remaining
389,969 SNPs (MAF > 0 and < 0.5 in 1kGP), the average
MAC of cases was significantly higher than controls (Fig.
1b and Supplementary Table S1). Therefore, the result of
higher MAC in cases could be verified by using a cohort not
associated with the original case control studies. For subsets
of SNPs based on LD clumping at many r2 levels (Sup-
plementary Table S1), no difference in MAC was found for
some subsets that had lower numbers of SNPs (19,954
SNPs remained at r2= 0.05 and 42,958 SNPs remained at
r2= 0.1). However, for subsets with relatively more SNPs,
the average MAC of cases was again significantly higher
than controls (Supplementary Table S1). We also examined
SNPs with MAF <0.5 but >0.05, and found the average

MAC of cases to be more significantly higher than that of
controls (data shown in Supplementary Table S2).

For the Finland samples, there were 512,363 autosomal
SNPs after QC. For SNPs set with MAF <0.5 (including
512,106 SNPs), the average MAC value of control was
significantly lower than that of cases (Fig. 1c and Table 3).
We further performed the MAC analyses on subsets of
SNPs based on LD clumping and observed higher MAC in
cases in all subsets (Table 3).

We also compared the cases of the Finland cohort with
another control group, the European group of 1kGP. The
Finland cohort shared 398,138 SNPs with 1kGP. Based on
PCA (Supplementary Figure S3C and S3D), 98 unrelated
individuals from 1kGP remained after removal of outliers,
and were mainly of Finish ancestry (FIN). Among the
398,138 SNPs shared with 1kGP, 10,885 SNPs showed
different MA status between the Finland control group and
1kGP. The majority of these 10,885 SNPs had MAFs near
0.5 (~99.9% SNPs with MAF > 0.4), which would make the
MA assignment less certain, and were hence deleted. We
also removed those SNPs with MAF= 0.5 or MAF= 0 in
the Finland control group. For the remaining 385,616 SNPs
(MAF > 0 and MAF < 0.5 in 1kGP), the average MAC of

Fig. 1 Comparison of average
MAC values. Shown are US
samples (a, b) and Finland
samples (c, d). Either all
autosomal SNPs (a, c) or only
those shared with 1 kGP were
used for analysis (b, d). *** P <
0.001, and * P < 0.05. Student’s
t test. Standard error of mean
(SEM) values are shown
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cases was significantly higher than controls (Fig. 1d and
Supplementary Table S3). Therefore, the result of higher
MAC in cases could be verified by using a cohort not
associated with the original case control studies. We further
analyzed subsets of SNPs-based LD clumping at many
different r2 levels (Supplementary Table S3). Higher MAC
in cases were observed for all SNPs subsets with relatively
large number of SNPs (>37,120). We also examined SNPs
with MAF < 0.5 but >0.05 (removed rare SNPs), and found
the average MAC of cases to be more significantly higher
than that of controls (data shown in Supplementary
Table S4).

Distinguish cases from controls

Since the MAC of cases was higher than that of controls, we
aimed to distinguish cases from controls based on MAC
values. However, although the average MAC of cases was
significantly higher than controls (P < 0.0001), MAC values
alone could not produce clear separation of cases from
controls (Fig. 2a, b). We therefore generated a wGRS by
taking into account of beta values from logistic regression
analyses. The total MA number of each individual was then
converted into a total wGRS by adding the coefficient of
each MA (major alleles were not counted). By converting
MAC into the wGRS, the results showed clear separation of
cases and controls in both the US and the Finland data sets
(Fig. 2c, d).

Risk prediction

We next aimed to obtain a specific set of MAs from a
training data set that could be used to predict lung cancer
risk for an unrelated data set (validation data set). Since the
US data set and Finland data set were genetically different

groups (see PCA plot Supplementary Figure S1) and the US
data set had larger sample size, we only performed risk
prediction studies on the US cohort.

We calculated GRS by counting minor alleles only or by
also taking into account regression coefficient (beta). For a
MA, when its frequency in the case group is larger than that
in the control group, the beta would be positive. We
generated four types of GRS metrics. GRS and GRSpositive
were just minor allele counts and GRSpositive only counted
MAs with positive beta. wGRS had MA counts weighted
by beta of both positive and negative, and wGRSpositive
only weighted MAs with positive beta. For each score,
228 models were created according to P-values from
logistic regression test and LD r2 levels or no LD clumping
(Fig. 3). Then, in the first phase internal validation, we used
the ROC curve and AUC to examine the discriminatory
capability of each model in validation 1 data set (242 cases/
193 controls).

For wGRS method in validation 1 data set (Fig. 3a), 30
out of 228 models had AUC ≥ 0.55, and were further
evaluated in validation 2 data set (251 cases/185 controls).
The model performing the best in the validation 2 data set
was identified as LD r2= 0.2, P= 0.07, AUC= 0.554
[95%CI= 0.4996–0.6075]. Similar analyses identified the
best model for the other three methods as shown in Table 4.

As shown in Table 4, the model with highest AUC
(0.5591, 95% CI:0.5051–0.613) was created by the
wGRSpositive method. The wGRSpositive model consisted of
5400 SNPs (LD r2= 0.3 and GWAS P-value= 0.08)
(Supplementary Table S5). Hosmer–Lemeshow goodness-
of-fit test found this best model to be well calibrated (P=
0.46). As a comparison, we also similarly analyzed our
previous work on Parkinson’s disease (Zhu et al., 2015).
Among the ~820,000 SNPs analyzed, there were ~420,000
SNPs with positive beta. The risk prediction model

Table 2 MAC (mean ± SD) comparison in the US samples

SNPs set Number MAC controls (n= 968) MAC cases (n= 1209)

Total loci 511,547 0.24754 ± 1.17E-03 0.24779 ± 9.35E-04***

r2= 0.05 21,974 0.15483 ± 1.70E-03 0.15528 ± 1.67E-03***

r2= 0.1 45,471 0.16036 ± 1.28E-03 0.16073 ± 1.18E-03***

r2= 0.2 88,752 0.17955 ± 1.09E-03 0.17994 ± 9.15E-04***

r2= 0.3 130,675 0.19701 ± 1.01E-03 0.19736 ± 8.09E-04***

r2= 0.4 174,501 0.21151 ± 9.97E-04 0.21182 ± 7.84E-04***

r2= 0.5 222,223 0.22287 ± 1.01E-03 0.22318 ± 7.88E-04***

r2= 0.6 271,731 0.23141 ± 1.04E-03 0.23169 ± 7.97E-04***

r2= 0.7 320,982 0.23803 ± 1.05E-03 0.23828 ± 8.25E-04***

r2= 0.8 366,757 0.24275 ± 1.09E-03 0.24301 ± 8.47E-04***

r2= 0.9 407,569 0.24551 ± 1.11E-03 0.24575 ± 8.76E-04***

r2= 1 492,053 0.24894 ± 1.16E-03 0.24919 ± 9.25E-04***

The t test was performed to get P-values, and boldface indicates significant P-values. ***P < 0.001, **P < 0.01, and *P < 0.05
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performing the best was a wGRS model containing ~37,000
SNPs with MAF < 0.4 and P-value < 0.05. The AUC
(0.5795, 95% CI: 0.5391–0.6199) was higher than of that
using only SNPs with positive beta (~20,000 SNPs, AUC
= 0.555, 95% CI: 0.5149–0.5951) or that with negative beta
(~17,000 SNPs, AUC= 0.5713, 95% CI: 0.5314–0.6112).
Therefore, the two scoring methods wGRS and wGRSpositive
may perform differently in different diseases.

Comparison with existing methods

We used three previously published PRS methods to create
risk scores based on the US training data set, PRSice
(Euesden et al., 2015), LDpred (Vilhjalmsson et al., 2015)
and AnnoPred (Hu et al., 2017). These methods were
similarly evaluated in two internal validation analyses, and
the best performing models were shown in Table 4. They all
appeared to have lower AUC values than the wGRSpositive
model.

Pathway enrichment

Using ANNOVAR (Wang et al., 2010), we identified 4832
genes in the best wGRSpositive model containing 5400 risk
SNPs. We then used WebGestalyR (Wang et al., 2013) to
look for KEGG pathways associated with each of these
genes. A total of 39 KEGG pathways were identified with
false discovery rate <0.05 (Supplementary Table S6). We
also similarly studied a 5400 SNPs set chosen at random,
which corresponded to 4954 genes. These genes were
enriched in some pathways (Supplementary Table S7). We
identified ten pathways that were enriched in the risk set
relative to the random SNPs set (Table 5). Some of these
pathways are known to be linked to small cell lung cancer,
melanoma, prostate cancer (adherens) (Ramteke et al.,

2015), and breast cancer (estrogen) (Yamaguchi et al.,
2005).

Risk prediction in other population

In addition, for the 5400 SNPs wGRSpositive model per-
forming the best in the US population, its predictive value
was low in the Finland population (AUC= 0.4982, 95% CI:
0.4727–0.5238). Thus, the prediction model identified here
was highly population specific.

Discussion

In the present study, we showed enrichment of MAs in lung
cancer cases relative to matched controls, suggesting a role
for the collective effects of polygenic variations in the risk
for lung cancer. We also calculated wGRSpositive of each
subject based on MA status of SNPs and did risk prediction.
We identified a set of MA of common SNPs that can be
used to identify subjects at risk of lung cancer.

The result of higher MAC in lung cancer cases is a novel
finding not expected by known works on human lung
cancers. It confirms the previous result showing MAC
association with lung cancer in a mouse lung cancer model
(Yuan et al., 2014). Published lung cancer risk SNPs are
relatively few in numbers. Therefore, even if these known
risk alleles are mostly minor alleles, it may not predict that
cases should have more MAs when a genome-wide col-
lection of ~500k SNPs are considered. If most MAs are not
related to lung cancer except those few published lung
cancer alleles, the average MAC of cases should not be
significantly different from the controls.

Our study here further strengthened the observation that
human genetic diversities are presently at optimum level

Table 3 MAC (mean ± SD) comparison in the Finland samples

SNPs set Number MAC controls (n= 860) MAC cases (n= 1139)

Total loci 512,106 0.24614 ± 1.01E-03 0.24639 ± 1.03E-03***

r2= 0.05 20,103 0.14045 ± 1.89E-03 0.14106 ± 1.93E-03***

r2= 0.1 43,653 0.15348 ± 1.39E-03 0.15401 ± 1.48E-03***

r2= 0.2 86,923 0.17506 ± 1.10E-03 0.17546 ± 1.21E-03***

r2= 0.3 128,705 0.19338 ± 1.01E-03 0.19374 ± 1.07E-03***

r2= 0.4 172,050 0.20880 ± 9.45E-04 0.20912 ± 1.01E-03***

r2= 0.5 218,653 0.22030 ± 9.11E-04 0.22059 ± 9.76E-04***

r2= 0.6 266,563 0.22928 ± 9.05E-04 0.22957 ± 9.69E-04***

r2= 0.7 314,558 0.23597 ± 9.11E-04 0.23625 ± 9.63E-04***

r2= 0.8 359,826 0.24097 ± 9.33E-04 0.24125 ± 9.72E-04***

r2= 0.9 402,640 0.24442 ± 9.52E-04 0.24468 ± 9.86E-04***

r2= 1 477,767 0.24813 ± 9.90E-04 0.24838 ± 1.01E-03***

The t test was performed to get P-values, and boldface indicates significant P-values. ***P < 0.001, **P < 0.01, and *P < 0.05
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(Huang, 2008; Huang, 2009; Huang, 2016; Yuan et al.,
2017; Zhu et al., 2015). While it may only take one or a few
major effect errors to cause diseases, it would require the
collective effects of many minor effect errors to achieve a
similar outcome. Cancer is known to be a disease of random
mutations. Individuals with too many inherited random
mutations or MAs may need fewer somatic mutations to
pass the cancer threshold and hence have high susceptibility
to cancer.

AUC has been used in many studies for gauging per-
formance of prediction model (Alba et al., 2017; Kang
et al., 2011; O’Connell et al., 2016). Our predictive model
of lung cancer was comparable to previous results as indi-
cated by AUC values (Li et al., 2012). Our best predictor
model has a AUC of 0.559 as verified by validation
experiment. It seems to be low but may still be meaningful.
In addition, calibration is one of the most important metrics
for prediction models (Alba et al., 2017). Our best predictor
model is well calibrated while many previous models did

not take this into consideration (Hagenaars et al., 2017;
Kang et al., 2011; Lei and Huang, 2017; Li et al., 2012).

The results here indicate interesting differences in the
role of MAC between lung cancer and Parkinson’s disease
(Zhu et al., 2015). Some epidemiological work showed that
cancer seemed to occur less frequently in the context of
Parkinson’s disease (Devine et al., 2011). Only SNPs with
positive beta or higher frequency in cases were found useful
in prediction models in the case of lung cancer but not
Parkinson’s disease. Evidence suggests that there is an
optimal balance in MAC of an individual (Yuan et al.,
2014). Minor alleles are in general under more negative
selection but also essential for certain physiological func-
tions such as immunity. Certain diseases may be linked to
collective effects of minor alleles with increased frequency
in cases, while certain other diseases may also involve a
fraction of minor alleles with decreased frequency in cases.
As minor alleles are beneficial for adaptive immunity (Yuan
et al., 2014), one may speculate that decreased immunity or

Fig. 2 The distribution pattern of
MAC and wGRS. MAC (a and
b) and wGRS (c and d) values in
the US data set (a and c) and the
Finland data set (b and d) were
plotted against the number of
individuals
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some other physiological functions may play a relatively
more important role in Parkinson’s disease.

After comparing prediction accuracy of the present
wGRSpositive method with that of previous PRS method, we
observed slightly improved results (wGRSpositive: 0.5591

[95% CI 0.5051–0.613]; PRSice: 0.5492 [95% CI
0.4952–0.6032]; LDpred: 0.525 [95% CI 0.4707–0.5794];
AnnoPred: 0.5226 [95% CI 0.4677–0.5774]). That these
methods showed similar performance may not be unex-
pected given that all are based on the theory of polygenic
inheritance for complex diseases. However, the PRSice
method excludes SNPs from transversion mutations, which
may decrease its power (Euesden et al., 2015; Lei and
Huang, 2017). In addition, we noticed GRSpositive method
(AUC: 0.5576 [95% CI 0.5036–0.6116]) showed similar
results as wGRSpositive method (AUC: 0.5591 [95% CI
0.5051–0.613]). So, wGRS method only performed slightly
better than non-wGRS method. However, since the sample
size in our study was relatively small, it remains to be seen
how these various risk scoring methods may differ in future
studies involving larger sample sizes.

We found the predictive power of our model was
population specific (US data set: AUC= 0.5591 [95% CI
0.5051–0.613]; Finland data set: AUC= 0.4982 [95% CI
0.4727–0.5238]). The model was created by using US

Fig. 3 Discriminatory ability of prediction models. Four different scoring methods are shown. a wGRS method; b GRS method; c wGRSpositive
method and d GRSpositive method

Table 4 AUC of different methods

Methods AUC

Values 95% CI

wGRS 0.554 0.4996–0.6075

GRS 0.5295 0.4747–0.5843

wGRSpositive 0.5591 0.5051–0.613

GRSpositive 0.5576 0.5036–0.6116

PRSice 0.5492 0.4952–0.6032

LDpred 0.525 0.4707–0.5794

AnnoPred 0.5226 0.4677–0.5774

Results from validation 2 data set

CI confidence interval

The largest AUC value among different methods is highlighted in
boldface
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samples and hence should only work for US samples. This
is to be expected since different human populations are
known to show group specific SNP profiles (Lei and Huang,
2017).

The 5400 SNPs in our lung cancer prediction model were
enriched in small cell lung cancer, melanoma, adherens
junction and estrogen signaling pathways. In contrast, ran-
domly chosen SNPs of the same number did not have the
same pathway enrichment. Most of these pathways are
known to play roles in cancer (Ramteke et al., 2015;
Yamaguchi et al., 2005). Our results provide additional
evidence for the role of these pathways in lung cancer and
may help understand their mechanisms of action in lung
cancer.
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