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Abstract
The consequences of inbreeding for fitness are important in evolutionary and conservation biology, but can critically depend
on genetic purging. However, estimating purging has proven elusive. Using PURGd software, we assess the performance of
the Inbreeding–Purging (IP) model and of ancestral inbreeding (Fa) models to detect purging in simulated pedigreed
populations, and to estimate parameters that allow reliably predicting the evolution of fitness under inbreeding. The power to
detect purging in a single small population of size N is low for both models during the first few generations of inbreeding
(t ≈ N/2), but increases for longer periods of slower inbreeding and is, on average, larger for the IP model. The ancestral
inbreeding approach overestimates the rate of inbreeding depression during long inbreeding periods, and produces joint
estimates of the effects of inbreeding and purging that lead to unreliable predictions for the evolution of fitness. The IP
estimates of the rate of inbreeding depression become downwardly biased when obtained from long inbreeding processes.
However, the effect of this bias is canceled out by a coupled downward bias in the estimate of the purging coefficient so that,
unless the population is very small, the joint estimate of these two IP parameters yields good predictions of the evolution of
mean fitness in populations of different sizes during periods of different lengths. Therefore, our results support the use of the
IP model to detect inbreeding depression and purging, and to estimate reliable parameters for predictive purposes.

Introduction

Inbreeding depression is a major threat to the survival of
small endangered populations. It is mainly due to the
increase in the frequency of homozygous genotypes for
deleterious recessive alleles, which leads to fitness decay
and increased extinction risk (Lande 1994; Hedrick and
Kalinowski 2000; O’Grady et al. 2006; Charlesworth and
Willis 2009). However, deleterious recessive alleles that
escape selection in non-inbred populations because they are
usually in heterozygosis, can be purged under inbreeding as

they are exposed in homozygosis. This is expected to result
in a reduction of fitness depression and in some fitness
recovery, unless the effective population size and the effects
of deleterious alleles are so small that drift overwhelms
natural selection (García-Dorado 2012,2015,).

While inbreeding depression is ubiquitously documented
(Crnokrak and Roff 1999; O’Grady et al. 2006), there is far
less empirical evidence for the effect of genetic purging.
Evidence of purging has often been obtained in situations
where inbreeding increases slowly, but many studies have
failed to detect purging in both wild and captive populations
or have just detected purging effects of small magnitude,
particularly under fast inbreeding or during short periods of
slow inbreeding (Ballou 1997; Bryant et al. 1999; Byers and
Waller 1999; Crnokrak and Barrett 2002; Boakes et al.
2007; Kennedy et al. 2014). This is not surprising, since
purging is expected to be less efficient under faster
inbreeding, but more delayed under slower inbreeding.
Furthermore, purging can be difficult to detect because of
lack of experimental power or confounding effects, as
concurring adaptive processes (Hedrick and García-Dorado
2016; López-Cortegano et al. 2016). Thus, failure to detect
purging does not mean that purging is irrelevant in actual

* Aurora García-Dorado
augardo@ucm.es

1 Departamento de Genética. Facultad de Biología, Universidad
Complutense, 28040 Madrid, Spain

2 Institute of Zoology, Zoological Society of London Regent’s Park,
London NW1 4RY, United Kingdom

Electronic supplementary material The online version of this article
(https://doi.org/10.1038/s41437-017-0045-y) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-017-0045-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-017-0045-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-017-0045-y&domain=pdf
mailto:augardo@ucm.es
https://doi.org/10.1038/s41437-017-0045-y


populations. Developing methods and tools to detect and
evaluate purging is of critical importance in conservation, as
it may help to improve management policies.

The first models aimed to detect purging from pedigreed
fitness data were based on different regression approaches
that use an ancestral inbreeding coefficient (Fa) to define the
independent variable(s) accounting for purging (Ballou
1997; Boakes et al. 2007). This Fa coefficient, first descri-
bed by Ballou (1997), represents the average proportion of
an individual’s genome that has been in homozygosis by
descent in at least one ancestor. It is relevant to purging
because recessive deleterious alleles can be purged in inbred
ancestors, so that individuals with higher Fa are expected to
carry fewer such alleles than those with the same level of
inbreeding but lower Fa values, and should therefore have
higher fitness. Gulisija and Crow (2007) developed a dif-
ferent index to measure the opportunity of purging (Oi) by
assuming that, in the same pedigree path, there are no two
ancestors that are homozygous for the same deleterious
allele. However, the authors noted that, due to this
assumption, their approach is appropriate to evaluate the
opportunities of purging just for completely recessive and
severely deleterious alleles with low initial frequency in
shallow pedigrees. Furthermore, they did not develop an
explicit model for the dependence of fitness on the oppor-
tunity of purging. Therefore, here we do not investigate the
properties of this index.

More recently, an Inbreeding–Purging (IP) model has
been proposed, based on a “purged inbreeding coefficient”
(g), that predicts how mean fitness and inbreeding load are
expected to evolve in a population undergoing inbreeding.
This coefficient g is defined as Wright’s inbreeding coeffi-
cient (F) adjusted for the reduction in frequency of the
deleterious alleles caused by purging, so that it is the
coefficient appropriate to predict the actual increase in
homozygosis for these alleles. It depends on a purging
coefficient (d) that represents the enhancement of selection
under inbreeding (García-Dorado 2012). For each single
deleterious allele, d equals the recessive component of the
selection coefficient, i.e., the deleterious effect that is

concealed in the heterozygous and expressed just in the
homozygous condition. Note that d equals the heterozygous
value for relative fitness in the classical quantitative genetics
scale proposed by Falconer (Falconer and Mackay 1996).
For overall fitness, which is affected by many alleles with
different deleterious effects, reliable IP predictions can be
obtained by using a single empirically defined d value. The
dependence of g on d is illustrated in Fig. 1, and shows that
purging is more efficient when inbreeding is slower (i.e.,
when the effective population size is larger), but also takes
longer to become relevant. Therefore, this model predicts
that the rate of inbreeding (or the effective population size
N) and the number of inbreeding generations (t) critically
determine the extent of purging.

The purging coefficient d has been estimated from the
evolution of mean fitness in Drosophila experiments, the IP
model providing a much better fit than a model without
purging (Bersabé and García-Dorado 2013; López-Corte-
gano et al. 2016). Furthermore, equations have been derived
to obtain IP predictions for pedigreed individuals and have
been implemented in the free software package PURGd.
This software analyzes pedigreed fitness data to obtain
estimates of the IP parameters, namely the rate of inbreed-
ing depression δ and the purging coefficient d (García-
Dorado 2012; García-Dorado et al. 2016). Preliminary
analysis of simulated data showed that this software accu-
rately discriminates between situations with and without
purging, and that the genealogical IP approach consistently
provided a good fit to the data. However, the estimates of δ
and d showed some downward bias (García-Dorado et al.
2016). Thus, before this method is applied to real data, it is
necessary to characterize the bias of (δ, d) estimates
obtained under different scenarios and to check how far it
affects the reliability of IP predictions of fitness evolution
computed using them.

Here, we analyze fitness data of simulated pedigreed
individuals undergoing inbreeding and purging in order to
investigate: (i) how often the IP and Fa-based approaches
allow to detect purging; (ii) the extent to which the esti-
mates of the model’s parameters depend on the rate of

Fig. 1 Evolution of the expected
purged inbreeding coefficient (g)
against generation number for
different d values, together with
the evolution of Wright’s
inbreeding coefficient (F) for
populations of effective size 25
(left) or 100 (right)
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inbreeding (here determined by the population size N) and
on the number of inbreeding generations (t); (iii) how reli-
able are the IP and Fa-based predictions for inbreeding
scenarios with N and/or t values different from those used to
estimate the model’s parameters.

Material and methods

The simulated populations

A monecious panmictic population of size N= 103 is
simulated under a mutation-selection-drift (MSD) scenario
over 104 generations to obtain a base population that can be
assumed to be at the MSD balance. Mutations occur at a
rate λ per genome and generation, and have selection
coefficient s and degree of dominance h, so that fitness is
reduced by h·s or s when the mutant allele is in hetero-
zygosis or homozygosis, respectively. According to the
standard assumption of non-epistatic models, fitness is
multiplicative across loci. In practice, fitness effects can be
epistatic to some extent. In particular, the homozygous
effect of a deleterious allele may be larger in individuals
that are also homozygous for other deleterious alleles,
giving reinforcing epistasis that involves recessive compo-
nents. However, although this could be expected to produce
an increase in inbreeding depression, previous simulation
results suggest that this increase is canceled out by a parallel
excess in purging, so that simple IP predictions not
accounting for epistasis still fit the evolution of mean fitness
under inbreeding (Pérez-Figueroa et al. 2009). The simu-
lation methods are described in detail by Bersabé et al.
(2016).

Two different sets of mutational parameters (CAPTIVE
and WILD, summarized in Table 1) are considered. In both
cases, a variable selection coefficient is sampled from a
gamma distribution with shape parameter α ¼ 3�1 and rate
parameter β= α/E(s), where E(s) stands for the expected s
value. Sampled s values larger than 1 are assigned as s= 1.
The mutation rate and average deleterious effect in the
WILD case are twice those of the CAPTIVE one, in order to
account for the inbreeding load that has been empirically
detected in the wild, which is about four-fold that of captive

populations (Ralls et al. 1988; O’Grady et al. 2006; Hedrick
and García-Dorado 2016). For each given s value, the
degree of dominance h is sampled from a uniform dis-
tribution ranging between 0 and e�7:5s (García-Dorado
2003). Note that this gives an average degree of dominance
(E(h)) that is larger in the CAPTIVE than in the WILD case,
as the average selection coefficient is lower. The corre-
sponding distributions of homozygous effects are shown in
Fig. 2.

For each case considered, ten base populations are
simulated. Populations of reduced size N= 10, N= 25, and
N= 50 (lines) are obtained from these base populations at
the MSD equilibrium (250, 100 and 50 replicates, respec-
tively, each of the 10 base populations contributing equal
numbers of replicates for each size). Effective population
sizes are assumed to equal actual population sizes. All lines
are continued for 2N generations following the same pro-
tocol as for the base populations (i.e., under mutation,
selection and drift), and pedigrees and individual fitness are
recorded.

Estimation of inbreeding depression and purging

IP Model

This model predicts fitness as a function of a purged
inbreeding coefficient g that is defined as Wright’s F
inbreeding coefficient corrected for the reduction in fre-
quency of deleterious alleles expected from purging. This g
coefficient can be computed as a function of the purging
coefficient d (García-Dorado 2012). For a model with
constant effects across loci, d equals the per-copy deleter-
ious effect that is expressed in homozygosis but is

Table 1 Genetic parameters used in simulations for the two different
cases (CAPTIVE and Wild): expected (E) values of the selection
coefficient (s, gamma distributed with shape parameter 1/3) and of the
degree of dominance (h, uniformly distributed between 0 and e−7.5s),
and mutation rate (λ)

E(s) E(h) λ

CAPTIVE 0.1 0.337 0.1

WILD 0.2 0.283 0.2

Fig. 2 The area below the lines gives the expected number of dele-
terious mutations with homozygous effects within any interval in the
abscissa axis. Dotted line: CAPTIVE mutational model. Dashed line:
WILD mutational model. Note that the figure does not show prob-
ability density functions, as they do not integrate to 1 but to the
mutation rate λ
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concealed in heterozygosis (d= s(1− 2 h)/2). For more
realistic models where deleterious effects vary across loci,
as in our simulated populations, IP predictions should be
averaged over the distribution of deleterious effects. Since
this approach is not possible in practical situations, an
effective purging coefficient (here referred to just as purging
coefficient and denoted by d) has been defined empirically
as the d value giving the best predictions when used in the
IP model, which has been shown to produce good
approximations (García-Dorado 2012). A simple recurrence
equation calculates g each generation as a function of d, the
effective population size N, and the F and g values in the
previous generation, or from pedigree data. García-Dorado
et al. (2016) generalized the pedigree recurrence equations
to allow for overlapping generations. These equations par-
allel those classically used to predict the evolution of F
using Malecot’s coancestry coefficients, introducing an
additional term that depends on d. Thus, the model can
predict either the average fitness expected at generation t
(Wt), or the expected fitness for an individual i with pedi-
gree records (Wi). In the case of individual fitness,

Wi ¼ W0 � e�δ�gi ; ð1Þ
where δ is the rate of inbreeding depression, gi is the purged
inbreeding coefficient of individual i computed using d (Fig.
1), and W0 is the expected fitness in the non-inbred
population.

Note that, if natural selection can be ignored during the
inbreeding period, g can be replaced with F, and δ equals
the inbreeding load B in the base population defined as the
sum over loci of 2 s(1/2− h) q(1− q), as shown by Morton
et al. (1956), where q is the frequency of the deleterious
allele. Thus, the inbreeding load B can be interpreted as the
expected rate of inbreeding depression if natural selection is
neglected during the inbreeding process. This can be
appropriate when very few generations are considered, so
that purging has no opportunity to occur, when natural
selection is overwhelmed by drift due to a very small
effective population size, or when natural selection is
relaxed by maintaining a population in benign conditions,
as it could occur to some extent in ex situ conservation
programs. Otherwise, purging selection must be taken into
account by replacing F with g. Furthermore, non-purging
selection (i.e., selection as it would operate in an equili-
brium population with stable homozygosis) should also be
considered, at least in not too small populations, as it can
compensate for a significant fraction of the inbreeding
depression. To understand this concept, discussed in the
section devoted to the Full Model (FM) in García-Dorado
(2012), think of a population at the MSD equilibrium. This
population has finite size N (i.e., inbreeding increases at a
rate 1/2 N) and a given inbreeding load, but it does not
experience inbreeding depression because it is compensated

by natural selection. This kind of selection is not due to a
net increase in homozygosis and, therefore, it can be con-
sidered part of the standard selection occurring in popula-
tions at the MSD balance and we do not use the term
purging to describe it. According to this Full Model, due to
non-purging selection, the actual expected rate of inbreed-
ing depression as a function of g is δFM= B− B*, where B
and B* are, respectively, the inbreeding loads expected at
the MSD balance for the original non-inbred population and
for the new reduced size N. To obtain this δFM value, we
compute B and B* using Equations 10 and 13 in García-
Dorado (2007), both averaged over 106 (s, h) values sam-
pled from the corresponding joint distribution (s values
larger than 1 were assigned s= 1 as in the simulation pro-
cess). Note that δFM approaches B for very small popula-
tions, but can be substantially smaller when N is large.

For each pedigree, we estimate the purging coefficient d
and the rate of inbreeding depression δ using the PURGd
2.0 software package (García-Dorado et al. 2016; freely
available at https://www.ucm.es/genetica1/mecanismos).
These estimates are obtained using the two methods
implemented in PURGd. Results obtained using linear
regression for log-transformed fitness (LR method) are not
qualitatively different from those obtained using the
numerical non-linear regression method (NNLR), but give
more downwardly biased estimates of δ and larger standard
errors. These LR results are not reported in the main text,
although a summarizing figure is given in the Supplemen-
tary Material (Figure S1). Thus, we only report results from
the NNLR method, which fits predictions from Eq. 1 by
numerically searching for estimates that minimize the resi-
dual sums of squares (García-Dorado et al. 2016). The
expected fitness value in the non-inbred population, E(W0),
is obtained in a previous step as the mean fitness of non-
inbred individuals with non-inbred ancestors (F= Fa= 0),
as explained in García-Dorado et al. (2016). Therefore, the
program produces estimates of δ and d that are conditional
to this estimate of the non-inbred expected fitness. To check
for the convergence of the numerical algorithm, we estimate
the genetic parameters for each pedigree as the result of a
single run, and as the average of five and ten independent
runs.

A bootstrap method was devised to test the statistical
significance of the estimate of d obtained from each repli-
cate line against the null hypothesis d= 0 and is described
in the Supplementary Material.

Ancestral Inbreeding models

Ballou (1997) defined the ancestral inbreeding coefficient
(Fa) as the fraction of an individual’s genome that has been
in homozygosis by descent in at least one ancestor, calcu-
lated in terms of the inbreeding coefficient (F) and the

Purging analysis of pedigreed data... 41

https://www.ucm.es/genetica1/mecanismos


ancestral inbreeding coefficient of the individual’s parents
(sire S and dam D) as

Fa ¼ 1
2 Fa ðDÞ þ 1� Fa ðDÞ

� � � FðDÞ
�

þFa ðSÞ þ 1� Fa ðSÞ
� � � FðSÞ

� ð2Þ

Thus, Fa is related to the purging opportunities in the
ancestors of an individual. This equation assumes indepe
ndence between F and Fa in the same individual, which can
lead to some overestimation of ancestral inbreeding. In
order to avoid this bias, it has been proposed to estimate
ancestral inbreeding by using the so-called gene dropping
simulation approach. Therefore, we have also implemented
in PURGd this simulation method, which estimates ances-
tral inbreeding as described by Suwanlee et al. (2007) using
106 replicates. Results for all the ancestral inbreeding
models considered were obtained using Fa calculated both
from Eq. 2 and from gene dropping. For consistency with
our IP method and with previously published Fa-based
analysis, in the main text we report results obtained using
Eq. 2, and those obtained using gene dropping are shown in
the Supplementary Material.

To fit the joint effect of inbreeding and purging on fit-
ness, Ballou proposed the following linear model

W ¼ W0 þ bFF þ bFFaF:Fa;

where bF is the partial regression coefficient that gives the
decline of fitness with increasing inbreeding (F) for any
constant value of the product F.Fa. According to Ballou,
−bF represents the rate of inbreeding depression, while the
coefficient bFFa measures the increase of fitness in inbred
individuals due to reduced inbreeding depression caused by
purging in their ancestors.

Since we use a multiplicative fitness model, we rewrite
Ballou’s model for individual fitness as

Wi ¼ W0 � ebF�FiþbFFaFi�Fai ð3Þ
Two additional linear models have been proposed by

Boakes and Wang (2005) to analyze purging using ancestral
inbreeding. One of these two models (BW) considers that
the effect of purging does not depend on the level of
inbreeding, but just on previous purging opportunities. For
multiplicative fitness, this model is written as

Wi ¼ W0 � ebF�FiþbFaFai ; ð4Þ
where the coefficient of the purging term bFa is the average
rate of increase of individual fitness due to the opportunities
of purging in the ancestors.

The other model proposed by Boakes and Wang (2005)
is the mixed “Ballou–Boakes & Wang” model (here B-BW),
where the purging term is the sum of those in Ballou and

BW models, giving

Wi ¼ W0 � ebF�FiþbFaFaiþbFFaFi�Fai ð5Þ
Fitness evaluation is often dichotomous by nature (e.g.,

dead/alive individuals), and both Ballou (1997) and Boakes
and Wang (2005) tested their models by fitting dichotomous
(0, 1) fitness data using logistic regression. To check which
is the better approach to handle such data, we generate
dichotomous fitness values and analyze them using Ballou’s
model, with both the NNLR and the Logistic methods
(Figure S2; Tables S1 and S2). However, to compare
ancestral inbreeding and IP approaches under similarly
optimal conditions, in the main text we always report results
of NNLR analysis of fitness data simulated as a continuous
variable defined in the interval (0, 1). A bootstrap contrast
analogous to that performed for the IP analysis is used in
each replicate to test the significance of purging in Ballou’s
analysis (see Supplementary Material).

Non-Linear Regression coefficients for Fa-based models,
as well as bootstrap errors, are computed using PURGd 2.0.
As in the case of the IP model, the intercept is obtained in a
previous step as the mean fitness for non-inbred individuals
with non-inbred ancestors (F= Fa= 0).

Analysis of the predictive value of the estimates

To evaluate the predictive value of the parameters estimated
in the previous section, we use the estimates obtained from
different numbers of generations (t= N/2, t= N, t= 2 N) in
lines of different sizes (N= 10, N= 25, N= 50) to predict
the evolution of average fitness for lines for each of the
three sizes considered (crossed predictions). We check how
these predictions fit the corresponding simulated data by
graphically comparing the observed and predicted evolution
of mean fitness.

In the case of the IP model, predictions of the expected
fitness at generation t (Wt) are computed using the equation
for the evolution of mean fitness, obtained by replacing Wi

and gi in Eq. 1 with their expected values at generation t (Wt

and gt). For this purpose, gt is computed as a function of N
using the expression provided in García-Dorado (2012).
The neutral prediction of the model by Morton et al. (1956)
is also obtained by replacing gt with the standard inbreeding
coefficient (Ft) into Eq. 1 and using the inbreeding load
computed in the simulated population (δ= BSIM).

In the case of models based on ancestral inbreeding,
predictions for mean fitness are obtained by replacing Fi and
Fai in Eqs. 3–5 with their expected values through genera-
tions, Ft and Fat. Below we derive an expression for the
evolution of Fat through generations in a panmictic popu-
lation maintained with effective size N.

From Eq. 2, assuming a monecious population, or the
same expected Fa value (or F values) for sires and dams, the
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average ancestral inbreeding at generation t can be com-
puted by iterating the expression

Fa t ¼ Fa ðt�1Þ þ 1� Fa ðt�1Þ
� � � Fðt�1Þ;

which, noting that Ft ¼ 1� 1� 1
2N

� �t
and rearranging, can

be written as

Fa t ¼ 1� 1� 1
2N

� 	t�1

� 1� Fa ðt�1Þ
� � ð6Þ

In addition, an expression directly giving the expected
ancestral inbreeding after t generations can be derived, so
that it is not necessary to iterate expression 6 through
generations. For simplicity, we define xt ¼ 1� Fa t and
k ¼ 1� 1

2N

� �
, so that Eq. 6 can be written as

xt ¼ xt�1 � kt�1. Therefore, since x0= 1, the expected value
of xt can be computed as

xt ¼ xo
Yt�1

i¼0

ki ¼ k
Pt�1

i¼0
t ¼ kt t�1ð Þ=2

and, replacing xt and k into this expression and rearranging,
we obtain

Fa t ¼ 1� 1� 1
2N

� 	1
2tðt�1Þ

Results

IP estimates of the rate of inbreeding depression
and the purging coefficient

The inbreeding loads in the simulated base populations
(BSIM= 0.5828 ± 0.0144 for CAPTIVE; BSIM= 2.5370 ±
0.0460 for WILD) are close to their corresponding expec-
tations for the MSD balance (B= 0.6266 for CAPTIVE, B
= 2.5511 for WILD). The estimated rates of inbreeding
depression (δ) are close to B for N= 10, as usually
assumed, but decline for larger sizes, being in good agree-
ment with their expected values (δFM) when computed from
short term data (t=N/2) (Table 2). The estimates of δ based
on longer inbreeding periods become downwardly biased.

Estimates of d are large, indicating substantial purging
(Table 2 and S3). There is a trend for a reduction of d when
estimated from longer inbreeding periods, which is asso-
ciated with a parallel reduction in the estimate of δ. As
expected, the estimates of this purging parameter are always
larger in the WILD case than in the CAPTIVE one. In both
cases, the estimates are very similar regardless of the
number of runs averaged per replicate (results not shown).
Thus, the estimates presented here were obtained from just

one run, though more runs might be needed if additional
environmental factors were included.

We have also estimated the purging coefficient by using
the expected value of the rate of inbreeding depression
(δFM) as a known δ value in PURGd (results shown in Table
2 and S3). It is interesting to note that this alleviates the
underestimation of d with increased number of analyzed
generations, compared to the situations where both d and δ
are jointly estimated from the data.

Estimates of the coefficients in ancestral inbreeding
models

Table 3 and S4–S5 show the estimates of non-linear
regression coefficients for Fa-based models. Similar results
obtained using gene dropping are shown in the Supple-
mentary Material (Tables S6–S7). In both Ballou’s and
B–BW models, −bF estimates obtained from short term data
for different population sizes (N) are reasonably close to the
expected rate of inbreeding depression (δFM), although
standard errors are larger than in the IP model. However,
Ballou’s −bF estimates tend to increase when based on more
generations of inbreeding, leading to values well above δFM
in the WILD case.

The estimates of the coefficients for terms including Fa

are usually positive, indicating purging, but vary depending
on N and t in an unpredictable way, particularly for BW and
B-BW models where −bFa can even be negative in some
instances.

Figure 3 illustrates how different Fa-based models fit the
data for lines of different sizes, showing the observed
evolution of fitness during 2N generations together with the
corresponding predictions computed using coefficients
estimated from the same data (Figure S3, obtained using
gene dropping, gives similar results). BW model fits the
data poorly, showing a systematic overestimation of fitness
during the first N generations and an increasing under-
estimation later on, while Ballou’s model fits remarkably
well. B–BW model does not improve fitting over Ballou’s
one, which is not surprising as bFa estimates are usually
small. Therefore, hereafter we will use Ballou’s model to
evaluate the predictive value of Fa-based methods.

The efficiency of IP and Ballou’s models to detect
purging

Figure 4 gives the percent of replicates in which a model
including purging fitted the data significantly better than a
non-purging model, both for IP and Ballou approaches
(Figure S4 with Ballou’s results obtained using gene drop-
ping gives similar results). For both models, purging
detection is more likely in larger lines and for larger
inbreeding periods, as expected from more efficient purging
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and larger sample sizes. Detection is also more likely for the
WILD than for the CAPTIVE case, as expected.

Under both IP and Ballou’s models, the proportion of
detected cases in the most difficult situation (N= 10, t= N/
2, CAPTIVE) is very small, indicating that although both
approaches detect purging when estimates are averaged
over replicates, they may not be able to do so when small
replicates are separately considered during short inbreeding
periods. The fact that, in that situation, the proportion of
detected cases is smaller than 0.05 indicates that the test is
conservative. In more favorable situations, both IP and
Ballou models give substantial detection rates, usually
somewhat larger for the former model.

The reliability of predictions based on estimates
using IP and Ballou’s models

One of the main aims of this work is to check whether each
pair of IP parameters (δ, d) estimated by PURGd from
pedigree data for each (N, t) situation (Table 2 and S3) is
reliable for predicting the evolution of fitness in lines of
different sizes during periods of considerable length (t up to
2 N). Thus, Fig. 5 gives, for each population size, the
crossed IP predictions computed using different (δ, d)
estimates obtained from data corresponding to different
population sizes and inbreeding periods, together with the
prediction computed assuming no selection and using the
inbreeding load of the base population (d= 0; δ= BSIM),
and with the evolution of mean fitness observed in the
simulated lines. IP predictions remain quite accurate during
the first N generations. In general, there is a slight trend for
long-term fitness being better predicted using (δ, d) esti-
mates from long term data. Furthermore, predictions com-
puted using (δ, d) estimates obtained from small lines,
where purging is more likely to be overwhelmed by genetic
drift, tend to underrate fitness for larger lines. Conversely,

IP predictions tend to overestimate fitness in the long term.
However, all these biases are usually small, with the
exception of those for N= 10 lines in the WILD case.

In any case, despite the variability observed between the
average (δ, d) estimates obtained from different data sets
(Table 2 and S3), IP predictions remain quite accurate and
always fit the data much better than a model assuming no
selection. The reason is that the reductions in the estimate of
δ obtained from longer inbreeding periods are compensated
by reductions in the corresponding estimate of d.

Figure 6 shows a similar evaluation for the reliability of
Ballou’s predictions computed using estimates of the cor-
responding coefficients obtained from different data sets
(Table 3 and S4–S5). Figure S5 obtained using gene
dropping estimates gives similar results. Predictions
obtained using parameters estimated in smaller lines
underestimate long-term fitness, while those obtained from
larger lines tend to overestimate fitness in the medium-term
but can still underestimate fitness in the long term. Fitting
also improves when estimates are based on longer
inbreeding periods and, of course, when the coefficients
used to obtain predictions had been estimated in the same
data set for which fitting is tested. In general, predictions are
reliable during the first few generations, where purging is
irrelevant, but become unreliable later on. Thus, Ballou’s
predictions of mean fitness are highly dependent on the
conditions used to estimate the coefficients of the model,
and become very erratic after a few generations. The same
analysis was performed for the BW model, giving even less
reliable predictions (data not shown).

Comparing Figs. 5 and 6 shows that IP predictions are
more accurate than those of Ballou’s Fa-based model, the IP
model providing reasonable predictions of the evolution of
fitness for any of the population sizes considered using
parameters estimated under different conditions.

Table 2 Estimates of rates of inbreeding depression and purging coefficients from lines of different sizes (N) and different numbers of generations
(t)

CAPTIVE WILD

δFM δ d d(δF M) δFM δ d d(δF M)

t=N/2 0.5667± 0.0185 0.2572± 0.0136 0. 2856± 0.0144 2.2899± 0.0541 0.3233± 0.0131 0.3476± 0.0130

N= 10 0.5540 2.2846

t= 2 N 0.4955± 0.0149 0.1981± 0.0099 0. 2492± 0.0103 1.8043± 0.0392 0.2196± 0.0076 0.3015± 0.0082

t=N/2 0.5004± 0.0266 0.2915± 0.0247 0. 2781± 0.0281 1.8686± 0.0626 0.3954± 0.0159 0.4036± 0.0152

N= 50 0.4448 1.8861

t= 2 N 0.3745± 0.0195 0.1499± 0.0199 0. 1958± 0.0201 1.4010± 0.0632 0.2539± 0.0218 0.3389± 0.0177

Estimates are averaged over replicates, and are given with their empirical standard errors. This table gives the expected rate of inbreeding
depression, computed as δFM (see text for explanation) together with the corresponding PURGd estimates. It also gives the corresponding estimates
of the purging coefficient (d). An estimate of d is also obtained by forcing PURGd to use δFM as the known rate of inbreeding depression (d(δFM)).
Extended results are reported in the Supplementary Material including results from N= 25 lines and t= N (Table S3)
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Discussion

Using simulated pedigreed fitness data, we analyze the
performance of the IP model (IP) and of models based on
ancestral inbreeding (Fa) in order to: (i) detect purging; (ii)
estimate genetic parameters that can be used to obtain
reliable predictions of the evolution of fitness under
inbreeding and purging. The IP model is based on the
expected effect of selection against the recessive component
of deleterious effects (d) that is exposed in homozygotes
due to inbreeding, while the Fa approach is based on the
statistical fitting of models including inbreeding (F) and
ancestral inbreeding (Fa) terms. To estimate the parameters
of these models we have used an updated version of the
PURGd software (García-Dorado et al. 2016)

The statistical estimation approaches

We have discussed in a previous paper (García-Dorado
et al. 2016) the advantages of the NNLR approach com-
pared to linear regression for log-fitness data (LR), and the
analysis of the data presented here confirm those advantages
(results not shown). Furthermore, here we compare the
performance of our NNLR method with that of the logistic
regression approach previously used in the literature to
analyze purging for dichotomous data, as those from dead/
alive records, (Ballou 1997; Boakes et al. 2007; Ceballos
and Álvarez 2013; Kennedy et al. 2014). To do so, we have
estimated the parameters of Ballou’s model using both
approaches for simulated binary fitness data, and we find
that the NNLR estimates fit these data as well or slightly
better than the logistic ones (Figure S2). Therefore, since
the NNLR analysis relies on a model that is consistent with
our exponential IP model and has other advantages
regarding the estimation of δ, as discussed in García-Dorado
(2016), we encourage its use to analyze binary fitness data.
Hereafter, we discuss the properties of both IP and Fa

models using NNLR estimates obtained from untrans-
formed continuous fitness data.

The mutational models

In order to explore the consequences of purging against the
inbreeding load expressed in wild or captive populations,
we analyze fitness under two mutational models. The
CAPTIVE mutational model corresponds to model II in
Pérez-Figueroa et al. (2009). This model accounts for the
properties of deleterious effects detected in Drosophila
mutation accumulation experiments, but uses a larger
deleterious mutation rate and higher kurtosis to roughly
account for the additional rate of mutations that behave as
deleterious in molecular evolutionary studies but whose
effect is too small to be detected in mutation accumulationTa
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experiments (García-Dorado and Caballero 2000; Ávila and
García-Dorado 2002; García-Dorado et al. 2004; Halligan
and Keightley 2009). WILD mutational parameters were
obtained by doubling the average deleterious effect and the
deleterious mutation rate of the CAPTIVE case to
approximately account for the about fourfold inbreeding
load expressed in competitive or wild conditions (Ralls
et al. 1988; O’Grady et al. 2006; Yun and Agrawal 2014;
Hedrick and García-Dorado 2016). Our estimates of the
purging coefficient d in the CAPTIVE case are larger than
those obtained in non-competitive conditions for Droso-
phila (Bersabé and García-Dorado 2013), but the estimates
obtained in the WILD case are similar to those experi-
mentally obtained in competitive conditions (López-Corte-
gano et al. 2016). We find that our CAPTIVE and WILD
cases parallel the non-competitive and competitive condi-
tions of those experiments, as the WILD case gives a larger
inbreeding load but also a larger purging coefficient than the
CAPTIVE one so that, under slow inbreeding, long term
inbreeding depression is small in both instances.

Performance of IP and Fa models

The IP estimates of δ obtained using early data of the
inbreeding process are in good agreement with their
expected value (up to t= N generations in the CAPTIVE
case or t= N/2 in the WILD case; see Table 2). However,
they become downwardly biased when based on full data

from a long inbreeding process, which is associated with a
reduction of the estimates of d. The reason is that, for t= 2
N, most purging occurs during a small proportion of the
period considered and, since the model’s predictions are not
exact, estimates smaller than the true δ and d values can lead
to some overfitting of long-term data. More stable estimates
of d were obtained by introducing into the model the
expected rate of inbreeding depression (δFM) as a known δ
value. In practice, δFM is unknown, but δ can be estimated in
a previous step by analyzing data of early generations, or by
assuming d= 0 and using fitness data from individuals with
no ancestral inbreeding (Fa= 0; an option incorporated in
PURGd 2.0). This δ estimate can then be introduced into
PURGd as a known δ value to obtain more stable estimates
of d.

A main finding is that, despite the bias for δ and d
described above, each joint (δ, d) IP estimate, whether
obtained from small or large lines or based on short-term
data or on the full long inbreeding process, produces good
predictions for the evolution of mean fitness over the whole
range of population sizes and during the whole period of
inbreeding considered (Fig. 5). An exception is that of the
smaller lines (N= 10) for the WILD case, where the
observed inbreeding depression is larger than the IP pre-
diction, unless (δ, d) were also estimated from the same data
(N= 10 lines). Furthermore, (δ, d) estimates obtained from
N= 10 lines predict too small fitness in the medium term
for larger lines. The reason is that IP is a deterministic

Fig. 3 Evolution of mean fitness
in simulated lines (red) and the
corresponding predictions
obtained using different Fa-
based models. Predictions are
computed for two different
cases, CAPTIVE and WILD,
and three different population
sizes (N= 10, N= 25 and N=
50) over t= 2N generations
using the coefficients estimated
from the same lines and number
of generations. Three models
based on ancestral inbreeding
are used: Ballou’s (green), BW
(yellow) and B-BW model
(black dotted), as well as a
prediction without selection
(gray)
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model that predicts the consequences of natural selection on
homozygous genotypes induced by inbreeding, but does not
account for the reduction in the efficiency of natural
selection caused by random drift. In fact, it has been found
that drift roughly overwhelms purging for Nd < 1 (García-
Dorado 2012), so that alleles with d < 0.1 should be hardly
purged in lines with N= 10. In the WILD case, the number
of mutations per gamete with an effect small enough to
escape purging for N= 10 is larger than in the CAPTIVE
one (see Fig. 2 and note that Ns< 2 implies Nd < 1 for h<
1). In fact, the class with d < 0.1 contributes twice
inbreeding load in the WILD than in the CAPTIVE case
(0.36 vs. 0.18). Thus, in the WILD case, the IP model is less
reliable for the smaller lines. Remarkably, even in this N=
10 case, IP predictions are much more accurate than those
computed by ignoring purging.

It should be noted that IP predictions (as well as Fa-based
ones) do not account for the fitness decline caused by the
continuous accumulation of newly arisen mutations.
Therefore, they tend to overestimate long-term fitness in
small lines where natural selection against the accumulation
of new deleterious mutations is relatively inefficient. This
bias, although can be corrected in theoretical situations (see
the Full Model approach in García-Dorado 2012), is
unknown in practice. In our data, this mutational fitness
decline is small for the periods considered, although it could
be threatening for very small lines in the long term (García-
Dorado et al. 1999; Ávila and García-Dorado 2002;

Caballero et al. 2002; García-Dorado 2003; Halligan and
Keightley 2009).

In addition to the IP model, we used three different
models to estimate the dependence of individual fitness on
F and Fa, where the latter parameter (the ancestral
inbreeding) is used as an indirect measure of the purging
opportunities in the individual’s ancestors. For the three
models, we have obtained results using Fa estimates com-
puted using the original Ballou’s equation (Eq. 2) or the
gene dropping simulation approach suggested by Suwanlee
et al. (2007). We found that, Ballou’s original formula
produces some upward bias in the estimates of Fa, but the
ability of Fa models to detect purging and predict its con-
sequences are very similar regardless how Fa was
computed.

According to Ballou (1997), when Fa is included into the
model, the regression coefficient of fitness on F gives the
rate of inbreeding depression (δ=−bF). This is obviously
true for the particular case of Fa= 0, where bF estimates the
rate of inbreeding depression for fitness in non-purged
individuals. However, the meaning of bF is less clear for Fa

> 0 since, as shown in the IP approach, the dependence of
fitness on F among purged individuals varies according to
how fast inbreeding has been produced and, therefore, it
also depends on Fa. This explains why −bF is a poor esti-
mator of the expected rate of inbreeding depression unless it
is based on early inbreeding periods, otherwise showing

Fig. 4 Percent of replicates
where a model including
purging fitted the data
significantly better than a non-
purging model under the IP or
Ballou approaches, both for
CAPTIVE and WILD
mutational models (bootstrap
contrasts with α= 0.05)
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important bias of different sign depending on the model
used.

In Ballou’s model, purging is measured by the coefficient
corresponding to the interaction effect (bFFa). Thus, this
model considers that the role of purging is to reduce
inbreeding depression, so that it only affects inbred indivi-
duals. Therefore, bFFa measures the rate of reduction of
inbreeding depression with increasing Fa. Due to this
interaction term, this model has a common feature with the
IP approach: the effect of purging increases when
inbreeding accumulates, both models predicting an initial
fitness decline that is later reversed to some extent, in
agreement with the pattern observed in simulated lines.

On the contrary, in the BW model purging is measured
by the coefficient bFa, which represents the rate of increase
in fitness with increasing Fa, averaged over all F values
(including individuals with F= 0), and does not account for
the reversal of the initial depression. Boakes and Wang
(2005) found that this BW model was more efficient
detecting purging in mutational models with mildly dele-
terious alleles, probably because those models involved
high mutation rates implying larger expressed load in non-
inbred individuals, and because those authors detected
purging measuring its consequences on the overall load of
deleterious alleles per individual. On the contrary, we
evaluate the ability of the models to detect the reduction in
inbreeding depression, so that Ballou’s model is more
appropriate than BW. Regarding the B-BW model, it did

not outperform Ballou’s nor BW models in Boakes & Wang
study (2005), nor in the present analysis.

Therefore, we consider the performance of Ballou’s Fa-
based model to detect and predict the consequences of
purging on inbreeding depression, and we compare it to that
of the IP model. The estimates of the interaction term in
Ballou’s model (bFFa) are very dependent on both the size of
the lines and the number of generations of inbreeding
considered. Furthermore, for each population size N, dif-
ferent pairs of joint estimates (bF, bFFa) produce different
predictions for the evolution of fitness, which compromises
the reliability of Ballou’s method. It is interesting to note
that, as Fa approaches 1, (bF ·F+ bFFa F·Fa) approaches (bF
+ bFFa)F. Thus, after the early fitness recovery ascribed to
purging, this method predicts a continuous rate of decline of
fitness with increasing F. Since such decline is not a general
consequence expected from inbreeding and purging, this
prediction can be considered a flaw of the model. However,
due to this predicted decline, Ballou’s model can spuriously
fit the medium-term fitness decline ascribed to the fraction
of the inbreeding load caused by deleterious alleles that are
not being successfully purged (those with Nd< 1), or to the
continuous fixation of new deleterious mutations. Overall,
due to the erratic nature of Ballou’s model predictions,
ascribed to the inconsistency of the corresponding esti-
mates, the IP model should be preferred to estimate para-
meters that can be useful to predict the evolution of fitness
under inbreeding.

Fig. 5 Observed fitness for the
CAPTIVE (up) and WILD
(down) cases, and the
corresponding prediction
computed using the estimates
obtained in the IP model. In each
panel, observed and predicted
values over t= 2 N generations
correspond to the population
size indicated in the column (N
= 10, N= 25 and N= 50).
Different predictions are plotted
using estimates obtained from
different data sets, denoted by
different colors and strokes as
shown in the lateral panel.
Neutral predictions, computed
assuming no selection and using
the inbreeding load observed in
the simulated base population
(BSIM), are also shown
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Finally, according to our conservative bootstrap results,
the probability of detecting purging in each replicate is
higher for IP than for Ballou’s analysis and increases for
larger lines and longer inbreeding processes. Thus, in the
WILD case, at least 20 generations are required to have a
good probability (p> 0.8) of detecting purging with effec-
tive population size 10 or above, while about 10 generations
gives a modest detection rate (about 30% for N= 10 and
50% for N= 25). In the CAPTIVE case, detection chances
using data of about 20 generations of inbreeding are mod-
est, unless the effective size is about 50 or larger. Thus,
purging can pass undetected because inbreeding is too fast
for enough purging to occur, or because, being slow, is
tracked for a too short period. In practice, detection rates are
likely to be smaller due to the noisy nature of fitness
measurements (particularly for binary data), to population
management partially relaxing fitness, or to concurrent
adaptive processes or undetected environmental trends
(García-Dorado 2015; Hedrick and García-Dorado 2016;
López-Cortegano et al. 2016).

Thus, our results encourage the use of the IP approach to
analyze and predict purging, showing that: (i) δ estimates
are more reliable when based on short periods of inbreed-
ing, so that only small purging has occurred (or on indivi-
duals with no ancestral inbreeding); (ii) purging is better
detected from long inbreeding processes and under slow
inbreeding; (iii) the estimate of the purging coefficient d is
less biased when based on short-term inbreeding, but more

reliable estimates can be obtained from longer processes by
using a good estimate of δ as a known parameter; (iv) joint
(δ, d) estimates, even if they are downwardly biased in some
cases, usually produce reliable IP predictions for the evo-
lution of mean fitness under inbreeding, unless inbreeding is
too fast. We also find that purging detection and measure-
ment are very demanding, which can explain why many
analyses have failed to detect purging in individual data sets
(Ballou 1997; Bryant et al. 1999; Byers and Waller 1999;
Crnokrak and Barrett 2002; Boakes et al. 2007; Kennedy
et al. 2014). Genomic information can contribute to obtain
large samples of data useful to detect and measure
inbreeding depression (Kardos et al. 2016; Wang 2016).
Unfortunately, inferring purging using genomic based
estimates of inbreeding is not straightforward because the
historical information about how present inbreeding has
been produced is less explicit in genomic data than in a
pedigree. Although it should be possible to infer this his-
torical information from analysis based on the length of the
segments that are identical by descent (Keller et al. 2011;
Speed and Balding 2015), no method has so far been
developed to obtain estimates of a predictive purging
parameter from such data. Another possibility is pedigree
reconstruction based on massive molecular markers (Fer-
nández and Toro 2006; Wang 2011; Wang et al. 2012;
Jiménez-Mena et al. 2016). However, in both instances,
detection possibilities may be poor if fitness records are
available just for individuals of the present generation. In

Fig. 6 Observed fitness for the
CAPTIVE (up) and WILD
(down) cases, and the
corresponding prediction
computed using the estimates
obtained in Ballou’s model. In
each panel, observed and
predicted values over t= 2N
generations correspond to the
population size indicated in the
column (N= 10, N= 25 and N
= 50), and different predictions
are plotted using estimates
obtained from different data sets,
denoted by different colors and
strokes as shown in the lateral
panel. Neutral predictions,
computed assuming no selection
and using the inbreeding load
observed in the simulated base
population (BSIM), are also
shown
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any case, our understanding of purging can be expected to
improve in the future through the accumulation of IP ana-
lysis of different sets of available pedigreed data.

Data archiving

An updated version of the PURGd software (PURGd 2.0)
published by García-Dorado et al. (2016) is available from
https://www.ucm.es/genetica1/mecanismos.
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