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Abstract
An important application of genomic selection in plant breeding is predicting untested single crosses (SCs). Most
investigations on the prediction efficiency were based on tested SCs using cross-validation. The main objective was to assess
the prediction efficiency by correlating the predicted and true genotypic values of untested SCs (accuracy) and measuring the
efficacy of identification of the best 300 untested SCs (coincidence) using simulated data. We assumed 10,000 SNPs, 400
QTLs, two groups of 70 selected DH lines, and 4900 SCs. The heritabilities for the assessed SCs were 30, 60, and 100%.
The scenarios included three sampling processes of DH lines, two sampling processes of SCs for testing, two SNP densities,
DH lines from distinct and the same populations, DH lines from populations with lower LD, two genetic models, three
statistical models, and three statistical approaches. We derived a model for genomic prediction based on SNP average effects
of substitution and dominance deviations. The prediction accuracy is not affected by the linkage phase. The prediction of
untested SCs is very efficient. The accuracies and coincidences ranged from ~0.8 and 0.5 at low heritability to 0.9 and 0.7 at
high heritability, respectively. We also highlight the relevance of the overall LD and demonstrate that efficient prediction of
untested SCs can be achieved for crops that show no heterotic pattern, for reduced training set size (10%), for SNP density of
1 cM, and for distinct sampling processes of DH lines based on random choice of the SCs for testing.

Introduction

Genomic selection is commonly used in animal breeding
programs, especially for dairy cattle (Van Eenennaam et al.
2014). The main reasons for the effective application of
genomic selection in livestock breeding are that it is effi-
cient, that is, the process has high prediction accuracy, the
cost of phenotyping (mainly progeny tests) is higher than
the cost of genotyping, and the process significantly short-
ens the selection cycle (Meuwissen et al. 2013). An
important application of genomic selection in plant breeding

is the prediction of untested single crosses (genotypic value
prediction) and testcrosses (prediction of general combining
ability effect) in hybrid breeding (Zhao et al. 2015).
Genomic prediction of two-way and three-way crosses has
been investigated (Philipp et al. 2016). Bernardo (1994)
pioneered the prediction of untested single crosses based on
best linear unbiased prediction (BLUP). Many significant
studies on the prediction of untested single cross and test-
cross performance have been published in the last 23 years
with a focus on the assessment of prediction accuracy. Most
investigations were based on empirical data and estimated
the prediction accuracy using a cross-validation procedure.
Very few were based on simulated data (Li et al. 2017;
Technow et al. 2012). With no exception, the inference was
that prediction of untested single crosses and testcrosses can
be efficient, depending on the heritability, training set size,
and number of tested inbreds in hybrid combination (both,
one, and none parents tested). Remarkably, this conclusion
was drawn from studies differing in molecular marker,
marker density, number of inbreds, level of relatedness,
diversity, and linkage disequilibrium (LD) between inbreds,
heterotic pattern, training set size, genetic model, and sta-
tistical approach (Zhao et al. 2015). Efficient prediction of
two-way and three-way crosses of barley has been achieved
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using training and validation sets that include the same class
of hybrids (Philipp et al. 2016).

Most studies on genomic prediction of maize single cross
performance published since 2011 have used single
nucleotide polymorphisms (SNPs), with the number of fil-
tered SNPs ranging from 425 (Zhao et al. 2013a) to 39,627
(Technow et al. 2012). For grain yield, the relative predic-
tion accuracies (computed as the accuracy divided by the
root square of the heritability) in these studies ranged from
0.27 to 0.62 and from 0.65 to 0.95, respectively. The
number of inbreds in each heterotic group was highly
variable as well, ranging from 6 and 9 (Bernardo 1994) to
75 and 75 (Technow et al. 2012), respectively. The relative
accuracy for grain yield observed by Bernardo (1994) ran-
ged between 0.72 and 0.89. The level of relatedness
between inbreds ranged from non-related inbreds in each
group (Technow et al. 2012) to a maximum average value
of 0.58 (RFLP-based coancestry coefficient) (Bernardo
1995). The relative accuracy obtained by Bernardo (1995)
ranged from 0.41 to 0.80 for grain yield. The common
heterotic groups were Stiff Stalk and non-Stiff Stalk
(Kadam et al. 2016) or Dent and Flint (Technow et al.
2014). The relative accuracies for grain yield ranged from
0.28 to 0.77 and from 0.75 and 0.92, respectively. The
study of Bernardo (1996a) involved nine heterotic groups
and the relative accuracies for grain yield ranged from 0.43
to 0.88. These results evidence that prediction accuracy is
proportional to the molecular marker density and that high
accuracy can be achieved regardless of number of inbreds,
level of relatedness, and number of heterotic groups. No
study provided distinctly higher prediction accuracy of the
additive-dominance model relative to the additive model.
Finally, with only testcrosses the genomic BLUP (GBLUP)
approach outperformed pedigree-based BLUP (Albrecht
et al. 2014; Albrecht et al. 2011) in regard to prediction
accuracy.

Genomic prediction of single crosses has been carried
out based on tested single crosses using cross-validation.
Thus, the estimated prediction accuracies are not for
untested single crosses. Consequently, none of the previous
studies on the efficiency of genomic prediction of single
cross performance measured the efficacy of identification of
the best untested single crosses. Our main objective was to
assess the prediction efficiency of untested single crosses by
correlating the predicted and true genotypic values of
untested single crosses (prediction accuracy) and measuring
the efficacy of identification of the best 300 untested single
crosses (coincidence index) using a large simulated data set.
The secondary objectives were to highlight that the pre-
diction accuracy primarily depends on the overall LD in the
groups of selected doubled haploid (DH) lines, that the
prediction efficiency with no heterotic pattern can be as
high as the prediction efficiency involving heterotic groups,

and that the choice of single crosses for testing should be
random instead of selecting DH lines for a diallel to max-
imize the prediction efficiency. Further, we derived a model
for genomic prediction of untested single crosses based on
the SNP average effects of substitution and dominance
deviations.

Materials and methods

Theory

Most important papers on genomic selection offer deep
statistical aspects on the whole-regression models, extend-
ing to SNP effects a previously derived gene model. Some
important papers include only basic quantitative genetics
theory based on linkage equilibrium. The quantitative
genetics theory developed in this paper provides a genetic
model for genomic prediction of untested single crosses that
accounts for the LD between QTLs and SNPs. The model
offers the genetic background to the models fitted in pre-
vious papers on the prediction of untested single crosses and
testcrosses (Albrecht et al. 2011; Massman et al. 2013;
Technow et al. 2012). The theory is comprehensive, i.e., it
is adequate for DH and inbred lines, for predicting untested
single crosses and testcrosses, and for crops with and
without defined heterotic groups, and it is easily extended to
genomic prediction of two-way and three-way crosses
(relevant for rice, wheat, and barley breeders), based on
Jenkins (1934). The theoretical accuracy can be used in
future investigations on the efficiency of genomic prediction
of untested single crosses based on a deterministic
approach, as in the study of Grattapaglia and Resende
(2010).

LD in a group of selected DH or inbred lines

Consider a group of DH or inbred lines selected from a
population or heterotic group. Assume also a QTL (alleles
B/b) and a SNP (alleles C/c) where B and b are the alleles
that increase and decrease the trait expression, respectively.
Define the joint genotype probabilities as PðBBCCÞ ¼ f22,
PðBBccÞ ¼ f20, PðbbCCÞ ¼ f02, and PðbbccÞ ¼ f00, where
the subscripts indicate the numbers of copies of the major
allele (B and C). The measure of LD between the QTL and
the SNP is Δbc ¼ f22f00 � f20f02 (Kempthorne 1957) and
the haplotype frequencies are PðBCÞ ¼ f22 ¼ pbpc þ Δbc,
PðBcÞ ¼ f20 ¼ pbqc � Δbc, PðbCÞ ¼ f02 ¼ qbpc � Δbc, and
PðbcÞ ¼ f00 ¼ qbqc þ Δbc, where p is the frequency of the
major allele (B or C) and q= 1− p is the frequency of the
minor allele (b or c). Note that pb ¼ f22 þ f20 and
pc ¼ f22 þ f02. It is important to highlight that we are not
assuming that the QTL and the SNP are linked and in LD in
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the population or heterotic group, because this is not a
necessary condition for genomic prediction. But we are
assuming that they are in LD in the group of DH or inbred
lines. Furthermore, because of selection, genetic drift, and
inbreeding (only for inbreds and linked QTLs and SNPs),
the gene and genotypic frequencies and the LD values
concerning the selected DH or inbred lines cannot be traced
to the values in the population or heterotic group.

SNP genotypic values of DH or inbred lines

The average genotypic value for a group of selected DH or
inbred lines is MIL ¼ mb þ pb � qbð Þ ab, where mb is the
mean of the genotypic values of the homozygotes and ab is
the deviation between the genotypic value of the homo-
zygote of higher expression and mb. Thus, the average SNP
genotypic values for the DH or inbred lines CC and cc are

GCC ¼ 1
f :2

f22 mb þ abð Þ þ f02 mb � abð Þ½ �
¼ MIL þ 2qcαSNP ¼ MIL þ ACC

Gcc ¼ 1
f :0

f20 mb þ abð Þ þ f00 mb � abð Þ½ �
¼ MIL � 2pcαSNP ¼ MIL þ Acc

where αSNP ¼ Δbc
pcqc

h i
ab ¼ κbcab is the average effect of a

SNP substitution in the group of DH or inbred lines, and A
is the SNP additive value for a DH or inbred line. Note that
E(A)= 0.

Assuming two QTLs (alleles B and b and E and e) in LD
with the SNP, the average effect of a SNP substitution in the
selected DH or inbred lines is αSNP ¼ κbcab þ κceae, where

κce ¼ Δce
pcqc

h i
. Thus, the average effect of a SNP substitution

(and the SNP additive value) is proportional to the LD
measure and to the deviation a for each QTL that is in LD
with the marker.

SNP genotypic values of single crosses

To maximize the heterosis, maize breeders commonly
assess single crosses originating from selected DH or inbred
lines from distinct heterotic groups. Consider n1 DH or
inbred lines from a population or heterotic group and n2 DH
or inbred lines from a distinct population or heterotic group.
The average genotypic value for the single crosses derived
by crossing the DH or inbred lines from group 1 with the
DH or inbred lines from group 2 is

MH ¼ mb þ pb1pb2 � qb1qb2ð Þ ab þ pb1qb2 þ qb1pb2ð Þ db
where db is the dominance deviation (the deviation between
the genotypic value of the heterozygote and mb).

The average genotypic values for the single crosses
derived from DH or inbred lines CC and cc of group 1 are

GCC1 ¼ MH þ qc1κbc1 ab þ qb2 � pb2ð Þdb½ �
¼ MH þ qc1κbc1αb2 ¼ MH þ qc1αSNP1 ¼ MH þ GCACC1

Gcc1 ¼ MH � pc1κbc1αb2 ¼ MH � pc1αSNP1
¼ MH þ GCAcc1

where αb2 is the average effect of allelic substitution in the
population derived by random crosses between the DH or
inbred lines from group 2, αSNP1 is the SNP effect of allelic
substitution in the hybrid population relative to a SNP
derived from group 1, and GCA is the general combining
ability effect for a SNP locus. Note that αSNP1 depends on
the LD in group 1 (κbc1 ¼ Δbc1=pc1qc1) and the average
effect of allelic substitution in the population derived by
random crosses between the DH or inbred lines from group
2. Furthermore, EðGCAÞ ¼ pc1GCACC1þqc1GCAcc1 ¼ 0.
Concerning the single crosses derived from DH or inbred
lines CC and cc of group 2, we have

GCC2 ¼ MH þ qc2κbc2 ab þ qb1 � pb1ð Þdb½ �
¼ MH þ qc2κbc2αb1 ¼ MH þ qc2αSNP2 ¼ MH þ GCACC2

Gcc2 ¼ MH � pc2κbc2αb1 ¼ MH�pc2αSNP2 ¼ MHþGCAcc2

Note that E(GCA)= 0. The average genotypic values for
the single crosses concerning the SNP locus are

GCC1xCC2 ¼ MHþqc1αSNP1 þ qc2αSNP2 � 2qc1qc2κbc1κbc2db
¼ MH þ GCACC1 þ GCACC2 þ SCACC1xCC2

Gcc1xcc2 ¼ MH � pc1αSNP1 � pc2αSNP2 � 2pc1pc2κbc1κbc2db
¼ MH þ GCAcc1 þ GCAcc2 þ SCAcc1xcc2

GCC1xcc2 ¼ MH þ qc1αSNP1 � pc2αSNP2 þ 2qc1pc2κbc1κbc2db
¼ MH þ GCACC1 þ GCAcc2 þ SCACC1xcc2

Gcc1xCC2 ¼ MH � pc1αSNP1 þ qc2αSNP2 þ 2pc1qc2κbc1κbc2db
¼ MH þ GCAcc1 þ GCACC2 þ SCAcc1xCC2

where κbc1κbc2db ¼ dSNP is the SNP dominance deviation in
the hybrid population, and SCA stands for the specific
combining ability effect for a SNP locus. Note that
EðSCAÞ ¼ pc1pc2SCACC1xCC2 þ pc1qc2SCACC1xcc2 þ
qc1pc2SCAcc1xCC2 þ qc1qc2SCAcc1xcc2 ¼ 0 and E(SCA|CC)
= E(SCA|cc)= 0 for each group. That is, the expectation of
the SNP SCA effects given a SNP genotype for the
common DH or inbred line is also zero. Also note that the
four genotypic values depend on four unknown parameters
(MH, αSNP1, αSNP2, and dSNP).

Assuming twoQTLs (allelesB andb andE and e) inLDwith
the SNP, the SNP dominance deviation is
dSNP ¼ κbc1κbc2db þ κce1κce2de. Thus, the SNP dominance
deviation (and the SNP SCA effect) is proportional to the
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product of the LD values in both groups of DH or inbred lines
and to the dominance deviation for each QTL that is in LDwith
the marker.

The previous model expressed as a function of the SNP
GCA and SCA effects was proposed by Massman et al.
(2013), but the authors assumed GCACC þ GCAcc¼ 0 (for
each heterotic group and for each SNP) and
SCACC1xCC2 ¼ SCAcc1xcc2 ¼ �SCACC1xcc2 ¼ �SCAcc1xCC2.
Technow et al. (2012) used a standard extension from QTL
to SNP and defined the single cross genotypic value for a
SNP as a function of the SNP deviations a and d. That is,
G ¼ MH þ u1aþ u2aþ u3d, where u1 and u2 are equal 1/2
or −1/2 if the corresponding DH or inbred line is homo-
zygous for distinct SNP alleles (CC or cc), and u3 equals 0 if
the single cross is homozygous or 1 if heterozygous.

SNP genotypic values of single crosses from DH or inbred
lines derived from the same population or heterotic group

Well-defined heterotic groups are known for maize but not for
special maize such as popcorn and sweet corn, and for other
crops such as wheat (Zhao et al. 2013b), rice (Xu et al. 2014),
and barley (Philipp et al. 2016). Thus, for many breeders, it is
interesting to know about the efficiency of genomic predic-
tion of singles crosses when there are no heterotic groups.
Assuming n DH or inbred lines derived from the same
population or heterotic group, the average genotypic values
for the single crosses concerning the SNP locus are

GCCxCC ¼ Mþ 2qcαSNP � 2q2cκ
2
bcdb

¼ Mþ 2GCACC þ SCACCxCC

Gccxcc ¼ M� 2pcαSNP � 2p2cκ
2
bcdb

¼ Mþ 2GCAcc þ SCAccxcc

GCCxcc ¼ Mþ 2 qc � pcð Þ αSNP þ 2pcqcκ
2
bcdb

¼ Mþ GCACC þ GCAcc þ SCACCxcc;

where M ¼ mb þ pc � qcð Þ ab þ 2pcqcdb is the hybrid popu-
lation mean, αSNP ¼ κbc ab þ qb � pbð Þ db½ � ¼ κbcαb is the
average effect of a SNP substitution in the hybrid population,
and dSNP ¼ κ2bcdb is the SNP dominance deviation. Note that
the SNP GCA effects are equal to half the SNP additive value
for the single crosses (A), the SNP SCA effects are the SNP
dominance deviations for the single crosses (D), and the three
genotypic values depend on three unknown parameters (M,
αSNP, and dSNP). Also note that E(GCA)= E(A)= E(SCA)=
E(SCA|CC)= E(SCA|cc)= E(D)= 0.

Accuracy of single cross genomic prediction

Assuming a QTL and a SNP in LD in the two groups of DH
or inbred lines, the predictor of the single cross QTL

genotypic value is the single cross SNP genotypic value
(because they are proportional). Thus, the covariance
between the predictor and the genotypic value is

Cov ~G;G
� � ¼ f122f

2
22

MH þ GCACC1 þ GCACC2 þ SCACC1xCC2½ �
MH þ GCABB1 þ GCABB2 þ SCABB1xBB2½ �þ

þf122f
2
20 MH þ GCACC1 þ GCAcc2 þ SCACC1xcc2½ �

MH þ GCABB1 þ GCABB2 þ SCABB1xBB2½ �þ
:::

þf100f
2
00 MH þ GCAcc1 þ GCAcc2 þ SCAcc1xcc2½ �

MH þ GCAbb1 þ GCAbb2 þ SCAbb1xbb2½ � � MHð Þ2
¼ pc1qc1 κbc1αb2ð Þ2þpc2qc2 κbc2αb1ð Þ2þ4pc1qc1pc2qc2 κbc1κbc2dbð Þ2

¼ pc1qc1 αSNP1ð Þ2þpc2qc2 αSNP2ð Þ2þ4pc1qc1pc2qc2 dSNPð Þ2

¼ σ2ð1ÞGCASNP
þσ2ð2ÞGCASNP

þσ2SCASNP
¼ σ2GðSNPÞ

where the GCA and SCA effects for the QTL are
GCABB1 ¼ qb1αb2, GCAbb1 ¼ �pb1αb2, GCABB2 ¼ qb2αb1,
GCAbb2 ¼ �pb2αb1, SCABB1xBB2 ¼ �2qb1qb2db,
SCABB1xbb2 ¼ 2qb1pb2db, SCAbb1xBB2 ¼ 2pb1qb2db, and
SCAbb1xbb2 ¼ �2pb1pb2db, σ

2
GCA and σ2SCA are the GCA

and SCA variances for the SNP locus, and σ2G is the SNP
genotypic variance. The GCA and SCA variances for the

QTL are σ2ð1ÞGCA ¼ pb1qb1 αb2ð Þ2, σ2ð2ÞGCA ¼ pb2qb2 αb1ð Þ2, and
σ2SCA ¼ 4pb1qb1pb2qb2 dbð Þ 2. The QTL genotypic variance

is σ2G ¼ σ2ð1ÞGCA þ σ2ð2ÞGCA þ σ2SCA. Thus, the single cross
prediction accuracy is

ρ ~G;G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2GðSNPÞ
σ2G

s

Assuming s SNPs,

ρ ~G;G ¼
Xs

r¼1

σ2GðSNPðrÞÞ=
ffiffiffiffiffiffiffiffiffiffiffi
σ2~Gσ

2
G

q

where σ2~G is the variance of the predicted single cross
genotypic values, and σ2G is the single cross genotypic
variance. Furthermore,

αSNPðrÞ1 ¼
Xk′
i¼1

Δr i1

pr1qr1

� �
αi2 ¼

Xk′
i¼1

κr i1αi2;

where k′ is the number of QTLs in LD with the SNP r in
group 1, and

dSNPðrÞ ¼
Xk′′
i¼1

Δri1

pr1qr1

� �
Δri2

pr2qr2

� �
di ¼

Xk′′
i¼1

κri1κri2di

where k″ is the number of QTLs in LD with the SNP r in
both groups.

Because the accuracy of genomic prediction of single
crosses depends on the squares of the average effects of
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SNP substitution and the SNP dominance deviations, it is
not affected by the linkage phase (coupling or repulsion), as
it does not depend on linkage. But it does depend on the
magnitude of the LD in each group of DH or inbred lines.

Assuming single crosses derived from DH or
inbred lines of a single population or heterotic group
we have σ2GðSNPÞ ¼ 2pcqc αSNPð Þ 2þ 2pcqcdSNPð Þ 2 and
σ2G ¼ 2pbqb αbð Þ 2þ 2pbqbdbð Þ 2.

The statistical model for single cross genomic
prediction

Consider n1 and n2 (several tens) DH or inbred lines from
two populations or heterotic groups genotyped for s
(thousands) SNPs and the experimental assessment of h (a
few hundred) single-crosses (h much lower than n1.n2) in e
(several) environments (a combination of growing seasons,
years, and locations). Defining y as the adjusted single cross
phenotypic mean, the statistical model for prediction of the
average effects of SNP substitution and the SNP dominance
deviations is

y ¼ MH þ
Xs

r¼1

z1rαSNP1r þ z2rαSNP2r þ z3rdSNPrð Þ þ error

where z1r ¼ qr1, z2r ¼ qr2, and z3r ¼ �2qr1qr2 if the SNP
genotypes for the DH or inbred lines are CC (group 1) and
CC (group 2), z1r ¼ �pr1, z2r ¼ �pr2, and z3r ¼ �2pr1pr2
if the SNP genotypes are cc (group 1) and cc (group 2),
z1r ¼ qr1, z2r ¼ �pr2, and z3r ¼ 2qr1pr2 if the SNP geno-
types are CC (group 1) and cc (group 2), and z1r ¼ �pr1,
z2r ¼ qr2, and z3r ¼ pr1qr2 if the SNP genotypes are cc
(group 1) and CC (group 2).

Regarding the single crosses obtained from DH or inbred
lines of the same population or heterotic group, we have

y ¼ Mþ
Xs

r¼1

z1rαSNPr þ z2r dSNPrð Þ þ error

where z1r ¼ 2qr and z2r ¼ �2q2r if the SNP genotypes for
the two crossed DH or inbred lines are CC and CC, z1r ¼
�2pr and z2r ¼ �2p2r if the SNP genotypes are cc and cc,
and z1r ¼ 2 qr � prð Þ and z2r ¼ 2prqr if the SNP genotypes
are CC and cc.

The statistical problem of genomic prediction when
there is a very large number of molecular markers and
relatively few observations has been addressed through
several regularized whole-genome regression and predic-
tion methods (Daetwyler et al. 2013; de Los Campos et al.
2013). Based on one of these approaches, the SNP average
effects of substitution and SNP dominance deviations are
predicted and used to provide genomic prediction of non-
assessed single crosses. The predicted genotypic value for
a non-assessed single cross of DH or inbred lines from two

groups is

~G ¼ M̂H þ
Xs

r¼1

z1r~αSNP1r þ z2r~αSNP2r þ z3r~dSNPr
� �

For a non-assessed single cross of DH or inbred lines
from the same group, the predicted genotypic value is

~G ¼ M̂þ
Xs

r¼1

z1r~αSNPr þ z2r~dSNPr
� �

Simulation

The SNP and QTL genotypes for DH lines, the QTL geno-
types for single crosses, and the phenotypes for DH lines and
single crosses were simulated using the software REAL-
breeding (available by request). The software does not
assume a distribution for the LD values and gene effects, but
computes the true LD values and gene effects based on
quantitative genetics theory (Viana 2004). SNP and QTL
allele frequencies follow a beta distribution. The parameters
m, a, and d for each QTL are computed from the maximum
and minimum genotypic values for homozygotes informed
by the user. Based on our input, the software distributed
10,000 SNPs and 400 QTLs on ten chromosomes (1000
SNPs and 40 QTLs by chromosome). The average SNP
density was 0.1 cM. The QTLs were distributed in the
regions covered by the SNPs (~100 cM/chromosome).

The genotypic values of the DH lines and single crosses
were generated assuming a single set of 400 QTLs and two
degrees of dominance. To simulate grain yield and expan-
sion volume (a measure of popcorn quality), we defined
positive dominance (0< degree of dominance ≤ 1.2) and
bidirectional dominance (−1.2 ≤ degree of dominance ≤
1.2), respectively. For grain yield and expansion volume,
the maximum and minimum genotypic values for homo-
zygotes were 140 and 30 g/plant and 55 and 15 mL/g,
respectively. The phenotypic values were obtained from the
sum of the population mean, genotypic value, and experi-
mental error. The error variance was computed from the
broad sense heritability.

Initially, the software simulated 350 S0 plants of the first
heterotic group. The population was a second generation
composite. In a composite, there is LD only for linked SNPs
and QTLs (Viana et al. 2016). Then the software sampled
one (scenario 1) or one to five (scenario 2) gametes from the
S0 plants, generating 350 DH lines. To generate 350 DH
lines from S3 plants, the software selfed S0 plants for three
generations using the single seed descent process. The
number of DH lines per S3 plant ranged from one to five
(scenario 3). For each DH line sampling process, the soft-
ware selected 70 DH lines, assuming a trait heritability of
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30%. The same computational procedures provided the
three groups of 70 selected DH lines from the second het-
erotic group (a second composite). For each DH line sam-
pling process, the software crossed 70× 70 DH lines to
generate 4900 single crosses.

To investigate the efficiency of genomic prediction of
untested single crosses when there is no heterotic group
(relevant for rice, wheat, and barley breeders), the software
also crossed 70 selected DH lines from the same heterotic
group for generating 2415 single crosses (scenario 4). To
highlight that the efficiency of genomic prediction of
untested single crosses does not depend on the LD in the
reference population, but on the LD in the groups of
selected DH lines, the same computational procedures were
used to derive 70 selected DH lines from the first and
second heterotic groups after 10 generations of random
crosses (to decrease the LD) (scenario 5).

Data files

The data for processing was obtained from 50 random
samplings of 1470 (30%) and 490 (10%) of the single
crosses to be assessed, assuming a trait heritability of 30,
60, and 100%. Thus, the genotypic value prediction
accuracies of the assessed single crosses were 0.55, 0.77,
and 1.00, respectively. With no exception, all DH lines from
both heterotic groups were represented in the tested single
crosses. Additionally, to assess the relevance of the number
of DH lines sampled, we fixed the number of DH lines in
each heterotic group to achieve approximately the same
number of assessed single crosses using a diallel. That is,
we sampled 38 and 22 DH lines in each heterotic group 50
times for a diallel (scenario 6), generating 1444 (30%) and
484 (10%) single crosses for assessment, respectively. In
this case, only 54 and 31% of the DH lines are represented
in the tested single crosses. We denoted these processes as
sampling of single crosses and sampling of DH lines.

Assuming no heterotic groups, we proceeded to 50 ran-
dom samplings of 724 (30%) and 241 (10%) of the single
crosses from the same heterotic group for testing, also
assuming a trait heritability of 30, 60, and 100%. With few
exceptions when sampling 10% of the single crosses for
testing, all DH lines from the heterotic group were repre-
sented in the assessed single crosses. The last scenario was
genomic prediction of untested single crosses under an
average density of one SNP for each cM. This lower density
was obtained by random sampling of 100 SNPs per chro-
mosome using a REALbreeding tool (sampler).

Statistical analysis

The methods used for prediction of the non-assessed single
crosses (70 and 90% of the single crosses) were ridge

regression BLUP (RR-BLUP), GBLUP, and pedigree-based
BLUP. We used the rrBLUP package (Endelman 2011) for
the analyses. To investigate the single cross prediction
efficiency based on our model and on the models proposed
by Massman et al. (2013) and Technow et al. (2012), we
used another REALbreeding tool (Incidence matrix) to
generate the incidence matrices for the three models and for
the two DH line sampling processes. We also fitted the
additive model (including only the GCA effects) to assess
the relevance of the SCA effects on genomic prediction of
single cross performance. The accuracies of single cross
genotypic value prediction were obtained from the corre-
lation between the true genotypic values of the non-assessed
single crosses computed by REALbreeding and the values
predicted by RR-BLUP, GBLUP, and BLUP. We also
computed the efficiency of identification of the 300 non-
assessed single crosses of higher genotypic value (coin-
cidence index). The coincidence index was computed as the
number of the best 300 predicted untested single crosses
among the 300 untested single crosses of greater true gen-
otypic value divided by 300. For each DH lines derivation
process and heritability, the parametric average coincidence
index was computed from the average phenotypic values of
the 4,900 single crosses as the number of the 300 single
crosses of greater average phenotypic value among the
300 single crosses of greater true genotypic value divided
by 300. Regarding grain yield, for heritability of 30% the
coincidence index was 0.2533, 0.2833, and 0.2433 assum-
ing one DH line per S0 plant, one to five DH lines per S0
plant, and one to five DH lines per S3 plant, respectively.
The corresponding values for heritability of 60% were,
respectively, 0.4800, 0.4900, and 0.4567. Concerning
expansion volume, the corresponding values for herit-
abilities of 30 and 60% were, respectively, 0.2600, 0.2833,
and 0.2700, and 0.4733, 0.5100, and 0.4533. The assumed
average parametric coincidence index was 0.26 and 0.48 for
heritabilities of 30 and 60%, respectively, for both traits.

Results

Using our model, average SNP density of 0.1 cM, training
set size of 30%, positive dominance (grain yield), additive-
dominance model, and sampling of single crosses, the
prediction accuracies of the non-assessed single crosses
were greater than the accuracies of the assessed single
crosses for low (up to 46% higher) and intermediate (up to
16% higher) heritabilities (Table 1; Fig. 1a). As the pre-
diction accuracy of assessed single crosses approaches 1.0,
the accuracy of the non-assessed single crosses approaches
~0.9 (up to 11% lower). Sampling one to five DH lines per
S3 plant was only slightly superior to the other DH lines
derivation processes, regardless of the prediction accuracy

288 José Marcelo Soriano Viana et al.



of the assessed single crosses (up to 5% higher). Fitting the
additive model provided essentially the same prediction
accuracies since the maximum decrease was ~1%. No sig-
nificant differences between the prediction accuracies of
non-assessed single crosses were observed when assuming
bidirectional dominance (expansion volume). The differ-
ences compared to positive dominance ranged from
approximately −5 to 2%. However, a striking difference
was observed between the sampling processes of single
crosses for testing. Random sampling of single crosses
provided higher prediction accuracies of non-assessed sin-
gle crosses compared to sampling DH lines for a diallel. The
increases in the accuracies by sampling single crosses ran-
ged from ~38 to 77%, which was proportional to the her-
itability. Decreasing the average SNP density to 1 cM led to

a slight decrease in the prediction accuracy of non-assessed
single crosses of approximately −4%. Decreasing the
training set size to 10% decreased the prediction accuracy of
non-assessed single crosses in approximately −5 to −15%,
inversely proportional to the heritability. To establish that
the prediction accuracy of non-assessed single crosses
depends on the level of (overall) LD in the groups of
selected DH or inbred lines, we derived DH lines from the
same base populations after 10 generations of random
crosses (to decrease the LD). The accuracies were also high,
ranging from 0.83 to 0.95, proportional to the heritability.
The prediction accuracies of non-assessed single crosses
from DH lines of the same population were equivalent to
the accuracies for single crosses derived from DH lines
belonging to distinct heterotic groups, ranging from 0.83 to

Table 1 Average prediction
accuracies of non-assessed
single crosses and its standard
deviation, assuming single
crosses from selected DH lines,
30 and 10% of assessed single
crosses, two traits, two sampling
processes of single crosses, four
statistical models, three DH line
sampling processes, two genetic
models, and three accuracies of
assessed single crosses

Trait Samp. Statistical DH Gen. Accuracy of assessed single crosses

proc. model lines mod. 0.55 0.77 1.00

GY SCs Viana et al. 1/S0 AD 0.7790± 0.0124 0.8447± 0.0066 0.8859± 0.0018

A 0.7688± 0.0132 0.8380± 0.0067 0.8821± 0.0019

1–5/S0 AD 0.7947± 0.0125 0.8525± 0.0072 0.8896± 0.0025

A 0.7895± 0.0126 0.8465± 0.0077 0.8858± 0.0027

1–5/S3 AD 0.8010± 0.0145 0.8678± 0.0054 0.9276± 0.0025

A 0.7954± 0.0145 0.8627± 0.0056 0.9238± 0.0026

1–5/S3 ADa 0.7718± 0.0161 0.8371± 0.0079 0.8888± 0.0043

1–5/S3 ADb 0.6836± 0.0277 0.7885± 0.0139 0.8817± 0.0049

1/S0 ADc 0.8293± 0.0131 0.8944± 0.0049 0.9479± 0.0017

1–5/S3 ADd 0.8267± 0.0082 0.8928± 0.0043 0.9083± 0.0023

Massman et al.e 1/S0 AD 0.7874± 0.0118 0.8519± 0.0053 0.8924± 0.0026

1–5/S0 AD 0.7982± 0.0140 0.8622± 0.0055 0.8973± 0.0025

1–5/S3 AD 0.8074± 0.0112 0.8753± 0.0056 0.9314± 0.0026

GBLUP 1/S0 AD 0.7841± 0.0122 0.8477± 0.0064 0.8906± 0.0019

1–5/S0 AD 0.7973± 0.0124 0.8574± 0.0070 0.8978± 0.0019

1–5/S3 AD 0.7911± 0.0146 0.8639± 0.0056 0.9319± 0.0023

BLUP 1/S0 AD 0.7855± 0.0129 0.8541± 0.0059 0.8899± 0.0019

1–5/S0 AD 0.7803± 0.0143 0.8435± 0.0074 0.8830± 0.0024

1–5/S3 AD 0.7227± 0.0203 0.7915± 0.0077 0.8373± 0.0048

DHs Viana et al. 1/S0 AD 0.5012± 0.0416 0.5117± 0.0467 0.5343± 0.0467

1–5/S0 AD 0.4827± 0.0423 0.5000± 0.0420 0.5036± 0.0465

1–5/S3 AD 0.5799± 0.0437 0.6106± 0.0413 0.6357± 0.0429

EV SCs Viana et al. 1/S0 AD 0.7779± 0.0157 0.8458± 0.0069 0.8820± 0.0024

1–5/S0 AD 0.8019± 0.0155 0.8656± 0.0050 0.9055± 0.0020

1–5/S3 AD 0.7589± 0.0143 0.8424± 0.0058 0.9165± 0.0027

GY grain yield g/plant, EV expansion volume mL/g
aDensity of 1 cM;
bTraining set of 490 single crosses (10%);
cAfter 10 generations of random crosses;
dSingle crosses from DH lines of the same population;
eand Technow et al
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0.91, also proportional to the heritability. When comparing
our statistical model with those proposed by Massman et al.
(2013) and Technow et al. (2012), we observed no differ-
ences in the prediction accuracies of non-assessed single

crosses (maximum difference of 1%). Interestingly, the
Massman et al. (2013) and Technow et al. (2012) models
provide identical accuracies. Finally, no significant differ-
ences between the prediction accuracies for RR-BLUP,

Fig. 1 Predicted accuracies (a) and coincidence indexes (b) for
untested single crosses (square: 1 DH line/S0; triangle: 1–5 DH lines/
S0; circle: 1–5 DH lines/S3), and parametric accuracies (a) and coin-
cidence indexes (b) for tested single crosses (continuous line),

assuming our model, average SNP density of 0.1 cM, training set size
of 30%, positive dominance (grain yield), additive-dominance model,
and sampling of single crosses
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GBLUP, and BLUP occurred (maximum of 2%), except for
one to five DH lines per S3 plant, where BLUP was 9 to
10% lower, regardless of the heritability.

Concerning the coincidence index, in general the infer-
ences are the same as those established from the prediction
accuracy analysis (Table 2; Fig. 1b). There were no dif-
ferences between the coincidence indexes regarding our
model and the models proposed by Massman et al. (2013)
and Technow et al. (2012) (maximum difference of 3%) and
between the RR-BLUP, GBLUP, and BLUP approaches,
except for one to five DH lines per S3 plant, where the
coincidence for BLUP was −19 to −27% lower, propor-
tional to the heritability. The coincidence indexes were also
high for single crosses derived from selected DH lines
obtained from the base populations with lower LD (ranging

from 0.55 to 0.76, proportional to the heritability) and from
selected DH lines of the same population (ranging from
0.61 to 0.76, also proportional to the heritability). Sampling
single crosses for assessment also provided a higher coin-
cidence index compared to sampling DH lines for a diallel
(39 to 98% higher, proportional to the heritability).
Decreasing the SNP density and the training set size
decreased the coincidence index from 5 to 10% (propor-
tional to the heritability) and from 17 to 26% (inversely
proportional to the heritability), respectively. The maximum
difference in the coincidence index by fitting the additive-
dominance and the additive models was −3%. Only for one
DH line per S0 plant and assuming bidirectional dominance,
the coincidence indexes were slightly greater than the
values obtained assuming positive dominance (9–14%

Table 2 Average coincidence of
the best 300 predicted single
crosses and its standard
deviation, assuming single
crosses from selected DH lines,
30 and 10% of assessed single
crosses, two traits, two sampling
processes of single crosses, four
statistical models, three DH line
sampling processes, two genetic
models, and three parametric
coincidence of assessed single
crosses

Trait Samp. Statistical DH Gen. Coincidence of assessed single crosses

Proc. Model Lines Mod. 0.26 0.48 1.00

GY SCs Viana et al. 1/S0 AD 0.4523± 0.0334 0.5525± 0.0190 0.6037± 0.0170

A 0.4396± 0.0346 0.5449± 0.0176 0.5976± 0.0172

1–5/S0 AD 0.5686± 0.0273 0.6369± 0.0221 0.6842± 0.0140

A 0.5640± 0.0283 0.6299± 0.0221 0.6816± 0.0152

1–5/S3 AD 0.5129± 0.0235 0.6044± 0.0200 0.7363± 0.0183

A 0.5063± 0.0225 0.5993± 0.0193 0.7305± 0.0190

1–5/S3 ADa 0.4881± 0.0278 0.5691± 0.0229 0.6620± 0.0215

1–5/S3 ADb 0.3805± 0.0511 0.4797± 0.0354 0.6087± 0.0233

1/S0 ADc 0.5528± 0.0298 0.6489± 0.0203 0.7571± 0.0162

1–5/S3 ADd 0.6116± 0.0214 0.7156± 0.0150 0.7581± 0.0166

Massman et al.e 1/S0 AD 0.4670± 0.0346 0.5663± 0.0174 0.6157± 0.0157

1–5/S0 AD 0.5651± 0.0310 0.6431± 0.0164 0.6955± 0.0144

1–5/S3 AD 0.5279± 0.0291 0.6139± 0.0204 0.7423± 0.0172

GBLUP 1/S0 AD 0.4622± 0.0308 0.5660± 0.0190 0.6092± 0.0163

1–5/S0 AD 0.5650± 0.0280 0.6384± 0.0204 0.6849± 0.0137

1–5/S3 AD 0.5010± 0.0245 0.5937± 0.0216 0.7294± 0.0168

BLUP 1/S0 AD 0.4641± 0.0331 0.5709± 0.0176 0.6081± 0.0127

1–5/S0 AD 0.5531± 0.0323 0.6272± 0.0194 0.6699± 0.0130

1–5/S3 AD 0.4172± 0.0258 0.4731± 0.0211 0.5377± 0.0196

DHs Viana et al. 1/S0 AD 0.2753± 0.0374 0.3056± 0.0445 0.3169± 0.0401

1–5/S0 AD 0.3268± 0.0642 0.3400± 0.0691 0.3461± 0.0728

1–5/S3 AD 0.3699± 0.0583 0.3931± 0.0579 0.4300± 0.0633

EV SCs Viana et al. 1/S0 AD 0.5156± 0.0331 0.6081± 0.0159 0.6599± 0.0146

1–5/S0 AD 0.5506± 0.0285 0.6337± 0.0203 0.6944± 0.0141

1–5/S3 AD 0.4746± 0.0294 0.5843± 0.0174 0.7141± 0.0171

GY grain yield g/plant, EV expansion volume mL/g
adensity of 1 cM;
btraining set of 490 single crosses (10%);
cafter 10 generations of random crosses;
dsingle crosses from DH lines of the same population;
eand Technow et al
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greater). This sampling process of DH lines provided the
higher values of the coincidence index compared to the
other sampling processes (7–26% higher, inversely pro-
portional to the heritability). Finally, the coincidence index
value of the non-assessed single crosses were greater than
the parametric values for all assessed single crosses when
assuming low (up to 117% higher) and intermediate (up to
39% higher) heritabilities (Table 1). However, as the para-
metric coincidence of assessed single crosses approached
1.0, the coincidence values of the non-assessed single
crosses approached 0.60–0.74 (up to 26–40% lower),
depending on the DH line sampling process.

Discussion

Bernardo (1994) first suggested using BLUP for predicting
untested maize single cross performance. Based on the pre-
diction accuracies obtained by Bernardo (1994, 1995, 1996a,
1996b, 1996c) for grain yield and other traits (distinct genetic
controls), a breeder should realize that the performance of
untested single crosses can be effectively predicted using
relationship information from molecular or pedigree data,
unbalanced and large data set, and diverse heterotic patterns.
The significance of genomic prediction has been confirmed
with maize (Zhao et al. 2015) and other important crops, such
as rice (Xu et al. 2014), wheat (Zhao et al. 2013b), and barley
(Philipp et al. 2016). However, there has been no published
evidence that the prediction of untested single crosses is of
general use by breeders of worldwide seed companies.
Additional proof may be needed to make the prediction of
untested single crosses as successful as Jenkins’ (1934)
method for predicting double-cross performance. This paper
offers a significant contribution in this direction.

Our assessment on efficiency of prediction of untested
single cross performance maintains some similarities with a
few earlier studies, but there are sharp differences compared
to most investigations. This study is based on a simulated
data set, an approach also used by Technow et al. (2012),
assuming 400 QTLs distributed along ten chromosomes.
Thus, the prediction accuracies and coincidence indexes (a
measure of untested single crosses selection efficiency) are
available for non-assessed single crosses since the values
were computed based on the true genotypic values of the
non-assessed single crosses and not on a cross-validation
procedure involving assessed single crosses. This does not
mean that we consider simulated data to be better than field
data or have any criticism of the cross-validation procedure.
Because of the assumptions, we know that simulated data
cannot integrally describe the complexity of populations
and genetic determination of traits (Daetwyler et al. 2013).
To highlight the relevance of (overall) LD, our study is
based on conditions that are not favorable to the prediction

of untested single cross performance: a very low level of
relatedness between the DH lines, low and intermediate
heritabilities for the assessed single crosses, and not a
higher heterotic pattern. In studies by Massman et al. (2013)
and Bernardo (1994, 1995, 1996a), the coancestry coeffi-
cient between inbreds from the same heterotic group ranged
from 0.11 to 0.58. Riedelsheimer et al. (2012) observed
high relatedness only between the non-Stiff Stalk inbreds.
Technow et al. (2012) assumed non-related inbreds. For
most of the investigations on prediction of untested single
crosses and testcrosses, the grain yield heritability ranged
from 0.72 to 0.88. The common heterotic patterns in these
studies are Stiff Stalk and non-Stiff Stalk and Dent and
Flint. The minor allele frequency in the groups of Dent and
Flint inbreds were ~0.10 and 0.20, respectively, and ~20%
of the SNPs showed a difference of allelic frequency of at
least 0.60.

Concerning the prediction accuracy and the efficiency of
identification of the best 300 non-assessed single crosses,
our results prove that the prediction of untested single
crosses is a very efficient procedure (note that we are not
saying genomic prediction), especially for low and inter-
mediate heritabilities of the assessed single crosses. The
prediction accuracies of the non-assessed single crosses
under low (0.55–0.71) and intermediate (0.74–0.87)
accuracies of assessed single crosses achieved 0.85 and
0.89, respectively. It is important to highlight that these are
not relative accuracies. Most importantly, the coincidence
of the non-assessed single crosses under low (0.26–0.39)
and intermediate (0.44–0.66) parametric coincidences of
assessed single crosses achieved 0.59 and 0.64, respec-
tively. For high heritability (80–95%; accuracies from 0.89
to 0.97), as observed in most studies on prediction of
untested single cross performance, we can state (based on
values predicted by fitting a quadratic regression model)
that the prediction accuracy of non-assessed single crosses
is up to only 10% lower (0.87–0.92). Most impressively, the
coincidence index can range from 0.61 to 0.71 (parametric
coincidences between 0.72–0.93). Under maximum accu-
racy of assessed single crosses (1.00), the prediction accu-
racy and coincidence of non-assessed single crosses
achieved 0.93 and 0.76. Thus, assuming high heritability,
high SNP density, and a training set size of 30%, the
accuracy can achieve 0.92 and the efficiency of identifica-
tion of the best 9% of the non-assessed single crosses can
achieve 0.71. It is important to highlight that this efficacy
can be increased by using more related DH or inbred lines,
under high LD. Thus, we strongly recommend that maize
breeders, as well as rice, wheat, and barley breeders, make
widespread use of prediction of non-assessed single crosses,
at least for preliminary screening or prior to field testing.

To take advantage of genomic prediction, Kadam et al.
(2016) recommend redesigning hybrid breeding programs.
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However, because breeders are unlikely to rely solely on
genomic predictions when selecting superior untested
hybrids, Technow et al. (2014) believe that genomic pre-
diction will be combined with field testing of the most
promising experimental hybrids. For grain yield, the pre-
diction accuracies observed by Bernardo (1994, 1995,
1996a) ranged from 0.14 to 0.80, proportional to the her-
itability (in the range 35–74%) and training set size. The
non-relative accuracies (relative accuracy × root square of
heritability) observed in the studies of Kadam et al. (2016),
Technow et al. (2014), Massman et al. (2013), Technow
et al. (2012), and Riedelsheimer et al. (2012) ranged
between 0.20 and 0.86, also proportional to the heritability
(in the range 53–98%) and training set size.

We hope that readers have realized the importance of
(overall) LD for effective prediction of non-assessed single
crosses, as well as genetic variability. Breeders have no
control over LD and relatedness between the DH or inbred
lines. However, selection should always provide a high
level of overall LD in the groups of selected DH or inbred
lines. Comparison of our LD assessment with the LD ana-
lyses from other studies is inadequate because our distances
are in cM and not in base-pairs. But in general, the level of
LD was high (r2 of ~0.3) for only SNPs separated by up to
0.5 Mb (Massman et al. 2013; Riedelsheimer et al. 2012;
Technow et al. 2012, 2014). To maximize the prediction
accuracy and the efficiency of identification of the best non-
assessed single crosses it is necessary to adopt random
sampling of single crosses for testing instead of the random
sampling of DH or inbred lines for a diallel. This is because
sampling 30 or even 10% of the single crosses leads to
single crosses for testing derived from all DH or inbred lines
from each group. In our case, in every resampling assuming
training set size of 30 and 10% we always get groups of
assessed single crosses (1470 and 490 single crosses,
respectively) derived from the 70 DH lines of each group.
However, sampling DH lines for a diallel provided 1440
and 484 single crosses for testing derived from 38 and 22
DH lines, respectively. Thus, the sampling of single crosses
provides the best prediction of the SNP average effects of
substitution and dominance deviations. Riedelsheimer et al.
(2012) emphasized the need for large genetic variability to
obtain high prediction accuracies. Furthermore, their results
indicated that pairs of closely related lines and population
structuring only weakly contributed to the high prediction
accuracies. Because dominance can be a relevant genetic
effect, breeders should always fit the additive-dominance
model to maximize the prediction accuracy and the effi-
ciency of identification of the best non-assessed single
crosses. Interestingly, in most of the studies on prediction of
non-assessed single crosses the prediction accuracy did not
increase significantly when modeling SCA in addition to
GCA effects (Zhao et al. 2015).

Concerning SNP density and training set size, factors
related to the costs of genotyping and phenotyping, breeders
should find a balance between efficiency and expenses,
since maximizing SNP density and training set size max-
imizes the efficiency of untested single cross prediction.
Based on our results, because the decreases in the prediction
accuracy (~4%) and coincidence index (5–10%) by
decreasing the average SNP density from 0.1 to 1 cM are of
reduced magnitude, we consider sufficient to employ cus-
tom genotyping to provide an average SNP density of 1 cM.
Decreasing the training set size from 30 to 10% of the single
crosses does not significantly affect the prediction accuracy
under intermediate to high heritability (decrease of up to
9%), but the coincidence index can be reduced by up to
21%. However, considering that the coincidence index will
be kept in the range 0.48–0.61, proportional to the herit-
ability, and that the maximum values are in the range 0.48
to 0.61, we also consider sufficient to assess at least 10% of
the possible single crosses. As highlighted by Zhao et al.
(2015), marker density only marginally affects the predic-
tion accuracy of untested single crosses and for biparental
populations a plateau for the accuracy is reached with a few
hundred markers. Technow et al. (2014) did not find an
improvement in prediction accuracies when using higher
SNP density. Additionally, increasing the training set size
led to a relatively small increase in the prediction accuracy.
However, the prediction accuracies obtained by Riedel-
sheimer et al. (2012) under high density (38,019 SNPs)
were substantially higher than those reached with a low-
density marker panel (1152 SNPs). In the study of Technow
et al. (2012), the prediction accuracies increased with SNP
density and number of parents tested in hybrid combination.

The DH line sampling process, heterotic pattern, and
statistical approach should not be worries for breeders.
However, under high heritability, sampling more than one
DH line per S0 or S3 plant provided higher coincidence
values and high prediction accuracy in our study. For rice,
wheat, and barley breeders, our message is that high pre-
diction accuracy and high efficiency of identification of the
best non-assessed single crosses does not depend on het-
erotic groups but on the (overall) LD in the group or in each
group of DH or inbred lines. In other words, the efficiency
of prediction of non-assessed single crosses derived from
DH or inbred lines from the same population can be as high
as the prediction efficiency of untested single crosses
derived from DH or inbred lines from distinct heterotic
groups. This was not confirmed comparing the relative
prediction accuracies for the grain yield of maize untested
single crosses (from ~0.50 to 0.95, for most studies) with
those obtained with rice, wheat, and barley untested hybrids
(0.50–0.60, approximately) (Philipp et al. 2016; Xu et al.
2014; Zhao et al. 2013b). However, the lower relative
prediction accuracies for untested rice, wheat, and barley
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hybrids should be due to prediction of two-way and three-
way crosses. Regarding the statistical approach, our model
did not provide an increase in the efficiency of non-assessed
single cross prediction compared to the models proposed by
Massman et al. (2013) and Technow et al. (2012). Impor-
tantly, our results showed that these two models are really
identical (data not shown). Thus, because of the simplified
definition of the incidence matrices for these two previous
models, it is quite safe to use either of them. Finally, the
choice between the statistical approaches RR-BLUP (based
on prediction of SNP average effects of substitution and
dominance deviations), GBLUP (based on additive and
dominance genomic matrices), and pedigree-based BLUP
(prediction of genotypic values of non-assessed single
crosses based on additive and dominance matrices from
pedigree records) should not be a serious worry for breeders
as well. Our evidence is that there is no significant differ-
ence between RR-BLUP and GBLUP regarding the pre-
diction accuracy and efficiency of identification of the best
untested single crosses. Furthermore, even when the level of
relatedness between the DH or inbred lines in each group is
low, pedigree-based BLUP is generally as efficient as
genomic prediction, except when the DH lines are derived
from an inbred population. Thus, DNA polymorphism is
not essential for efficient prediction of non-assessed single
cross performance. In a review on genomic selection in
hybrid breeding, Zhao et al. (2015) state that the choice of
the biometrical model has no substantial impact on the
prediction accuracy of untested single crosses. Technow
et al. (2014) observed that the GBLUP and BayesB pre-
diction methods resulted in very similar prediction accura-
cies. According to Massman et al. (2013), the pedigree-
based BLUP and RR-BLUP models did not lead to sig-
nificantly different prediction accuracies. Technow et al.
(2012) concluded that BayesB produced significantly higher
accuracies for the additive-dominance model than GBLUP.

Our main contributions to the assessment of prediction
efficiency of untested single cross performance are the
following: (1) the prediction accuracy of untested single
crosses ranged from ~0.80 to 0.90 as the heritability of
tested single crosses ranged from low (30%) to high
(100%); however, the efficacy of identification of the best
9% of the untested single crosses ranged from ~0.50 to
0.70, depending on the DH line sampling process; (2) the
prediction accuracy for crops showing no defined heterotic
pattern can be as efficient as with maize, for which there are
well-defined heterotic groups; this is because the most
important factor affecting the prediction efficiency is the
overall LD; (3) to maximize prediction accuracy and coin-
cidence the choice of single crosses for testing should be
based on a random process; this procedure maximizes the
number of DH lines in hybrid combinations and provides
better predictions of the SNP average effects of substitution

and dominance deviations compared to sampling DH lines
for a diallel; (4) because of the non-significant decreases in
the prediction accuracy and coincidence, the prediction of
untested single crosses can be efficient when assuming a
reduced training set size (10%) and SNP density of 1 cM;
(5) RR-BLUP and GBLUP provide equivalent prediction
efficiencies of untested single crosses; (6) except for DH
lines derived from inbred populations, pedigree-based
BLUP is as efficient as genomic prediction of untested
single crosses; and (7) the theoretical accuracy shows that
the prediction accuracy is not affected by the linkage phase.

Data archiving

The data set is available at https://doi.org/10.6084/m9.
figshare.5035130.v3.
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