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Abstract
A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the
components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the
relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here,
we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios
with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated
data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and
single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the
training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/
BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the
lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all
QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and
QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were
more apparent when the trait is controlled by fewer QTL.

Introduction

Meuwissen et al. (2001) first proposed the widely used
genomic selection method using a dense marker panel for
the genetic evaluation of animals and plants. This method
achieves higher genetic evaluation accuracy and has the
advantage of reducing generation intervals for some
species such as dairy cattle with progeny testing schemes.

The accuracy of Genomic Best Linear Unbiased Predic-
tion (GBLUP) was assumed to be mainly due to the
linkage disequilibrium (LD) between markers and quan-
titative trait loci (QTL). However, Habier et al. (2007)
demonstrated that GEBV accuracy depends not only on
the LD between markers and QTL, but also on the genetic
relationships among individuals captured by makers.
According to their simulation study, GEBV accuracy
decreases rapidly as the validation generation becomes
distant from the generations of the training population,
even when LD still exists between markers and QTL.
Daetwyler et al. (2012) decomposed the components of
GEBV accuracy by using a multi-breed sheep population.
Surprisingly, they found that single-nucleotide poly-
morphism (SNP) markers from one single chromosome
could achieve up to 86% of the accuracy of using all SNP
markers, thus indicating that GEBV accuracy is not only
due to LD between markers and QTL, but also due to
population structure or genetic relationships among
individuals. Habier et al. (2013) further demonstrated that
the accuracy of GEBV within families depends largely on
additive–genetic relationship information, and is also
determined by the effective number of SNP markers and
training data size.
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A single-step approach was proposed to overcome the
limitation that not all animals are genotyped (Christensen
and Lund 2010; Legarra et al. 2009). This approach has the
merit of using all the genotyped and non-genotyped ani-
mals in one analysis, and it can estimate GEBV for all the
animals in the analysis. It has been applied to the genetic
evaluation of many livestock species, including pigs,
chicken, and cattle (Aguilar et al. 2010; Chen et al. 2011;
Christensen et al. 2012; Liu et al. 2014). Christensen et al.
(2012) have shown that the single-step method provides
improved accuracy for both genotyped and ungenotyped
animals, whereas GBLUP can only be implemented for
genotyped animals. The single-step method, compared
with the GBLUP model, allows for less biased and more
accurate GEBV predictions when the population is under
strong selection (Vitezica et al. 2011). Moreover, Fernando
et al. (2014) have presented single-step Bayesian regres-
sion models, which have the merit of modeling SNP
effects with more flexible distributions (such as a
t-distribution).

However, it is still unclear how different components
such as LD between markers and QTL, in addition to
population structure, contribute to GEBV accuracy in the
single-step analysis. Furthermore, very few studies to
date have investigated the relative performance of various
single-step Bayesian models (Lee et al. 2017). Therefore,
by using a simulation study, we investigated the contribu-
tions of GEBV accuracy in the single-step analysis in this
study. Different numbers of generations between the vali-
dation and the training populations along with various
numbers of QTL were simulated to show the contributions
of these components to GEBV accuracy. We further
investigated the performance of different single-step models
(SSGBLUP, SS-BayesA, and SS-BayesB) in various sce-
narios with different number of QTL (5, 50, and 500) in the
simulation.

Materials and methods

Models

SSGBLUP model

Legarra et al. (2009) and Christensen and Lund (2010)
first proposed the single-step BLUP model, which has
been further extended by Fernando et al. (2014) as
follows:
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where y1 is the vector of phenotype for ungenotyped
individuals and y2 is the vector of phenotype for genotyped

individuals. β is the vector of fixed effects and X1 and X2

are the incidence matrices for fixed effects of ungenotyped
and genotyped individuals. Z1 and Z2 are the incidence
matrices of ungenotyped and genotyped individuals,
respectively. Here, g1 and g2 are GEBV of ungenotyped
and genotyped individuals. Fernando et al. (2014) have
further extended SSGBLUP model from the animal model
to the marker effect model by defining
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where T2 is the centered and scaled observed genotype
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a vector of the genotype for all individuals of marker j, pj is
the minor allele frequency of marker j), α̂ is the vector of

estimated marker effects, and T̂1 is the predicted or imputed
genotype matrix for ungenotyped individuals with

T̂1 ¼ A12A�1
22 T2, where Aij is the partition of the pedigree

relationship matrix A that relates to ĝ1 and ĝ2. The variance
and covariance matrix of ĝ1 and ĝ2 is cov ĝ1; ĝ2ð Þ ¼ H,
where H was defined as (Legarra et al. 2009):
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where G2 is the genomic relationship matrix for genotyped
individuals. The estimated marker effects are assumed to be
normally distributed with N 0;Iσ2α
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residuals, ε, are assumed to be multivariate and normally
distributed with N 0; A11 � A12A
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. Here, σ2α

and σ2g are the SNP variance and polygenic variance,
respectively. The model further becomes
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The mixed model equation (MME) corresponding to Eq.
(4) for the SSGBLUP marker effects model is
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where A11 ¼ A11 � A12A�1
22 A12′

� ��1
, y ¼ y1

y2

� �
, and σ2e is

the residual variance.

SS-BayesA/B model

The BayesA/B model can be simply extended to the single-
step analysis by using the predicted genotypes for the
ungenotyped individuals (Fernando et al. 2014). In the
BayesA model, marker variances are assumed to be dif-
ferent for different SNP markers, and marker variances are
commonly handled with a scaled-inverse χ2 prior (Fernando
and Garrick 2013; Gianola et al. 2009; Meuwissen et al.
2001):
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where να and s2α are the degrees of freedom and scale of
the scaled-inverse χ2 prior, respectively, and j is the jth
number of marker. The Mixed model equation (MME) for
the single-step BayesA (SS-BayesA) model further become
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For the single-step BayesB (SS-BayesB) model, the
Mixed model equation (MME) is the same as Eq. (7), and
marker effects are assumed to be independently distributed
as follows:
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¼

0 with probability 1� πmð Þ
� N 0; σ2αj

� �
with probability πm

(

ð8Þ
where πm is the proportion of markers that have non-zero
effect. We can estimate πm using a Beta(απ,βπ) prior (Habier
et al. 2011). πm was fixed at 0.01 in this
study.

The joint posterior densities of each single-step model
and Markov Chain Monte Carlo (MCMC) sampling stra-
tegies for other parameters and hyper-parameters were
illustrated in Supplementary File 1.

Data simulation

A simulation study was conducted with the program QMSim
(Sargolzaei and Schenkel 2009). First, 5000 historical gen-
erations (generations 1–5000), each with 2000 animals, were
simulated to generate LD between SNP markers (Fig. 1).
Then, five recent generations (generations 5001–5005) were
generated from the last historical generation (generation

5000) by random mating of 50 randomly selected males and
1000 females from the previous generation. There was no
selection for the trait in each recent generation. For the recent
population, each female had one offspring with an assuming
male and female ratio of 1:1, and each recent generation had
1000 individuals. The dam’s culling rate was 0.5. Fifty per-
cent of dams were from the last generation, and 50% were
from the generation before last generation. All sires were
from the last generation. For the genome, we simulated 20
chromosomes for each individual, and each chromosome
had a length of one Morgan. On each chromosome, 2000
SNP markers were generated in generation 1. After data
editing (MAF> 0.01 and r2 ≤ 0.98), the total number of
SNPs retained for the analysis was close to 40,000
(range from 39,956 to 39,972 for each replicate). For the
phenotype, heritability was set at 0.2. All individuals’ phe-
notypes were generated by summing true breeding values
(QTL genotypes multiply by QTL effects) and residual
effects (sampled from a normal distribution). Three scenarios
with different number of QTL (5, 50, or 500) were con-
sidered, and QTL were randomly selected among all the
SNPs. All other SNPs, except QTL, were assumed to have no
effect on the trait. QTL effects were simulated from a normal
distribution. The total number of replicates was 10 for each
QTL scenario.

Data analysis

To investigate the influence of genetic relationships
between the training and validation populations on the
GEBV accuracy, we carried out single-step analysis by
using all individuals from generations 5000–5002 as the
training population, and all individuals from each genera-
tion 5003, 5004, and 5005 as a separate validation popu-
lation. For each QTL scenario (5, 50, and 500 QTL), the
design of the training and validation populations was shown

Fig. 1 The simulated historical and recent generations
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in Table 1. To mimic the single-step analysis, we set the
genotyping rate at 50% for the training and individual
validation populations. The genotyped individuals were
randomly selected from the training and validation popu-
lations, and the remaining individuals were treated as
ungenotyped individuals. To compare the prediction per-
formance of different models, we computed GEBV accu-
racy as the correlation of GEBV and true breeding values
(TBV). GEBV for the ungenotyped individuals were com-
puted by ĝ1 ¼ T̂1α̂þ ε̂, and GEBV for the genotyped
individuals were computed by ĝ2 ¼ T2α̂.

To analyze the simulated data, we ran MCMC for 50,000
iterations with 5000 as the burn-in for all three models
(SSGBLUP, SS-BayesA, and SS-BayesB) for each replicate
within each QTL scenario. For the SS-BayesA model, we
estimated hyper-parameters scale (s2α) and degree of free-
dom (να). For the SS-BayesB model, to simplify the model
structure, we fixed the proportion of non-zero effect SNPs
(πm) as 0.01. The data were analyzed by self-developed R
and C codes, and they were available on request.

Results

Influence of the relationships between the training
and validation populations

We investigated the GEBV accuracy by using different
generations (5003, 5004, and 5005) as the validation
population and generations 5000–5002 as the training

population for all three single-step models (SSGBLUP, SS-
BayesA, and SS-BayesB). Figure 2 shows GEBV accuracy
for both genotyped and ungenotyped individuals of gen-
erations 5003, 5004, and 5005 each as the validation
population for all QTL scenarios. As the generation number
of the validation population (measured as distances between
validation and training populations) increased with respect
to the training population, GEBV accuracy decreased sig-
nificantly for both genotyped and ungenotyped individuals.
For SSGBLUP, GEBV accuracy always decreased with
validation generation for both ungenotyped and genotyped
individuals. For SS-BayesA and SS-BayesB, the GEBV
accuracy for genotyped individuals did not decrease dra-
matically, compared with SSGBLUP at scenarios of 5 or 50
QTL. For ungenotyped validation individuals, the accuracy
of GEBV decreased with the increase of the generation of
the validation population. However, for genotyped indivi-
duals, the influence of generations of the validation popu-
lation on GEBV accuracy was more sensitive to both
different single-step models and the number of QTL (Fig.
2).

Comparison of single-step models

We also compared GEBV accuracy for the three single-step
models (SSGBLUP, SS-BayesA, and SS-BayesB). For the
scenarios with 5 and 50 QTL, SS-BayesA and SS-BayesB
always achieved higher accuracy than SSGBLUP, and
SS-BayesB performed better than SS-BayesA at validation
population generations 5003 and 5004 (Fig. 3). However,
when the number of QTL was 500 in the simulation, no
advantage of SS-BayesA and SS-BayesB was found, and
SS-BayesB realized the lowest GEBV accuracy.
These findings indicated that the single-step Bayesian-type
models had an advantage over the SSGBLUP model when
there were fewer QTL affecting the trait. Moreover,
considering the scenario with 5 and 50 QTL, we observed
that the single-step Bayesian models exceeded SSGBLUP
by a larger margin for the genotyped animals than
for the ungenotyped animals (Fig. 3). When there were only
5 QTL in the simulation (with h2= 0.2), the GEBV
accuracy of SS-BayesA and SS-BayesB for genotyped
animals exceeded 0.93, while it was below 0.5 with
SSGBLUP.

Influence of different number of QTL

We further compared the effect of different numbers of
QTL for each single-step model. According to Fig. 4, it was
clear that the GEBV accuracy of SSGBLUP did not change
significantly as the number of QTL increased. However, the
GEBV accuracy of SS-BayesA and SS-BayesB for both
ungenotyped and genotyped individuals decreased

Table 1 The training and validation design for genomic prediction of
the single-step analysis

Population
specification

Number of
individuals by
gender

Origin of parents

Male Female Male Female

Training G0* 50 1000 G−1* G−1

G1 500 500 50(G0) 1000(G0)

G2 500 500 50(G1) 500(G0)

500(G1)

Validation G3 500 500 50(G2) 500(G1)

500(G2)

G4 500 500 50(G3) 500(G2)

500(G3)

G5 500 500 50(G4) 500(G3)

500(G4)

Note: *G0 indicates generation 0 of recent generations (generation
5000 from historical populations); G−1 indicates historical generation
4999, G1−5 indicates generations 5001–5005. This design was the
same for all QTL scenarios (5, 50, and 500 QTL)
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significantly when the number of QTL increased. These
results indicate that single-step Bayesian models are more
sensitive to the number of QTL affecting the trait, even
when the relationship structure of the training and validation
populations is almost the same for the various number of
QTL scenarios. Meanwhile, SSGBLUP is a robust model to
handle scenarios with different number of QTL.

Discussion

The objective of this study was to analyze the influence of
relationships between the training and validation popula-
tions and of LD between markers and QTL on the GEBV
accuracy with various single-step models. We further
extended single-step Bayesian models of Fernando and
Garrick (2013) to single-step BayesB model, and

investigate three single-step models (SSGBLUP, SS-
BayesA, and SS-BayesB) with a simulation study. To
investigate the influence of relationships between the
training and validation populations, we used each one of
three successive generations (5003, 5004, and 5005) as the
validation population. Generally, GEBV accuracy
decreased as the distance (measured as the number of
generation gap between the training population and vali-
dation population) of validation population increased for
different single-step models, which was in agreement with
results of many previous studies (Habier et al. 2013; Habier
et al. 2010; Kang et al. 2016; Wolc et al. 2011). The rela-
tionship between the training and validation populations
influenced GEBV accuracy more substantially than LD
between markers and QTL. Moreover, we observed that
Bayesian-type single-step models (SS-BayesA and SS-
BayesB) outperformed SSGBLUP in the scenarios with

Fig. 2 Accuracy of GEBV for different validation population gen-
erations, using SSGBLUP, SS-BayesA, and SS-BayesB models at
scenarios of 5, 50, and 500 QTL. These results are the means and

standard errors of 10 replications. Different letters indicate a significant
difference at P value <0.05
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fewer QTL (5 or 50 QTL), whereas SSGBLUP out-
performed Bayesian models (SS-BayesB) when the number
of QTL reached 500 in the simulation.

Influence of relationships between the training and
validation populations

GEBV accuracy decreased as the generation of validation
population increased, especially with SSGBLUP. To further
investigate the reason for this, we computed the average
linkage disequilibrium (r2) of all adjacent SNP pairs for all
individuals in each recent generation (generations 5001-
5005), along with the means and standard deviations of
pedigree-based genetic relationships (A12) of the training
(generations 5000-5002) and validation populations (each
generation of 5003-5005), along with the means and stan-
dard deviations of pedigree-based genetic relationships
(A12) of the training (generations 5000–5002) and valida-
tion populations (each generation of 5003–5005). It can be

seen from Fig. 5 that the LD between adjacent SNP markers
slightly increased with the number of generation. The
average A12 between the training and validation populations
was almost the same for validation generations 5003, 5004,
and 5005. However, the standard deviations of A12

decreased by the number of generation. These results indi-
cated that there were more individuals with closer genetic
relationships with the training population for validation
generation 5003 compared with that of generation 5005.
These few animals that had close relationships with the
training population caused the overall GEBV accuracy of
generation 5003 to be higher than that of generation 5005
(results not shown).

Habier et al. (2010) have also found that the accuracy of
GEBV for four traits (milk yield, fat yield, protein yield,
and somatic cell score) decreased when the relationship
between the training and validation populations decreased
in German Holstein bulls’ data. Kang et al. (2016) have also
found that the GEBV accuracy declined by generation in the

Fig. 3 Accuracy of GEBV for different single-step models at each
validation generation. Note: The single-step models are SSGBLUP
(single-step GBLUP), SS-BayesA (single-step BayesA), and SS-

BayesB (single-step BayesB). These results are the means and stan-
dard errors of 10 replications. Different letters indicate a significant
difference at P value< 0.05
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single-step analysis with a simulation study. Daetwyler
et al. (2012) have conducted a genomic prediction analysis
using a multiple-breed sheep population, and have also
found that a large amount of GEBV accuracy was due to
population structure or family relationships instead of LD
between markers and QTL at current marker densities.
Therefore, our results and those of Kang et al. (2016)
indicate that the accuracy of GEBV for the single-step
analysis decreases when the generation gap between the
training and validation populations increases. In addition,
our results indicate that this decrease in GEBV accuracy
occurred even when the LD between markers increased
marginally (with P value <0.001 for t-test of r2) (Fig. 5).
This finding indicates that the relationship between training
and validation populations plays a more important role than
the LD between markers and QTL in the GEBV accuracy
for both genotyped and ungenotyped individuals, especially

with the single-step BLUP model. Habier et al. (2007) have
also concluded that the GBLUP model (or RR-BLUP) was
influenced mostly by genetic relationships.

For the ungenotyped individuals, a pedigree-based rela-
tionship is used for the prediction of their genotypes.
According to the formula for the predicted genotype of
ungenotyped individuals T̂1 ¼ A12A�1

22 T2, it is obvious that
a larger element in A12 corresponds to a higher regression
coefficient for the corresponding element of T2 (Here, T2 is
the centered genotype matrix of genotyped individuals and
T̂1 is the predicted genotype matrix of ungenotyped indi-
viduals). Chen et al. (2014) have also reported that indivi-
duals with close relatives in the training population had
higher genotype imputation accuracy and higher accuracy
of genomic prediction. Our results further illustrate that the
genetic relationships between the training and validation
populations affect GEBV accuracy more strongly for

Fig. 4 Accuracy of GEBV for different numbers of QTL at each
validation generation. Note: The single-step models are SSGBLUP
(single-step GBLUP), SS-BayesA (single-step BayesA) and SS-

BayesB (single-step BayesB). These results are the means and stan-
dard errors of 10 replications. Different letters indicate a significant
difference at P value <0.05
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ungenotyped individuals than genotyped individuals in
single-step analysis (Fig. 2). This is so because the GEBV
of ungenotyped individuals is composed of two parts: (1)
estimated marker effects and (2) imputation residuals.
Imputation residuals are estimated on the basis of a pedigree
relationship matrix ε / N 0; A11 � A12A�1

22 A12′
� �

σ2g

� �� �
,

whereas the GEBV of genotyped individuals only depends
on the estimated marker effects.

Single-step models comparison

In this study, we used three single-step models such as
SSGBLUP, SS-BayesA, and SS-BayesB. The Bayesian-
type models outperformed the SSGBLUP models when
there were fewer QTL (5 or 50 QTL) in the simulation.
These results were in agreement with both previous simu-
lation and real data analyses of genomic selection (Habier
et al. 2007; Hayes et al. 2009; Meuwissen et al. 2001). SS-
BayesB model showed extremely optimistic prediction
ability at the case of 5 QTL (Fig. 3). Here the GEBV
accuracy values were 0.98 for SS-BayesB and 0.48 for
SSGBLUP. The advantage of SS-BayesA and SS-BayesB
was mainly due to both models assuming a non-normal
distribution of marker effects, in which a t-distribution was
assumed for SS-BayesA and a two components mixture
distribution for SS-BayesB (Gianola et al. 2009; Habier
et al. 2011). These marker effects’ assumptions more closely
matched to the QTL and marker structure in our simulation,
especially with the 5 and 50 QTL scenarios. Meanwhile,

according to Figs. A1–A3, it could be seen that the esti-
mated marker effects had much larger range (−600.0 to
200.0) for SS-BayesA/B compared to that of SSGBLUP
(−10.0 to 10.0) at the 5 and 50 QTL scenarios. Zhang et al.
(2016) found greater accuracies using weighted genomic
relationships (vs. regular single-step GBLUP, BayesB,
and BayesC) when few QTLs were simulated, and their
weighted genomic relationships approaches (WssGBLUP)
were more similar to the SS-BayesA/B models in this
study.

However, when the number of QTL increased to 500, the
Bayesian-type models had no advantage over SSGBLUP
(Fig. 3). Interestingly, SS-BayesB obtained lower accuracy
than SSGBLUP and SS-BayesA for the 500 QTL scenario.
In this scenario, 500 SNPs were simulated as QTL in the
phenotype simulation, while only ~400 SNPs (1% of
40,000 SNPs) were allowed to have non-zero effects in SS-
BayesB model, as the non-zero proportion (πm) of markers
was fixed at 0.01. This fixation potentially limited the power
of SS-BayesB model to capture all existing 500 QTL.

Generally, considering all different scenarios of QTL,
SS-BayesA model was the most efficient and robust
according to our simulation analysis. The SS-BayesB model
with the freedom of estimating πm would capture more LD
between markers and QTL, and may obtain better GEBV
prediction performance. Karaman et al. (2016) have repor-
ted that BayesB and BayesC have no advantage over
GBLUP when the reference population is small (<6000
individuals). Therefore, given the findings from Karaman
et al. (2016) and several other studies (Habier et al. 2013;
Habier et al. 2010; Kang et al. 2016), the advantages of
Bayesian models in genomic selection and single-step
analysis depend on the training population size, number of
QTL for the trait, and other potential factors.

Three single-step models also performed differently in
terms of prediction bias. On the basis of regression coeffi-
cients of TBV on GEBV and means of deviation between
TBV and GEBV, SSGBLUP model achieved the least
prediction bias for ungenotyped individuals, and SS-
BayesA and SS-BayesB models realized less prediction
bias for genotyped individuals. These models need to be
further investigated for prediction bias for the application in
real data.

Influence of the number of QTL

The three single-step models performed differently as the
number of QTL increased in the simulation. For the
SSGBLUP model, the GEBV accuracy changed minimally
as the number of QTL increased from 5 to 500 (Fig. 4). This
could be explained by the fact that SSGBLUP mainly uti-
lized the genomic relationship among the training and
validation populations, instead of capturing the LD between

Fig. 5 The plot of averaged linkage disequilibrium (r2) and the means
and standard deviations of A12 by generation. Note: The r2 was cal-
culated using genotypes of all adjacent SNP markers, and A12 was the
pedigree-based numeric relationship between the training and valida-
tion populations. All these statistics are the means of 10 replicates in
the scenario of 50 QTL
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markers and QTL. When the number of QTL changed from
5 to 500, the genetic relationship between the training and
validation populations did not vary, and thus the GEBV
accuracy of SSGBLUP showed little change. However, for
the SS-BayesA and SS-BayesB models, the GEBV accu-
racy decreased as the number of QTL increased. This was
because the marker effects were more accurately estimated
for the scenarios of 5 and 50 QTL with the single-step
Bayesian models. From Figs. A2 and A3 in the Supple-
mentary File 2 (the plots of estimated marker effects for one
replicate), it can be seen that only a few SNPs adjacent to
the true QTL were estimated with large non-zero effects by
SS-BayesA and SS-BayesB at the 5 and 50 QTL scenarios.
When the number of QTL was 500 in the simulation,
SSGBLUP and SS-BayesA, which allowed all markers to
have a non-zero effect, showed better agreement between
estimated marker effects and true QTL effects (Figs. A1–A3
in Supplementary File 2), in addition to higher GEBV
accuracy compared with SS-BayesB (Fig. 3). To further
investigate the influence of QTL numbers, we have also
simulated a scenario of 5000 QTL. The results (Fig. A4)
also indicated that SSGBLUP and SS-BayesA had obvious
advantages over SS-BayesB model, which was similar to
the scenario of 500 QTL.

Generally, our results suggest that single-step Bayesian
models have appealing advantages when the number of
QTL controlling the trait is small (Zhang et al. 2016). Kang
et al. (2016) have proposed a single-step random regression
model (single-step random regression test-day model, SS
RR-TDM) for longitudinal traits, and SS RR-TDM has been
found to have an advantage over the pedigree-based RR-
TDM and GBLUP. It will be meaningful to further extend
single-step Bayesian models to longitudinal traits.

Currently, a new algorithm that uses recursion to com-
pute the genomic relationship matrix has become com-
monly applied (Misztal 2016; Misztal et al. 2014). This
algorithm is also called “algorithm for proven and young,”
which splits genotyped animals into core (proven) animals
and noncore (young) animals. This methodology can pro-
duce an inverse genomic relationship matrix of all geno-
typed animals by only computing the inverse of core
animals (Misztal et al. 2014), thereby dramatically
decreasing the computing cost compared with the traditional
single-step GBLUP. Because the breeding values of non-
core animals can be derived by recursions on the breeding
values of core animals (Misztal 2016), these results indicate
that phenotypes of core or proven animals are sufficient for
estimating markers effects in the Bayesian-like model.
Therefore, how to extend the core and noncore concept to
the Bayesian and single-step Bayesian genomic models will
be an interesting and valuable research topic. Fernando
et al. (2016) further proposed a hybrid model for the single-
step Bayesian models with an efficient new computing

algorithm, and they are easy to extend to multiple traits and
multiple-breed analyses.

Data archiving

The simulated data analyzed in this study is available from
the Dryad Digital Repository: http://dx.doi.org/10.5061/
dryad.hk14j.
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