

BRIEF COMMUNICATION Residual risk for additional recessive diseases in consanguineous couples

Lama AlAbdi^{1,2}, Shatha Alrashseed³, Ahood Alsulaiman⁴, Rana Helaby², Faiqa Imtiaz⁴, Mohamed Alhamed⁴ and Fowzan S. Alkuraya²

PURPOSE: Consanguineous couples are typically counseled based on familial pathogenic variants identified in affected children. The residual risk for additional autosomal recessive (AR) variants, however, remains largely understudied.

METHODS: First, we surveyed pedigrees of 1,859 consanguineous families for evidence of more than one AR disease. Second, we mined our database of 1,773 molecularly tested consanguineous families to identify those with more than one AR disease. Finally, we surveyed 88 women from consanguineous unions who have undergone targeted prenatal testing for a familial AR variant and followed the pregnancy outcome (n = 144).

RESULTS: We found suggestive evidence of more than one AR disease in 1.94% of consanguineous pedigrees surveyed. Of 1,773 molecularly characterized consanguineous families, 2.93% had evidence of at least two AR diseases (3.54% for first cousin or closer and 2.72% for second cousin or more distant). Furthermore, we found that in 2.78% of pregnancies negative for the familial variant, the pregnancy outcome was a child with a different AR disease.

CONCLUSION: Our results show that when counseling consanguineous couples for a familial AR variant, ~3% residual risk for additional AR variants should be discussed. This suggests that a broader testing strategy in consanguineous couples should be considered.

Genetics in Medicine (2021) 23:2448-2454; https://doi.org/10.1038/s41436-021-01289-5

INTRODUCTION

Consanguinity remains a common practice in many parts of the world and it is estimated that countries where 20% to over 50% of unions are between individuals who are third cousin or closer comprise one-seventh of the world population [1]. Regardless of the historical reasons that nurtured consanguinity, it remains a highly desirable option in many countries despite its documented health consequences. Its detrimental impact on several measures of health notwithstanding [2], it is well established that consanguinity increases the risk of rare autosomal recessive conditions given the higher probability of shared carrier status for rare alleles among consanguineous compared to randomly selected couples [3, 4]. Saudi Arabia is a country where more than half marriages are between consanguineous couples [5]. Consistently, large exome studies from Saudi Arabia have demonstrated a preponderance of autosomal recessive variants in the etiology of Mendelian diseases in a pattern strikingly different from outbred populations where de novo dominant variants contribute substantially more to the overall variant spectrum of diseases [3, 6-8].

Unlike de novo variants, which cannot be predicted a priori, recessive variants lend themselves readily to established preventive strategies such as carrier screening, prenatal diagnosis, and preimplantation genetic testing. This difference has also been the cornerstone of new initiatives aimed at expanding access to comprehensive carrier screening of severe pediatric onset diseases at the population level even in countries with very low consanguinity rates [9, 10]. At the level of individual couples who present for counseling regarding a familial recessive variant, it is the standard practice to offer reproductive options that are

targeted to the familial variant in addition to the standard screening protocol in place, e.g., aneuploidy screen. The same practice is often employed when the couple is consanguineous because there are no clear guidelines that address this special scenario. Here, we aim to inform future guidelines by leveraging our large database of consanguineous couples to extract estimates of the residual risk for additional recessive diseases.

MATERIALS AND METHODS

Human subjects

Our database comprises consanguineous families that have been recruited over the period 2007–2020 because of family history of suspected Mendelian diseases. Informed consent was obtained from all families each of which was recruited under the relevant institutional review board (IRB)–approved research protocol for their respective disease (KFSHRC RAC #2070023, 2080006, 2090035, 2080033, 2140016, and 2121053). The consent permits us to construct detailed pedigrees and collect full clinical data including follow-up data on future pregnancies.

Residual risk estimation

We took three approaches to estimate the residual risk of a second (or more) recessive disease in consanguineous families:

Approach 1: We surveyed drawn pedigrees of consanguineous families in search of suggestive evidence of a second recessive disease. Given the extensive nature of our pedigrees, we opted to have a conservative approach by only considering evidence from the nuclear rather than the extended family. A pedigree was considered suggestive of more than one recessive disease if either of the following was observed: (1) one or more children with a known autosomal recessive disease other than the suspected recessive disease for which consultation was initiated, or (2) two

¹Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia. ²Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. ³King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. ⁴Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. ³King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. ⁴Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. ⁵⁵email: falkuraya@kfshrc.edu.sa

Fig. 1 Schematic representation of the study. Approach 1 investigates the prevalence of recessive diseases in consanguineous pedigrees based on family history. Approach 2 investigates the prevalence of two or more recessive diseases in consanguineous pedigrees based on molecular analysis. Approach 3 considers the pregnancy outcomes in consanguineous couples who underwent targeted prenatal screening for a familial recessive variant. AR autosomal recessive.

or more children with a similar but undefined phenotype that is distinct from the suspected recessive disease for which consultation was initiated. We also opted to exclude seemingly dominant inheritance even though it may represent pseudodominance in consanguineous pedigrees to ensure a conservative estimate.

Approach 2: We identified all molecularly characterized consanguineous families in our cohort and calculated the percentage of those that were found to harbor two or more recessive pathogenic variants in the same nuclear family. This includes instances where the dual (or more) occurrence of these variants was observed in the same individual. To avoid artificial inflation of the estimate, the denominator was restricted to families in which the molecular analysis of all observed phenotypes has been completed. In other words, if a family with two or more phenotypes was only solved for one of these phenotypes, it did not count because it was considered "incomplete."

Approach 3: We surveyed all consanguineous families in our cohort that underwent targeted prenatal diagnosis for a familial recessive variant in a previous child. By documenting the health outcome of these pregnancies, we estimated the percentage of those that tested negative for the known variant but were found to harbor a different autosomal recessive pathogenic variant.

Coefficient of relationship calculation

From our cohort of 1,773 molecularly characterized families, genome-wide genotyping based on Axiom SNP array was available for 1,233 families to calculate the coefficient of relationship. We used IBDelphi (http://www.insilicase.com/Guide/ibdelphi.aspx) to calculate the coefficient of relationship of the parents as a function of the proportion of identical by descent (IBD) regions in the parents' genomes. When only children's genotyping data were available, we deduced the parental coefficient of relationship by using PLINK to calculate the inbreeding coefficient of the children (coefficient of relationship = inbreeding coefficient $\times 2$).

RESULTS

Prevalence of two or more recessive diseases in consanguineous pedigrees based on family history only

Our aim was to quantify the risk of multiple autosomal recessive diseases in consanguineous families. For our first approach, we surveyed the drawn pedigrees of 1,859 consanguineous families for evidence of more than one autosomal recessive disease. Pedigrees were scored based on the nuclear families and we were able to find 36 pedigrees where there was compelling evidence of more than one autosomal recessive disease (1.94%) (Fig. 1).

Prevalence of two or more recessive diseases in consanguineous pedigrees based on molecular analysis

Our second approach was to survey our cohort of 1,773 molecularly characterized consanguineous families with at least one autosomal recessive disease and score for families with more than one molecularly characterized autosomal recessive disease. Our analysis showed 51 families with two autosomal recessive diseases and one with three autosomal recessive diseases (52/1,773 [2.93%]) (Table 1, Fig. 1 and Fig. S1). Please note the limited overlap between the cohorts used in approaches 1 and 2 (Fig. S2). This is due to lack of digital pedigrees for many families, the presence of multilocus phenotypes, and the fact that many families remain incompletely characterized molecularly.

To provide a higher resolution of the above estimated risk, we stratified our cohort based on the calculated coefficient of relationship into three categories:

Category 1: families with coefficient of relationship corresponding to first-degree cousins or higher (coefficient of relationship \geq 12.5%)

Category 2: families with coefficient of relationship between first- and second-degree cousins (12.5% > coefficient of relation-ship $\ge 3.125\%$)

Category 3: families with coefficient of relationship lower than second-degree cousins (coefficient of relationship <3.125%).

Our analysis revealed that the risk of more than one autosomal recessive disease in the first category (families with coefficient of relationship corresponding to first-degree cousins or higher) was 3.65% (32 of 876 families). The calculated risk was lower in families with coefficient of relationship lower than first-degree cousins (2.72%).

Pregnancy outcomes of consanguineous couples who underwent targeted prenatal screening for a familial recessive variant

Finally, we assessed the pregnancy outcomes of 144 pregnancies from 88 consanguineous couples who underwent targeted prenatal diagnosis for a recessive variant that had been identified in a previously affected child/pregnancy. We found that of the 144

Family ID	Sample ID	Gene 1	Variant 1	Gene 2	Variant 2	Coefficient of relationship
F5878	17DG0769	SYNPO	NM_001166209.2:c.2540C>T; p.(Pro847Leu)	LAMA2	NM_000426.3:c.2096G>T; p.(Arg699Met)	24.9
F469	11DG1548	C19orf12	NM_031448.6:c.124G>A; p.(Gly42Arg)			21.8
	11DG1549	RYR1	NM_000540.3:c.3619G>A; p.(Val1207Met)			
F6339	2DOS	ASPA	NM_000049.4:c.697dupC; p.(Arg233ProfsTer3)			7.4
	19DG2145	WDPCP	NM_001042692.3:c.1601+1G>T			
F270	09DG00076	LAMA2	NM_000426.3:c.3924+2T>C	CTSD	NM_001909.5:c.1155_1169dup; p.(Phe389_lle390insMetGlyAspValPhe)	20.2
F286	09DG00118	MERTK	NM_006343.3:c.1335_1336del; p.(Ala446Serfs*28)			N/A
	11DG2211	SGSH	NM_000199.5:c.1130G>A; p.(Arg377His)			
F3304	09DG00799	ATF6	NM_007348.4:c.949C>T; p.(Arg317*)	PKHD1	NM_138694.4:c.4870C>T; p.(Arg1624Trp)	10.4
F656	15DG0468	NDX	NM_012293.3:c.2920G>A; p.(Gly974Arg)	CYP1B1	NM_000104.4:c.182G>A; p.(Gly61Glu)	37.2
F900	10DG0373	HPS4	NM_001349905.1:c.502-1G>A	SLC5A1	NM_001256314.2:c.384C>G; p.(Cys128Trp)	20.2
F1302	10DG1574	PDE6C	NM_006204.3:c.939+5G>A			5.9
	10DG1576	CYP27B1	NM_000785.3:c.1286G>C; p.(Arg429Pro)			
=1787	11DG0299	FARS2	NM_006567.5:c.431A>G; p.(Tyr144Cys)			17.6
	19DG1581	rmod3	NM_198271.5:c.944_945del; p.(Leu315Glnfs*10)			
F2084	11DG1254	FBXL4	NM_012160.5:c.1698A>G; p.(lle566Met)	EYS	NM_001142800.1:c.2137+1G>A	18.2
-2206	11DG1572	SGCA	NM_000023.4:c.101G>A; p.(Arg34His)			N/A
	11DG1573	ASL	NM_000048.4:c.1060C>T; p.(Gln354*)			
=2288	11DG1872	PYCR1	NM_153824.3:c.616G>A; p.(Gly206Arg)	PKHD1	NM_138694.4:c.4870C>T; p.(Arg1624Trp)	6.5
F3354	13DG0259	FCRL4	NM_031282.2:c.847+1G>A			13.2
	15DG0933	SLC17A5	NM_012434.4:c.1111+1G>A			
F2852	12DG0952	USH2A	NM_206933.4:c.8480T>C; p.(Leu28275er)			19.8
	12DG1176	ARL 13B	NM_182896.3:c.599G>A; p.(Arg200His)			
F3134	12DG2078	MYO18B	NM_032608.7:c.6905C>A; p.(Ser2302*)	INSR	NM_000208.4:c.433C>T;p.(Arg145Cys)	N/A
F3282	12DG2604	COL11A2	NM_080680.3:c.1607G>A; p.(Arg536Gln)	B4GALT7	NM_007255.3:c.808C>T; p.(Arg270Cys)	N/A
F3339	13DG0152	11XDD	NM_152438.2:c.2633dupG; p.(Ser878Argf5*83)	MARS2	NM_138395.4:c.1595C>G; p.(Ala532Gly)	15.1
F3444	13DG0608	ILIDILI	NM_138295.5:c.3601C>T; p.(Gln1201*)			21.8
	13DG0610	ALDH7AL	NM_001182.5:c.586T>A; p.(Phe196lle)			
F3483	13DG0792	WDR35	NM_001006657.2:c.206G>A; n (Glv694sn)	PTRHD1	NM_001013663.2:c.365G>A; p.(Arg122Gln)	11.9

Table 1 co.	ntinued					
Family ID	Sample ID	Gene 1	Variant 1	Gene 2	Variant 2	Coefficient of relationship
F3488	13DG0810	PPFIBP1	NM_001198915.1:c.960_961del; p.(Glu320Aspfs*3)	CENPF	NM_016343.4:c.5814C>A; p.(Asp1938Glu)	15.9
F3562	13DG1123	POMT2	NM_013382.7:c.2176G>A; p.(Gly726Arg)	TCTEX1D2	NM_152773.4:c.317+4A>T	22.2
F3678	13DG1665	GLRX5	NM_016417.3:c.197A>C;p.(Gln66Pro)	SLC5A2	NM_003041.4:c.388C>T;p.(Arg130Cys)	10.1
F3972	14DG0221	TMEM92	NM_001168215.1:c.95+3A>G	PLA2G6	NM_003560.4:c.2070_2072del; p.(Val691del)	25.9
	18DG0598	а	а			
F4824	15DG0414	OTOF	NM_194248.3:c.4435G>A; p.(Gly1479Ser)			N/A
	15DG0415	PCDH15	NM_001142763.2:c.2577C>A; p.(Tyr859*)			
F4367	14DG1509	HADHB	NM_000183.3:c.712C>T; p.(Arg238Trp)	HBB	NM_000518.5:c.20A>T; p.(Glu7Val)	15.8
F4415	14DG1695	THSD1	NM_018676.4:c.617G>A; p.(Cys206Tyr)			15.4
	14DG1717	PLAA	NM_001031689.3:c.1276C>T; p.(Pro426Ser)			
F4945	15DG0752	CRYBB1	NM_001887.4:c.171del; p.(Asn58Thrfs*107)			21.2
	15DG0788	LAMA2	NM_000426.3:c.3924+2T>C			
F5150	15DG1367	PTRHD1	NM_001013663.2:c.365G>A; p.(Arg122Gln)	q	д	21.6
F5453	16DG0052	LAMA1	NM_005559.4:c.7437dup; p.(Gly2480Argfs*11)	CA2	NM_000067.2:c.232+1G>A	14.8
F6183	18DG0618	IGFBP7	NM_001553.2:c.830-1G>A			30.8
	18DG0619	TYR	NM_000372.5:c.230G>A; p.(Arg77Gln)			
F6189	18DG0652	suox	NM_000456.3:c.520del; p.(Asp174Thrfs*13)	HBB	NM_000518.5.c.118C>T; p.(Gln40*)	21.7
F531	09DG00980	CPLANE1	NM_023073.4:c.7988_7989delGA; p.(Gly2663Alafs*40)			29.0
	15DG1376	MAPRE2	NM_001256420.2:c.317A>G; p.(Asp106Gly)			
F5375	15DG2367	ITGA6	NM_000210.4: c.3167delA; p.(Lys1056Argfs*25)	PLEC	NM_201378.4:c.9997G>A; p.(Val3333Met)	28.9
F6516	19DG0135	OCA2	NM_000275.3:c.515G>A; p.(Arg172Lys)	FREM 1	NM_144966.7:c.2891_2892del;	23.9
F6534	19DG0238	TMEM231	NM_001077416.2:c.597+1G>A	CHRNG	NM_005199.5:c.1495C>T; p.(Arg499Trp)	16.4
F6545	19DG0322	DNAAF5	NM_017802.4:c.1704_1705del; p.(Arg569Glyfs*7)	CYP21A2	NM_000500.9:c.955C>T; p.(Gln319*)	17.4
F6559	19DG0412	ACOX1	NM_001185039.2:c.565G>A; p.(Gly189Ser)	070G	NM_001277269.2:c.6930dupC; p.(Met2311Hisfs*21)	7.3
F6910	19DG1248	MFSD2A	NM_032793.5:c.750_753delCTGT; p.(Cys251Serfs*3)	EXOSC8	NM_181503.3:c.815G>C; p.(Ser272Thr)	13.5

Table 1 CO	ntinued					
Family ID	Sample ID	Gene 1	Variant 1	Gene 2	Variant 2	Coefficient of relationship
F6938	19DG1422	AIRE	NM_000383.4:c.205_208dupCAGG; p.(Asp70Alafs*148)	PDE6C	NM_006204.3:c.481-1G>A	16.9
F7659	19DG2500	UFC1	NM_016406.4:c.317C>T; p.(Thr106lle)	TYR	NM_000372.5:c.230G>A; p.(Arg77Gln)	N/A
F8270	FW	BRCA2	NM_000059.4:c.8452G>T; p.(Val2818Phe)	DCAF17	NM_001164821.2:c.436delC; p.(Ala147Hisfs*9)	N/A
F227	08DG00981	POC1A	NM_001161580.2:c.241C>T; p.(Arg81*)			14.5
	14DG1138	AGT	NM_000029.4:c.104G>A; p.(Arg35Gln)			
F3288	12DG2624	GALNS	NM_000512.5:c.346G>A; p.(Gly116Ser)			29.9
	19DG0138	DIAPH1	NM_005219.5:c.2332C>T; p.(Gln778*)			
F58	DG08RC00025	GNPAT	NM_014236.3:c.569-3T>G; r.569_696del; p.(Asp190Glufs*7)			10.0
	14DG1553	BBS5	NM_152384.3:c.1A>T; p.?			
F1895	11DG0685	ABCA4	NM_000350.3:c.3610G>A; p.(Asp1204Asn)			7.3
	11DG0686	C2orf71	NM_001029883.3:c.2704A>T; p.(Lys902*)			
F5434	15DG2689	PCNT	NM_006031.6:c.2812C>T; p.(Gln938*)			22.2
	15DG2690	1 SHAN	NM_004646.4:c.3250dupG; p.(Val1084Glyfs*12)			
F7661	19DG2768	F13A1	NM_000129.4:c.233G>A; p.(Arg78His)			N/A
	19DG2504	U	υ			
F5396	15DG2482	ACADVL	NM_000018.4:c.65C>A; p.(Ser22*)			16.8
	PDS	UBE3B	NM_130466.4:c.2671C>T; p.(Gln891*)			
F6398	PSMMC0166	HERC2	NM_004667.5:c.7704_7716 + 5del; p.(Glu2569Trpfs*3)	MY05A	NM_000259.3:c.655C>T; p.(Arg219Cys)	N/A
F6439	PSMMC0242	MAPK8IP2	NM_012324.6:c.1067G>C; p.(Ser356Thr)	TLE6	NM_024760.3:c.1160C>A; p.(Ser387Tyr)	N/A
F6413	PSMMC0243	G6PC3	NM_138387.4:c.479C>T; p.(Ser160Leu)	DHCR7	NM_001163817.2:c.52G>A; p.(Val18Ile)/ NM_001163817.2: c.207_208delinsCC p.(Gly70Arg) Compound heterozygous	N/A
Note that a,	, b, and c are nove	el candidate	genes (unpublished data).			

SPRINGER NATURE

2452

pregnancies, 81 resulted in healthy outcomes, 46 had a fetus affected with the same disease as the index, and 17 resulted in other outcomes. For the latter, these can be broken down as follows: two pregnancies with chromosomal abnormalities (trisomy 21), two cases of autosomal dominant diseases, nine cases that are still under molecular investigation (stillbirth, intrauterine fetal demise [IUFD], and congenital heart disease), three cases that are molecularly proven to be autosomal recessive, and one case showing an autosomal recessive mode of inheritance because the phenotype was also observed in cousins but is still under molecular investigation (Fig. 1 and Table S1). Therefore, our data show that 4 of the 144 pregnancies resulted in another autosomal recessive disease in the same family (2.78%).

DISCUSSION

The occurrence of multiple autosomal recessive conditions within consanguineous families has long been recognized. In the preexome era, this was considered a challenge in positional mapping especially when the phenotypes are overlapping such that affected members were lumped together even though their underlying variants are different [11]. We are not aware, however, of a systematic analysis of this phenomenon in a large cohort of consanguineous families. Thus, our finding that ~3% of consanguineous families have more than one autosomal recessive disease can be considered an important reference range given the large size of the studied cohort. This would be consistent with a prior study in which we specifically interrogated couples in our consanguineous population and found that 9.7% shared the carrier status for a recessive variant other than the one observed in their affected child [7]. Remarkably, a nearly identical estimate was arrived at by Mor-Shaked and colleagues who detected secondary shared carrier status for pathogenic and likely pathogenic variants leading to autosomal recessive disorders in 10 of 102 (9.8%) consanguineous couples they analyzed [12]. Unlike these previous reports that predicted the residual risk for additional autosomal recessive diseases based on the shared carrier status for variants among parents, our study is based on actual, observed outcomes in a large cohort of molecularly characterized consanguineous families including prospectively followed pregnancies.

Traditional genetic counseling informs couples of a background risk for major birth malformation of 3% and near doubling of this if the couple is consanguineous, which was borne out by a large population-based birth defect registry from our consanguineous population and others [13, 14]. What remains unclear, however, is how to translate this into actionable information in the era of genome sequencing. For example, can this be deconstructed into individual recessive diseases for which prevention can be offered? Since the previously mentioned estimate is based on a range of risks, it does not provide a personalized risk for the couple seeking counseling. Consanguineous couples continue to be offered targeted prenatal diagnosis for their familial recessive variants with ambiguous counseling about their residual risk for additional diseases. In view of our estimate of ~3% (with higher calculated risk if the couple are first cousins [3.65%]) it appears reasonable in an era where exome sequencing is commonplace to propose offering expanded carrier screening at least to those who choose it after they are informed of the significant residual risk. This is especially salient given that all the additional recessive variants encountered in our cohort are identifiable by exome sequencing. Therefore, we recommend that exome sequencing rather than targeted variant analysis should be offered to refine the residual risk by directly identifying other pathogenic variants.

We should emphasize that the $\sim 3\%$ residual risk is likely an underestimate. Many families with more than one phenotype did not contribute to this estimate because there was insufficient evidence of recurrence (approach 1) or because they have not yet been fully molecularly characterized (approaches 2 and 3). We have previously shown that the majority of Mendelian phenotypes in our highly consanguineous population are autosomal recessive as proven by molecular testing even when positive family history is lacking [15]. Thus, it is likely that at least some of those additional phenotypes are recessive. Indeed, despite the limited value of pedigree-only approach (approach 1), as revealed by our study, we opted to retain this part of our analysis to highlight its tendency to underestimate the residual risk for additional recessive diseases compared to the more reliable molecularly based estimates. This further supports our argument that broader molecular testing of consanguineous parents, e.g., exome sequencing is warranted regardless of the family history. We also note the value of approach 3 in providing real-world estimate of the residual risk for additional recessive diseases based on actual pregnancies despite the relatively small number of couples surveyed. The use of larger cohorts in the future should help refine this risk further.

In conclusion, we provide a minimum residual risk of ~3% above and beyond the recurrence risk of a previously documented recessive disease in consanguineous couples. Future guidelines should take this into account and consider a recommendation for exome/genome sequencing instead of targeted variant analysis for consanguineous couples who opt for preventive genetic tests.

DATA AVAILABILITY

Data collected and analyzed for this paper are available upon request.

Received: 19 April 2021; Revised: 13 July 2021; Accepted: 13 July 2021; 2021;

Published online: 27 July 2021

REFERENCES

- 1. Bittles AH. A community genetics perspective on consanguineous marriage. Community Genet. 2008;11:324–330.
- Clark DW, Okada Y, Moore K, Mason D, Pirastu N, Gandin I, et al. Associations of autozygosity with a broad range of human phenotypes. Nat Commun. 2019;10:1–17.
- Alkuraya FS. Curt Stern Award address: a more perfect clinical genome—how consanguineous populations contribute to the medical annotation of the human genome. Am J Hum Genet. 2021;108:395–399.
- Alkuraya FS. How the human genome transformed study of rare diseases. Nature. 2021;590:218–219.
- Alkuraya F. Impact of new genomic tools on the practice of Clin Genet in consanguineous populations: the Saudi experience. Clin Genet. 2013;84:203–208.
- Monies D, Abouelhoda M, AlSayed M, Alhassnan Z, Alotaibi M, Kayyali H, et al. The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum Genet. 2017;136:921–939.
- Monies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N, et al. Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet. 2019;104:1182–1201.
- Martin HC, Jones WD, McIntyre R, Sanchez-Andrade G, Sanderson M, Stephenson JD, et al. Quantifying the contribution of recessive coding variation to developmental disorders. Science. 2018;362:1161–1164.
- Kirk EP, Ong R, Boggs K, Hardy T, Righetti S, Kamien B, et al. Gene selection for the Australian reproductive genetic carrier screening project ("Mackenzie's Mission"). Eur J Hum Genet. 2021;29:79–87.
- Delatycki MB, Alkuraya F, Archibald A, Castellani C, Cornel M, Grody WW, et al. International perspectives on the implementation of reproductive carrier screening. Prenat Diagn. 2020;40:301–310.
- Miano MG, Jacobson SG, Carothers A, Hanson I, Teague P, Lovell J, et al. Pitfalls in homozygosity mapping. Am J Hum Genet. 2000;67:1348–1351.
- Mor-Shaked H, Rips J, Gershon Naamat S, Reich A, Elpeleg O, Meiner V, et al. Parental exome analysis identifies shared carrier status for a second recessive disorder in couples with an affected child. Eur J Hum Genet. 2021;29:455–462.
- 13. Majeed-Saidan MA, Ammari AN, AlHashem AM, Al Rakaf MS, Shoukri MM, Garne E, et al. Effect of consanguinity on birth defects in Saudi women: results from a

2454

nested case-control study. Birth Defects Res A Clin Mol Teratol. 2015;103:100–104.

- 14. Bittles AH. Consanguineous marriages and congenital anomalies. Lancet. 2013;382:1316–1317.
- Anazi S, Maddirevula S, Faqeih E, Alsedairy H, Alzahrani F, Shamseldin HE, et al. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry. 2017;22:615–624.

AUTHOR INFORMATION:

Conceptualization: F.S.A. Data curation: L.A., S.A., A.A., R.H. Resources: F.I., M.A. Investigation: L.A., S.A., A.A., R.H. Writing—original draft: L.A., F.S.A. Writing—review & editing: L.A., F.S.A.

ACKNOWLEDGEMENTS

We thank the study families for their participation. We also thank Latifa Aljasser and our research coordinators (Mais Hashem, Firdous Abdulwahab, and Omar Abuyousef) for their help with data collection as well as Basel Alebdi for his help with data analysis. We would also like to thank Researchers Supporting Project number (RSP-2021/181), King Saud University, Riyadh, Saudi Arabia for providing funding for L.A.

ETHICS DECLARATION

Informed consent was obtained from all families under the relevant IRB-approved (KFSHRC REC) research protocol for their respective disease. The consent permits us to construct detailed pedigrees and collect full clinical data including follow-up data on future pregnancies.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41436-021-01289-5.

Correspondence and requests for materials should be addressed to F.S.A.

Reprints and permission information is available at http://www.nature.com/ reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.