Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opportunities and pitfalls of social media research in rare genetic diseases: a systematic review

Abstract

Purpose

Social media may be particularly valuable in research in rare genetic diseases because of the low numbers of patients and the rare disease community’s robust online presence. The goal of this systematic review was to understand how social media is currently used in rare disease research and the characteristics of the participants in these studies.

Methods

We conducted a systematic review of six databases to identify studies published in English between January 2004 and November 2020, of which 120 met inclusion criteria.

Results

Most studies were observational (n = 114, 95.0%) and cross-sectional (n = 107, 89.2%), and more than half (n = 69, 57.5%) utilized only surveys. Only 101 rare diseases were included across all studies. Participant demographics, when reported, were predominantly female (70.1% ± 22.5%) and white (85.0% ± 11.0%) adult patients and caregivers.

Conclusion

Despite its potential benefits in rare disease research, the use of social media is still methodologically limited and the participants reached may not be representative of the rare disease population by gender, race, age, or rare disease type. As scholars explore using social media for rare disease research, careful attention should be paid to representativeness when studying this diverse patient community.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: PRISMA flow diagram detailing screening and selection of articles.
Fig. 2: Diseases studied.
Fig. 3: Percentage of studies reporting age, race, and sex of patients and caregivers.

Data availability

The data set supporting the current study is included as a supplemental table.

References

  1. Shire. Rare disease impact report: insights from patients and the medical community. 2013. https://globalgenes.org/wp-content/uploads/2013/04/ShireReport-1.pdf.

  2. Diseases. GARD: Genetic and Rare Diseases Information Center. National Institutes of Health, https://rarediseases.info.nih.gov/diseases.

  3. Field MJ, Boat TF, Institute of Medicine (US), National Academies Press (US), eds. Rare Diseases and Orphan Products: Accelerating Research and Development. Washington (DC): National Academies Press; 2010.

  4. Stoller JK. The challenge of rare diseases. Chest. 2018;153:1309–1314.

    PubMed  Google Scholar 

  5. Iyer AA, Barzilay JR, Tabor HK. Patient and family social media use surrounding a novel treatment for a rare genetic disease: a qualitative interview study. Genet Med. 2020;22:1830–1837. https://doi.org/10.1038/s41436-020-0890-6.

  6. Schumacher KR, et al. Social media methods for studying rare diseases. Pediatrics. 2014;133:e1345–e1353.

    PubMed  PubMed Central  Google Scholar 

  7. Topolovec-Vranic J, Natarajan K. The use of social media in recruitment for medical research studies: a scoping review. J Med Internet Res. 2016;18:e286.

    PubMed  PubMed Central  Google Scholar 

  8. Shen Y, Fang Y, Wu D, Bai J, Lin Y. Application of WeChat-assisted peri-operative care in children with congenital megacolon. J Paediatr Child Health. 2020 ;56:1551–6. https://doi.org/10.1111/jpc.14990.

  9. Yamaguchi A, Queralt-Rosinach N. A proof-of-concept study of extracting patient histories for rare/intractable diseases from social media. Genomics Inform. 2020;18:e17.

    PubMed  PubMed Central  Google Scholar 

  10. Coulson NS, Buchanan H, Aubeeluck A. Social support in cyberspace: a content analysis of communication within a Huntington’s disease online support group. Patient Educ Couns. 2007;68:173–178.

    PubMed  Google Scholar 

  11. Marshall DA, et al. The value of diagnostic testing for parents of children with rare genetic diseases. Genet Med. 2019;21:2798–2806.

    PubMed  Google Scholar 

  12. Subirats L, Reguera N, Bañón A, Gómez-Zúñiga B, Minguillón J, Armayones M. Mining Facebook data of people with rare diseases: a content-based and temporal analysis. Int J Environ Res Public Health. 2018;15:1877.

    PubMed Central  Google Scholar 

  13. Arigo D, Pagoto S, Carter-Harris L, Lillie SE, Nebeker C. Using social media for health research: methodological and ethical considerations for recruitment and intervention delivery. Digit Health. 2018;4:205520761877175.

    Google Scholar 

  14. Ortiz-Ospina E. The rise of social media. Our World in Data. 2019. https://ourworldindata.org/rise-of-social-media. Accessed 30 October 2020.

  15. Orphanet. Linearization of disorders. http://www.orphadata.org/cgi-bin/rare_free.html. Accessed 4 November 2020.

  16. Zotero. 2020. Center for History and New Media at George Mason University, Fairfax County, Virginia. www.zotero.org

  17. Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available at www.covidence.org.

  18. Microsoft Excel for Mac. 2021. Microsoft Corporation, Redmond, Washington, U.S.

  19. Dedoose Version 8.3.45, web application for managing, analyzing, and presenting qualitative and mixed method research data (2020). Los Angeles, CA: SocioCultural Research Consultants, LLC. www.dedoose.com.

  20. Akre C, Polvinen J, Ullrich NJ, Rich M. Children’s at home: pilot study assessing dedicated social media for parents of adolescents with neurofibromatosis type 1. J Genet Couns. 2018;27:505–517.

    PubMed  Google Scholar 

  21. Abhyankar P, Anand A, Stanbrook MB. On survival comparisons between adult cystic fibrosis patients in Canada versus the United States: Twitter discussions from @respandsleepjc (#rsjc). Can J Respir Crit Care Sleep Med. 2018;2:180–181.

    Google Scholar 

  22. Acher CW, Ostlie DJ, Leys CM, Struckmeyer S, Parker M, Nichol PF. Long-term outcomes of patients with tracheoesophageal fistula/esophageal atresia: survey results from tracheoesophageal fistula/esophageal atresia online communities. Eur J Pediatr Surg. 2016;26:476–480.

    PubMed  Google Scholar 

  23. Albright K, et al. Seeking and sharing: why the pulmonary fibrosis community engages the web 2.0 environment. BMC Pulm Med. 2016;16:1–7.

    Google Scholar 

  24. Ali R, et al. Use of social media to assess the effectiveness of vagal nerve stimulation in Dravet syndrome: a caregiver’s perspective. J Neurol Sci. 2017;375:146–149.

    PubMed  Google Scholar 

  25. Al-Shaqsi SZ, Rai A, Forrest C, Phillips J. Public perception of a normal head shape in children with sagittal craniosynostosis. J Craniofac Surg. 2020;31:940–944.

    PubMed  Google Scholar 

  26. Anderson KE, et al. Quality of care for Huntington’s disease in the United States: findings from a national survey of patients and caregivers. J Huntingt Dis. 2019;8:509–519.

    Google Scholar 

  27. Applequist J, et al. A novel approach to conducting clinical trials in the community setting: utilizing patient-driven platforms and social media to drive web-based patient recruitment. BMC Med Res Methodol. 2020;20:58.

    PubMed  PubMed Central  Google Scholar 

  28. Barriteau CM, Thompson AL, Meier ER, Pecker LH. Sickle cell disease related internet activity is three times less frequent than cystic fibrosis related internet activity. Pediatr Blood Cancer. 2016;63:2061–2062.

    PubMed  Google Scholar 

  29. Baxter M, Erby L, Roter D, Bernhardt BA, Terry P, Guttmacher A. Health screening behaviors among adults with hereditary hemorrhagic telangiectasia in North America. Genet Med. 2017;19:659–666.

    PubMed  Google Scholar 

  30. Bedgood R, Sadurski R, Schade RR. The use of the internet in data assimilation in rare diseases. Dig Dis Sci. 2007;52:307–312.

    PubMed  Google Scholar 

  31. Bi Q, et al. Determining the topic evolution and sentiment polarity for albinism in a Chinese online health community: machine learning and social network analysis. JMIR Med Inform. 2020;8:e17813.

    PubMed  PubMed Central  Google Scholar 

  32. Bowmer G, et al. Adherence to infection prevention and control guidelines: a vignette-based study of decision-making and risk-taking in young adults with cystic fibrosis. J Cyst Fibros. 2017;16:146–150.

    PubMed  Google Scholar 

  33. Bruckner AL, et al. The challenges of living with and managing epidermolysis bullosa: insights from patients and caregivers. Orphanet J Rare Dis. 2020;15. https://doi.org/10.1186/s13023-019-1279-y.

  34. Calthorpe RJ, et al. What effective ways of motivation, support and technologies help people with cystic fibrosis improve and sustain adherence to treatment? BMJ Open Respir Res. 2020;7. https://doi.org/10.1136/bmjresp-2020-000601.

  35. Cammidge SL, Duff AJA, Latchford GJ, Etherington C. When women with cystic fibrosis become mothers: psychosocial impact and adjustments. Pulm Med. 2016;2016:9458980.

    PubMed  PubMed Central  Google Scholar 

  36. Canalichio KL, et al. Patient-reported outcomes in adult females with bladder exstrophy: a study of long-term sexual, reproductive and urinary outcomes using social media. J Pediatr Urol. 2020. https://doi.org/10.1016/j.jpurol.2020.06.020.

  37. St Carter MT, Pierre SA, Zackai EH, Emanuel BS, Boycott KM. Phenotypic delineation of Emanuel syndrome (supernumerary derivative 22 syndrome): clinical features of 63 individuals. Am J Med Genet A. 2009;149A:1712–1721.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Castillo Esparcia A, López Villafranca P, Carretón Ballester MC. Online communication of patients with rare diseases in Spain. Rev Lat Comun Soc. 2015;70:673–688.

    Google Scholar 

  39. Collins R, et al. Cholesteatoma and family history: an international survey. Clin Otolaryngol. 2020;45:500–505.

    PubMed  Google Scholar 

  40. Comerford M, Fogel R, Bailey JR, Chilukuri P, Chalasani N, Lammert CS. Leveraging social networking sites for an autoimmune hepatitis genetic repository: pilot study to evaluate feasibility. J Med Internet Res. 2018;20:e14.

    PubMed  PubMed Central  Google Scholar 

  41. Cotter K, Siskind CE, Sha SJ, Hanson-Kahn AK. Positive attitudes and therapeutic misconception around hypothetical clinical trial participation in the Huntington’s disease community. J Huntingtons Dis. 2019;8:421–430.

    PubMed  PubMed Central  Google Scholar 

  42. Cotton AC, Bell RB, Jinnah HA. Expert opinion vs patient perspective in treatment of rare disorders: tooth removal in Lesch-Nyhan disease as an example. JIMD Rep. 2018;41:25–27.

    PubMed  Google Scholar 

  43. Cragg S, Lafreniere K. Effects of Turner syndrome on women’s self-esteem and body image. J Dev Phys Disabil. 2010;22:433–445.

    Google Scholar 

  44. Czajka CM, DiCaprio MR. What is the proportion of patients with multiple hereditary exostoses who undergo malignant degeneration? Clin Orthop. 2015;473:2355–2361.

    PubMed  PubMed Central  Google Scholar 

  45. DasMahapatra P, Raja P, Gilbert J, Wicks P. Clinical trials from the patient perspective: survey in an online patient community. BMC Health Serv Res. 2017;17:166.

    PubMed  PubMed Central  Google Scholar 

  46. David MP, et al. Perspectives of patients with dermatofibrosarcoma protuberans on diagnostic delays, surgical outcomes, and nonprotuberance. JAMA Netw Open. 2019;2:e1910413.

    PubMed  PubMed Central  Google Scholar 

  47. De Nardi L, Trombetta A, Ghirardo S, Genovese MRL, Barbi E, Taucar V. Adolescents with chronic disease and social media: a cross-sectional study. Arch Dis Child. 2020;105:744–748.

    PubMed  Google Scholar 

  48. DiBenedetti DB, Coles TM, Sharma T, Pericleous L, Kulkarni R. Assessing patients’ and caregivers’ perspectives on stability of factor VIII products for haemophilia A: a web-based study in the United States and Canada. Haemophilia. 2014;20:e296–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ekins S, Clark AM, Williams AJ. Open drug discovery teams: a chemistry mobile app for collaboration. Mol Inform. 2012;31:585–597.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. El Abiad JM, et al. Natural history of Ollier disease and Maffucci syndrome: patient survey and review of clinical literature. Am J Med Genet A. 2020;182:1093–1103.

    PubMed  PubMed Central  Google Scholar 

  51. Eley SEA, McKechanie AG, Campbell S, Stanfield AC. Facilitating individuals and families affected by fragile X syndrome to participate in medication trials. J Intellect Disabil Res. 2020;64:864–874.

    Google Scholar 

  52. Elfassy C, Cachecho S, Snider L, Dahan-Oliel N. Participation among children with arthrogryposis multiplex congenita: a scoping review. Phys Occup Ther Pediatr. 2020;40:610–636.

    PubMed  Google Scholar 

  53. Engwerda A, et al. The phenotypic spectrum of proximal 6q deletions based on a large cohort derived from social media and literature reports. Eur J Hum Genet. 2018;26:1478–1489.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferrara L, Morando V, Tozzi V. The transition of patients with rare diseases between providers: the patient journey from the patient perspective. Int J Integr Care. 2017;17:1–2.

    Google Scholar 

  55. Fogel R, Comerford M, Chilukuri P, Orman E, Chalasani N, Lammert C. Extrahepatic autoimmune diseases are prevalent in autoimmune hepatitis patients and their first-degree relatives: survey study. Interact J Med Res. 2018;7:e18.

    PubMed  PubMed Central  Google Scholar 

  56. Frost JH, Massagli MP. Social uses of personal health information within PatientsLikeMe, an online patient community: what can happen when patients have access to one another’s data. J Med Internet Res. 2008;10:e15.

    PubMed  PubMed Central  Google Scholar 

  57. Frost J, Okun S, Vaughan T, Heywood J, Wicks P. Patient-reported outcomes as a source of evidence in off-label prescribing: analysis of data from PatientsLikeMe. J Med Internet Res. 2011;13:e6.

    PubMed  PubMed Central  Google Scholar 

  58. Gelbard A, et al. Comparative treatment outcomes for patients with idiopathic subglottic stenosis. JAMA Otolaryngol Head Neck Surg. 2020;146:20–29.

    PubMed  Google Scholar 

  59. Goel K, Tweet M, Olson TM, Maleszewski JJ, Gulati R, Hayes SN. Familial spontaneous coronary artery dissection: evidence for genetic susceptibility. JAMA Intern Med. 2015;175:821–826.

    PubMed  Google Scholar 

  60. Gow J, Moffatt C, Blackport J. Participation in patient support forums may put rare disease patient data at risk of re-identification. Orphanet J Rare Dis. 2020;15:226.

    PubMed  PubMed Central  Google Scholar 

  61. Greenberg BM, Krishnan C, Harder L. New onset transverse myelitis diagnostic accuracy and patient experiences. Mult Scler Relat Disord. 2019;30:42–44.

    PubMed  Google Scholar 

  62. Guthrie G, Davies RM, Fleming CK, Browning AC. YouTube as a source of information about retinitis pigmentosa. Eye (Lond). 2014;28:499–500.

    CAS  Google Scholar 

  63. Haik D, et al. The online support group as a community: a thematic content analysis of an online support group for idiopathic subglottic stenosis. Ann Otol Rhinol Laryngol. 2019;128:293–299.

    PubMed  Google Scholar 

  64. Haller J, David MP, Lee NE, Shalin SC, Gardner JM. Impact of pathologist involvement in sarcoma and rare tumor patient support groups on Facebook: a survey of 542 patients and family members. Arch Pathol Lab Med. 2018;142:1113–1119.

    PubMed  Google Scholar 

  65. Hamilton KV, et al. Exploring the medical and psychosocial concerns of adolescents and young adults with craniofacial microsomia: a qualitative study. Cleft Palate Craniofacial J. 2018;55:1430–1439.

    Google Scholar 

  66. Hawkins DM, Eide MJ, Lim HW. Perception of xeroderma pigmentosum support group members of xeroderma pigmentosum lifestyle impact. Photodermatol Photoimmunol Photomed. 2012;28:338–339.

    PubMed  Google Scholar 

  67. Holton S, Fisher J, Button B, Williams E, Wilson J. Childbearing concerns, information needs and preferences of women with cystic fibrosis: an online discussion group. Sex Reprod Healthc. 2019;19:31–35.

    PubMed  Google Scholar 

  68. Jacobs R, Boyd L, Brennan K, Sinha CK, Giuliani S. The importance of social media for patients and families affected by congenital anomalies: a Facebook cross-sectional analysis and user survey. J Pediatr Surg. 2016;51:1766–1771.

    PubMed  Google Scholar 

  69. Janvier A, Farlow B, Wilfond BS. The experience of families with children with trisomy 13 and 18 in social networks. Pediatrics. 2012;130:293–298.

    PubMed  Google Scholar 

  70. Johnson KJ, Mueller NL, Williams K, Gutmann DH. Evaluation of participant recruitment methods to a rare disease online registry. Am J Med Genet A. 2014;164A:1686–1694.

    PubMed  Google Scholar 

  71. Judd-Glossy L, Ariefdjohan M, Curry S, Ketzer J, Pena A, Bischoff A. A survey of adults with anorectal malformations: perspectives on educational, vocational, and psychosocial experiences. Pediatr Surg Int. 2019;35:953–961.

    PubMed  Google Scholar 

  72. Kauw D, Repping-Wuts H, Noordzij A, Stikkelbroeck N, Hermus A, Faber M. The contribution of online peer-to-peer communication among patients with adrenal disease to patient-centered care. J Med Internet Res. 2015;17:e54–e54.

    PubMed  PubMed Central  Google Scholar 

  73. Kelleher E, Giampietro PF, Moreno MA. Marfan syndrome patient experiences as ascertained through postings on social media sites. Am J Med Genet A. 2015;167A:2629–2634.

    PubMed  Google Scholar 

  74. Kennedy J, et al. KAT6A Syndrome: genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants. Genet Med. 2019;21:850–860.

    CAS  PubMed  Google Scholar 

  75. Keogh RH, Bilton D, Cosgriff R, Kavanagh D, Rayner O, Sedgwick PM. Results from an online survey of adults with cystic fibrosis: accessing and using life expectancy information. PLoS One. 2019;14:e0213639.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kirk S, Milnes L. An exploration of how young people and parents use online support in the context of living with cystic fibrosis. Health Expect. 2016;19:309–321.

    PubMed  Google Scholar 

  77. Kleinendorst L, van den Heuvel LM, Henneman L, van Haelst MM. Who ever heard of 16p11.2 deletion syndrome? Parents’ perspectives on a susceptibility copy number variation syndrome. Eur J Hum Genet. 2020;28:1196–1204.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Knepper KNK, Arrington MI. Social support and coping in an online PHPV forum. Tex Speech Commun J. 2020;44:19–31.

    Google Scholar 

  79. Krahe AM, Adams RD, Nicholson LL. Features that exacerbate fatigue severity in joint hypermobility syndrome/Ehlers-Danlos syndrome—hypermobility type. Disabil Rehabil. 2018;40:1989–1996.

    PubMed  Google Scholar 

  80. Krischer J, et al. Experience with direct-to-patient recruitment for enrollment into a clinical trial in a rare disease: a web-based study. J Med Internet Res. 2017;19:e50.

    PubMed  PubMed Central  Google Scholar 

  81. Kühnle L, Mücke U, Lechner WM, Klawonn F, Grigull L. Development of a social network for people without a diagnosis (RarePairs): evaluation study. J Med Internet Res. 2020;22:e21849.

    PubMed  PubMed Central  Google Scholar 

  82. Liao BT, Busse J, Ender KL, Schechter WS. Exploring social media for patient perspectives of sickle cell disease. Pediatr Hematol Oncol. 2016;33:134–135.

    PubMed  Google Scholar 

  83. Lowery EM, Afshar M, West N, Kovacs EJ, Smith B, Joyce C. Self-reported alcohol use in the cystic fibrosis community. J Cyst Fibros. 2020;19:84–90.

    PubMed  Google Scholar 

  84. Macdonald M, Hudson A, Bladon A, Ratcliffe E, Blake K. Experiences in feeding and gastrointestinal dysfunction in children with CHARGE syndrome. Am J Med Genet A. 2017;173:2947–2953.

    PubMed  Google Scholar 

  85. Mallett AJ, et al. Precision medicine diagnostics for rare kidney disease: Twitter as a tool in clinical genomic translation. Kidney Med. 2019;1:315–318.

    PubMed  PubMed Central  Google Scholar 

  86. Marques-da-Silva D, et al. An electronic questionnaire for liver assessment in congenital disorders of glycosylation (LeQCDG): a patient-centered study. JIMD Rep. 2019;44:55–64.

    CAS  PubMed  Google Scholar 

  87. Mastboom MJ, Planje R, van de Sande MA. The patient perspective on the impact of tenosynovial giant cell tumors on daily living: crowdsourcing study on physical function and quality of life. Interact J Med Res. 2018;7:e4.

    PubMed  PubMed Central  Google Scholar 

  88. Mc Hugh R, Mc Feeters D, Boyda D, O’Neill S. Coping styles in adults with cystic fibrosis: implications for emotional and social quality of life. Psychol Health Med. 2016;21:102–112.

    Google Scholar 

  89. Meade O, Buchanan H, Coulson N. The use of an online support group for neuromuscular disorders: a thematic analysis of message postings. Disabil Rehabil. 2018;40:2300–2310.

    PubMed  Google Scholar 

  90. Mehner LC, Jung JL, Maloney JA, McCourt EA. Ocular findings in pontine tegmental cap dysplasia. Cornea. 2020;39:1516–1519.

    PubMed  Google Scholar 

  91. Might M, Might CC. What happens when N = 1 and you want plus 1? Prenat Diagn. 2017;37:70–72.

    PubMed  Google Scholar 

  92. Myers KA, et al. The epileptology of Koolen-de Vries syndrome: electro-clinico-radiologic findings in 31 patients. Epilepsia. 2017;58:1085–1094.

    CAS  PubMed  Google Scholar 

  93. Nakamura C, Bromberg M, Bhargava S, Wicks P, Zeng-Treitler Q. Mining online social network data for biomedical research: A comparison of clinicians’ and patients’ perceptions about amyotrophic lateral sclerosis treatments. J Med Internet Res. 2012;14:268–274.

    Google Scholar 

  94. Nicholas DB, Chahauver A, Brownstone D, Hetherington R, McNeill T, Bouffet E. Evaluation of an online peer support network for fathers of a child with a brain tumor. Soc Work Health Care. 2012;51:232–245.

    PubMed  Google Scholar 

  95. Nieroba E, Larysz D. The internet as an additional source of information on rare illness. A Facebook support group for parents of children with craniosynostosis as a case study. Pol Ann Med. 2020;27:53–58.

    Google Scholar 

  96. Pacione M, Siskind CE, Day JW, Tabor HK. Perspectives on Spinraza (nusinersen) treatment study: views of individuals and parents of children diagnosed with spinal muscular atrophy. J Neuromuscul Dis. 2019;6:119–131.

    PubMed  Google Scholar 

  97. Palser SC, Rayner OC, Leighton PA, Smyth AR. Perception of first respiratory infection with Pseudomonas aeruginosa by people with cystic fibrosis and those close to them: an online qualitative study. BMJ Open. 2016;6:e012303.

    PubMed  PubMed Central  Google Scholar 

  98. Peipert BJ, Goswami S, Helenowski I, Yount SE, Sturgeon C. Financial burden is associated with worse health-related quality of life in adults with multiple endocrine neoplasia type 1. Surgery. 2017;162:1278–1285.

    PubMed  Google Scholar 

  99. Pemmaraju N, Gupta V, Mesa R, Thompson MA. Social media and myeloproliferative neoplasms (MPN)—focus on Twitter and the development of a disease-specific community: #MPNSM. Curr Hematol Malig Rep. 2015;10:413–420.

    PubMed  Google Scholar 

  100. Pemmaraju N, Gupta V, Thompson MA, Lane AA. Social media and Internet resources for patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). Curr Hematol Malig Rep. 2016;11:462–467.

    PubMed  Google Scholar 

  101. Pemmaraju N, Utengen A, Gupta V, Thompson MA, Lane AA. Blastic plasmacytoid dendritic cell neoplasm (BPDCN) on social media: #BPDCN-increasing exposure over two years since inception of a disease-specific Twitter community. Curr Hematol Malig Rep. 2018;13:581–587.

    PubMed  Google Scholar 

  102. Pemmaraju N, Utengen A, Gupta V, Thompson MA, Lane AA. Analysis of first-year Twitter metrics of a rare disease community for blastic plasmacytoid dendritic cell neoplasm (BPDCN) on social media: #BPDCN. Curr Hematol Malig Rep. 2017;12:592–597.

    PubMed  Google Scholar 

  103. Pemmaraju N, Thompson MA, Qazilbash M. Disease-specific hashtags and the creation of Twitter medical communities in hematology and oncology. Semin Hematol. 2017;54:189–192.

    PubMed  Google Scholar 

  104. Perrone ME, Carmody D, Philipson LH, Greeley SAW. An online monogenic diabetes discussion group: supporting families and fueling new research. Transl Res J Lab Clin Med. 2015;166:425–431.

    Google Scholar 

  105. Peterson AM, Kallogjeri D, Spitznagel E, Chakinala MM, Schneider JS, Piccirillo JF. Development and validation of the nasal outcome score for epistaxis in hereditary hemorrhagic telangiectasia (NOSE HHT). JAMA Otolaryngol Head Neck Surg. 2020. https://doi.org/10.1001/jamaoto.2020.3040.

  106. Pohlig F, et al. IT-based psychosocial distress screening in patients with sarcoma and parental caregivers via disease-specific online social media communities. Vivo Athens Greece. 2017;31:443–450.

    Google Scholar 

  107. Rowbotham NJ, et al. Adapting the James Lind Alliance priority setting process to better support patient participation: an example from cystic fibrosis. Res Involv Engagem. 2019;5:24.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Rowe CK, Shnorhavorian M, Block P, Ahn J, Merguerian PA. Using social media for patient-reported outcomes: a study of genital appearance and sexual function in adult bladder exstrophy patients. J Pediatr Urol. 2018;14:322.e1–322.e6.

    CAS  Google Scholar 

  109. Schumacher KR, et al. Fontan-associated protein-losing enteropathy and plastic bronchitis. J Pediatr. 2015;166:970–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Seidlin M, et al. Characterization and utilization of an international neurofibromatosis web-based, patient-entered registry: an observational study. PloS One. 2017;12:e0178639.

    PubMed  PubMed Central  Google Scholar 

  111. Sepehripour S, McDermott AL, Lloyd MS. Microtia and social media: patient versus physician perspective of quality of information. J Craniofac Surg. 2017;28:643–645.

    PubMed  Google Scholar 

  112. Shalhub S, et al. Assessment of the information sources and interest in research collaboration among individuals with vascular Ehlers-Danlos syndrome. Ann Vasc Surg. 2020;62:326–334.

    PubMed  Google Scholar 

  113. Smith S, et al. How can we relieve gastrointestinal symptoms in people with cystic fibrosis? An international qualitative survey. BMJ Open Respir Res. 2020;7. https://doi.org/10.1136/bmjresp-2020-000614.

  114. Tsai J-H, Scheimann AO, McCandless SE, Strong TV, Bridges JFP. Caregiver priorities for endpoints to evaluate treatments for Prader-Willi syndrome: a best-worst scaling. J Med Econ. 2018;21:1230–1237.

    PubMed  Google Scholar 

  115. Tweet MS, Gulati R, Aase LA, Hayes SN. Spontaneous coronary artery dissection: a disease-specific, social networking community-initiated study. Mayo Clin Proc. 2011;86:845–850.

    PubMed  PubMed Central  Google Scholar 

  116. Umbaugh HM, et al. Microtia and craniofacial microsomia: content analysis of facebook groups. Int J Pediatr Otorhinolaryngol. 2020;138. https://doi.org/10.1016/j.ijporl.2020.110301.

  117. van der Heijden L, Piner SR, van de Sande MAJ. Pigmented villonodular synovitis: a crowdsourcing study of two hundred and seventy two patients. Int Orthop. 2016;40:2459–2468.

    PubMed  Google Scholar 

  118. Van Tongel A, Piepers I, De Wilde L. The significance of the clavicle on shoulder girdle function. J Shoulder Elbow Surg. 2015;24:e255–259.

    PubMed  Google Scholar 

  119. Victoria Diniz M, et al. Experience with the use of an online community on Facebook for Brazilian patients with gestational trophoblastic disease: netnography study. J Med Internet Res. 2018;20:e10897.

    PubMed  PubMed Central  Google Scholar 

  120. Walker AL, Gaydos LM, Farzan R, De Castro L, Jonassaint C. Social media discussions provide new insight about perceptions of hydroxyurea in the sickle cell community. Am J Hematol. 2019;94:E134–E136.

    PubMed  Google Scholar 

  121. Walker KK. A content analysis of cognitive and affective uses of patient support groups for rare and uncommon vascular diseases: comparisons of may thurner, thoracic outlet, and superior mesenteric artery syndrome. Health Commun. 2015;30:859–871.

    PubMed  Google Scholar 

  122. Wallace SE, Gilvary S, Smith MJ, Dolan SM. Parent perspectives of support received from physicians and/or genetic counselors following a decision to continue a pregnancy with a prenatal diagnosis of trisomy 13/18. J Genet Couns. 2018;27:656–664.

    PubMed  Google Scholar 

  123. Wang T, Lund B. Categories of information need expressed by parents of individuals with rare genetic disorders in a Facebook community group: a case study with implications for information professionals. J Consum Health Internet. 2020;24:20–34.

    Google Scholar 

  124. Weidema ME, et al. Health-related quality of life and symptom burden of epithelioid hemangioendothelioma patients: a global patient-driven Facebook study in a very rare malignancy. Acta Oncol Stockh Swed. 2020;59:975–982.

    Google Scholar 

  125. Weijenborg PTM, Kluivers KB, Dessens AB, Kate-Booij MJ, Both S. Sexual functioning, sexual esteem, genital self-image and psychological and relational functioning in women with Mayer-Rokitansky-Küster-Hauser syndrome: a case-control study. Hum Reprod. 2019;34:1661–1673.

    CAS  PubMed  Google Scholar 

  126. Wicks P, MacPhee GJA. Pathological gambling amongst Parkinson’s disease and ALS patients in an online community (PatientsLikeMe.com): gambling in PD and ALS. Mov Disord. 2009;24:1085–1088.

    PubMed  Google Scholar 

  127. Wicks P, et al. Sharing health data for better outcomes on PatientsLikeMe. J Med Internet Res. 2010;12:e19.

    PubMed  PubMed Central  Google Scholar 

  128. Wittmeier KD, et al. Identifying information needs for Hirschsprung disease through caregiver involvement via social media: a prioritization study and literature review. J Med Internet Res. 2018;20:e297.

    PubMed  PubMed Central  Google Scholar 

  129. Wittmeier K, et al. Analysis of a parent-initiated social media campaign for Hirschsprung’s disease. J Med Internet Res. 2014;16:e288.

    PubMed  PubMed Central  Google Scholar 

  130. Yi JJ, et al. Impact of psychiatric comorbidity and cognitive deficit on function in 22q11.2 deletion syndrome. J Clin Psychiatry. 2015;76:e1262–1270.

    PubMed  Google Scholar 

  131. Zaid T, et al. Use of social media to conduct a cross-sectional epidemiologic and quality of life survey of patients with neuroendocrine carcinoma of the cervix: a feasibility study. Gynecol Oncol. 2014;132:149–153.

    PubMed  Google Scholar 

  132. Pemmaraju N, Utengen A, Gupta V, Kiladjian J-J, Mesa R, Thompson MA. Rare cancers and social media: analysis of Twitter metrics in the first 2 years of a rare-disease community for myeloproliferative neoplasms on social media—#MPNSM. Curr Hematol Malig Rep. 2017;12:598–604.

    PubMed  PubMed Central  Google Scholar 

  133. Lotan I, Bacon T, Kister I, Levy M. Paroxysmal symptoms in neuromyelitis optica spectrum disorder: results from an online patient survey. Mult Scler Relat Disord. 2020;46. https://doi.org/10.1016/j.msard.2020.102578.

  134. Brothers KB, Bennett RL, Cho MK. Taking an antiracist posture in scientific publications in human genetics and genomics. Genet Med. 2021;23:1004–1007.

  135. Amon KL, Campbell AJ, Hawke C, Steinbeck K. Facebook as a recruitment tool for adolescent health research: a systematic review. Acad Pediatr. 2014;14:439–447.e4.

    PubMed  Google Scholar 

  136. Whitaker C, Stevelink S, Fear N. The use of Facebook in recruiting participants for health research purposes: a systematic review. J Med Internet Res. 2017;19:e290.

    PubMed  PubMed Central  Google Scholar 

  137. Price J. What can big data offer the pharmacovigilance of orphan drugs? Clin Ther. 2016;38:2533–2545.

    PubMed  Google Scholar 

  138. Han CJ, Lee YJ, Demiris G. Interventions using social media for cancer prevention and management: a systematic review. Cancer Nurs. 2018;41:E19–E31.

    PubMed  PubMed Central  Google Scholar 

  139. Pew Research Center. Demographics of social media users and adoption in the United States. https://www.pewresearch.org/internet/fact-sheet/social-media/.Accessed 14 May 2021.

  140. Alshaikh F, Ramzan F, Rawaf S, Majeed A. Social network sites as a mode to collect health data: a systematic review. J Med Internet Res. 2014;16:e171.

    PubMed  PubMed Central  Google Scholar 

  141. Valdez RS, et al. Beyond traditional advertisements: leveraging Facebook’s social structures for research recruitment. J Med Internet Res. 2014;16:e243.

    PubMed  PubMed Central  Google Scholar 

  142. Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538:161–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. de la Paz MP, Villaverde-Hueso A, Alonso V, János S, Zurriaga O, Pollán M, Abaitua-Borda I. Rare diseases epidemiology research. Adv Exp Med Biol. 2010;686:17-39. https://doi.org/10.1007/978-90-481-9485-8_2.

  144. Centers for Disease Control and Prevention. Data & statistics on sickle cell disease. https://www.cdc.gov/ncbddd/sicklecell/data.html. Accessed 4 February 2021.

  145. Titgemeyer SC, Schaaf CP. Facebook support groups for rare pediatric diseases: quantitative analysis. JMIR Pediatr Parent. 2020;3:e21694.

    PubMed  PubMed Central  Google Scholar 

  146. Eysenbach G. Improving the quality of web surveys: the Checklist for Reporting Results of Internet E-surveys (CHERRIES). J Med Internet Res. 2004;6:e34.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.C.H. and H.K.T are both supported by the NIH (3U01HG010218-03S2-03S2 and 5UL1TR003142-02). J.L.Y. is supported by T32HG008953. Thanks to Daniel Costa-Roberts for proofreading the article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.C.H, H.K.T, E.G.M. Data curation: E.G.M., G.F., A.L.W. Data Analysis: E.G.M., J.L.Y. Investigation: A.L.W. Supervision: M.C.H., H.K.T. Writing—original draft: E.G.M., M.C.H. Writing—review & editing: E.G.M., M.C.H., H.K.T., J.L.J.

Corresponding author

Correspondence to Meghan C. Halley.

Ethics declarations

Competing interests

M.C.H. and H.K.T. are both supported by the NIH (3U01HG010218-03S2-03S2 and 5UL1TR003142-02). J.L.Y. is supported by T32HG008953. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miller, E.G., Woodward, A.L., Flinchum, G. et al. Opportunities and pitfalls of social media research in rare genetic diseases: a systematic review. Genet Med 23, 2250–2259 (2021). https://doi.org/10.1038/s41436-021-01273-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41436-021-01273-z

Search

Quick links