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InpherNet accelerates monogenic disease diagnosis using
patients’ candidate genes’ neighbors
Boyoung Yoo1, Johannes Birgmeier1, Jonathan A. Bernstein2 and Gill Bejerano 1,2,3,4✉

PURPOSE: Roughly 70% of suspected Mendelian disease patients remain undiagnosed after genome sequencing, partly because
knowledge about pathogenic genes is incomplete and constantly growing. Generating a novel pathogenic gene hypothesis from
patient data can be time-consuming especially where cohort-based analysis is not available.
METHODS: Each patient genome contains dozens to hundreds of candidate variants. Many sources of indirect evidence about each
candidate may be considered. We introduce InpherNet, a network-based machine learning approach leveraging Monarch Initiative
data to accelerate this process.
RESULTS: InpherNet ranks candidate genes based on orthologs, paralogs, functional pathway members, and colocalized
interaction partner gene neighbors. It can propose novel pathogenic genes and reveal known pathogenic genes whose diagnosed
patient-based annotation is missing or partial. InpherNet is applied to patient cases where the causative gene is incorrectly ranked
low by clinical gene-ranking methods that use only patient-derived evidence. InpherNet correctly ranks the causative gene top 1 or
top 1–5 in roughly twice as many cases as seven comparable tools, including in cases where no clinical evidence for the diagnostic
gene is in our knowledgebase.
CONCLUSION: InpherNet improves the state of the art in considering candidate gene neighbors to accelerate monogenic
diagnosis.
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INTRODUCTION
Every year, approximately 7 million newborns worldwide are
affected by severe, possibly Mendelian, diseases [1]. Mendelian
diseases are most often monogenic, caused by 1–2 highly
penetrant variants in a single gene. Using genome sequencing,
diagnosing such monogenic conditions can be done by identifica-
tion of the causative gene against the current body of biomedical
knowledge. This is a time-consuming task for clinicians, since
sequencing can result in dozens to hundreds of candidate
causative genes that contain variants rarely found in the
unaffected population [2–5]. As sequencing technology becomes
more time- and cost-efficient, the number of patients being
sequenced for genetic disease diagnosis is expected to grow to
the millions by 2025 [6].
Numerous tools that automate and therefore speed up various

aspects of the diagnosis pipeline for patients with suspected
Mendelian disease have been developed. For example, ANNOVAR
[7] annotates variants with various relevant attributes, and tools
like M-CAP [8] and S-CAP [9] help assess variant pathogenicity.
ClinPhen [10] helps extract patient phenotypes from their free text
medical records, and candidate causative gene prioritization tools
such as Phevor [11], PhenIX [12], Phrank [13], and AMELIE [14]
improve diagnosis efficiency by prioritizing a patient’s candidate
genes for their likelihood of causing the patient’s set of
phenotypes.
Hundreds of novel Mendelian pathogenic genes are discovered

each year [15–18]. After a novel pathogenic gene is proven, it is
conceptually moved from the research realm into the clinic, where
diagnoses are best done by alignment to clinical evidence from

previously diagnosed patients (Fig. 1). However, while a gene’s
pathogenicity is still being evaluated, researchers will consult
literature in search of indirect evidence that makes the gene a
plausible hypothesis for a particular patient’s case. For example,
one of the patient candidate genes, yet undocumented as causing
a monogenic disease in human, may have an ortholog known to
cause similar phenotypes in a model organism. Similarly, a
candidate gene may be in the same functional pathway as known
relevant pathogenic genes or have an obligate interaction partner
known to explain the patient’s set of phenotypes.
This open-ended search for the most plausible hypothesis is

very time-consuming. Computational inference tools like Phevor
[11], Phive [12], and hiPhive [12] have been developed to help
accelerate the discovery of testable research hypotheses. Such
tools perform cross-species and gene product interaction-based
inference to prioritize candidate genes beyond patient-based
phenotypic knowledge.
Here we propose InpherNet, a network-based machine learning

gene prioritization method that leverages the Monarch Initiative
knowledgebase [19] to improve the discovery of appealing novel
pathogenic gene hypotheses. To predict causative genes using
non-patient-derived information, InpherNet considers variant-
based information and four sources of indirect evidence, or gene
neighbors: phenotypes associated with orthologs (i.e., the same
gene in a related organism), paralogs (i.e., another gene from the
same gene family member), members of the same functional
pathway, and expression colocalized interaction partners. Using
real patient data, we show that InpherNet improves on previous
similar tools in ranking causative genes based on indirect
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evidence, which is helpful both in cases where the disease is novel
and cases where the phenotype annotations are currently lacking.

MATERIALS AND METHODS
InpherNet graph
Ensembl genes. Ensembl [20] is a consortium that develops and curates
many comparative genomics resources. We anchor the InpherNet graph
(Fig. 2 and Table S1) on their human, mouse, and zebrafish gene sets.

Mendelian subgraph of Monarch Initiative’s multispecies biological network.
The Monarch Initiative [19] is an effort to develop a comprehensive
biological database incorporating numerous entities (e.g., genes and
phenotypes) and relationships among these entities from multiple existing
databases. Since InpherNet aims to prioritize candidate genes in patients
affected with Mendelian diseases, we picked a subset of the Monarch
database that is both relevant to Mendelian disease inference and
annotated with sufficient data (Supplementary Methods). Organismal and
cellular level gene phenotype and functions are obtained from Monarch’s
unified phenotype ontology, Upheno [19]. We focus on the three species
for which annotations are by far most abundant—human, mouse, and
zebrafish—taking the cross-species Gene Ontology [21] (GO) along with
three species specific phenotypic databases: the Human Phenotype
Ontology [22] (HPO), Mouse Genome Informatics (MGI) phenotype [23],
and the Zebrafish Information Network [24] (ZFIN). Cross-species pathway
and gene expression anatomical localization data is obtained from
Reactome [25] and Uberon [19], respectively. Potential human
protein–protein interaction (PPI) data is obtained from BioGRID [26], and
monogenic human disease information is obtained from OMIM [27] and
Orphanet [28]. In total, we selected 9 ontology sources (Table S1)
encompassing 1,231,846 attributes of human, mouse, and zebrafish genes
(Fig. 2).

Gene orthology and paralogy mappings from Ensembl. We used Ensembl’s
human, mouse, and zebrafish within species gene paralogs relationships,
as well as mouse and zebrafish to human gene orthology relationships
(Table S1) to complete the InpherNet knowledge graph (Fig. 2). Extending
observations associated with human genes through paralogs and their
mouse and zebrafish orthologs enables hypothesis generations on many

more human genes [16]. For example, only 3,438, or 17.8%, of human
protein-coding genes in our graph are annotated with direct human
patient-derived phenotypes. However, after projecting mouse and
zebrafish phenotypes to their orthologous human genes, over 56.3%
(3.2× more) of human genes can be phenotypically annotated (Fig. 3). If we
also consider information from human, mouse, and zebrafish paralogous
genes, coverage rises to 71.8% (4.04× more). Overall, in our data set, 17,784
(91.9%) of 19,343 total human genes have orthologous genes in either
mouse or zebrafish (not all of which are currently phenotypically
annotated), 13,315 (68.8%) have human (in-)paralogous genes, and
13,189 (68.2%) have mouse or zebrafish (out-)paralogous genes.

Gene scoring by means of a supervised machine learning
algorithm
The goal of candidate gene-ranking tools is to rank the true causative gene
at the top to allow clinicians to find diagnoses, or enable researchers to
propose a novel hypothesis, after reviewing as few candidate genes as
possible. Our machine learning classifier takes a vector of scalar values
(called “features”) as input, and outputs a score between 0 and 1,
indicating the classifier’s assessment of whether the input should be
classified as positive (here, indicating that the indirect evidence suggests a
gene is causative for a patient) or negative (here, that the indirect evidence
does not support a match). InpherNet uses a Gradient Boosting Tree
classifier [29], a supervised machine learning classifier, to assign such a
score to each candidate gene (Fig. S1 and Supplementary Methods).

InpherNet feature set
Candidate genes are genes that contain at least one candidate causative
variant in the patient (Supplementary Methods). We associated each
candidate gene with a vector of 15 features derived from information
about the candidate gene’s neighbors (orthologs, paralogs, pathways, and
interaction partners) and the candidate variants (Fig. S1).

Gene neighbors feature set
Mouse ortholog: Orthologs are similar genes in two different species

related via a speciation event and often have similar functions [30]. For
each patient candidate gene, we computed a phenotypic match score
between the mouse ortholog–associated phenotypes from the MGI
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Fig. 1 InpherNet’s role in the quest for patient diagnosis. Patient sequencing data are first assessed against human clinical data, where one
is able to match a candidate variant or gene in the current patient to previously diagnosed patients with very similar phenotypic
abnormalities. When clinical evidence cannot be found, the case moves to the research realm where indirect evidence is sought to suggest a
novel causative gene candidate. InpherNet aims to accelerate this discovery process by offering researchers its most appealing testable
hypothesis through indirect evidence. Consequently, InpherNet can also aid in cases where a clinical diagnosis exists but is not well
represented in one’s knowledgebase.
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phenotype database [23] and the patient phenotypes in HPO terms using a
Phrank [13]-based phenotype match score that we call “Phranken” (for
Phrank-Normalized). The Phranken score takes two sets of phenotype
terms and an underlying phenotype directed acyclic graph (DAG) as inputs
and returns a match similarity score (Supplementary Methods). In
InpherNet, we took the phenotype DAG and gene’s phenotype annota-
tions from Upheno [19], which organizes hierarchical relationships among
phenotype terms about multiple species. For candidates with more than
one Ensembl mouse ortholog, the highest Phranken score among all
orthologs is selected as the value for the “mouse ortholog” feature. If a
candidate gene has no mouse ortholog or none of the mouse orthologs
has any annotations, −1 is assigned. The same convention is used
repeatedly to compute the other neighbor feature values described below.

Zebrafish ortholog: Defined as the highest Phranken match score
between zebrafish ortholog–associated phenotypes from ZFIN and the
patient’s phenotypes.

Human in-paralog: In-paralogs are genes found in the same species
that are in the same gene family (related via duplication). For human
patient-derived phenotypes in HPO-A, their phenotype abnormalities are
linked through a disease term from OMIM [27] or Orphanet [28] (Fig. 2).
Therefore, for human genes, instead of calculating the max Phranken score
per gene, we computed the Phranken score for all diseases known to be
caused by each candidate gene and select the max score (Supplementary
Methods).

Mouse out-paralog: For each candidate gene, we collected all mouse
in-paralogs of the candidate gene’s mouse ortholog, which are also known
as mouse out-paralogs. The highest Phranken match score between mouse
out-paralog-associated phenotypes and the patient’s phenotypes is picked.

Zebrafish out-paralog: We similarly used the candidate gene’s zebrafish
out-paralogs.

Pathway: For each candidate gene, we collected all human, mouse,
and zebrafish genes that are in the same Reactome [25] pathways as the
patient candidate gene. For human genes, we also collected diseases they
are known to cause and their related phenotypes. The highest Phranken
match score between the patient’s phenotypes and any pathway gene’s
phenotypes for mouse and zebrafish genes or pathway gene’s disease
phenotypes for human genes is then used.

Interaction partner: For each candidate gene, we retrieved a set of
interaction partners supported by both a human protein–protein
interaction (PPI) BioGRID [26] network and human gene expression
anatomical localization Uberon [19] data (Supplementary Methods).
Intuitively, we limited ourselves to genes whose protein products may
interact with the candidate genes in human cells. We picked the highest
Phranken score between the patient’s phenotypes and the phenotypes
related to the diseases the interaction partners are known to cause.

Candidates in 1-hop neighborhood: For each candidate gene, we
defined a 1-hop neighborhood as a set of genes that can be reached
through 1-hop interaction links from the BioGRID by Uberon human PPI
subnetwork defined above (i.e., their gene products can interact directly in
human cells). We counted how many other candidate genes are in this
neighborhood, and this count is reported as the “candidates in 1-hop
neighborhood” feature.

Candidates in 2-hop neighborhood: For the “candidates in 2-hop
neighborhood” feature, we repeated the step above but looked for 2-
hop neighborhood instead. The 2-hop neighborhood excludes all genes in
the 1-hop neighborhood.
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Fig. 2 The multimodal biological network underlying InpherNet. We base our network on the Ensembl gene sets for human, mouse, and
zebrafish. We augment it with human, mouse, and zebrafish (in-species) paralogs, and human–mouse and human–zebrafish orthologs, also
from Ensembl. To these we add pathway, interaction, anatomical localization, phenotypes, and monogenic disease relationships from
Monarch Initiative’s graph database.
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Variant-based feature set
Candidate variants count: This is the number of variants in the

candidate gene.
M-CAPgene: M-CAP [8] is a pathogenicity score that assigns a number

between 0 (likely benign) and 1 (possibly pathogenic) to rare human
missense variants. We calculated an M-CAP-based feature for each gene as
the maximum M-CAP score of all candidate variants in the candidate gene.
A candidate variant that did not have an M-CAP score was assigned the
maximum M-CAP score in a window of −50, +50 basepairs adjacent to
that variant.

M-CAP100: We calculated the highest M-CAP score in a window of −50,
+50 basepairs adjacent to all candidate variants in the candidate gene,
then select the maximum value.

RVIS score: This is the RVIS [31] gene mutability score of the
candidate gene.

pLI score: This is the pLI [32] haploinsufficiency score of the
candidate gene.

Average ExAC allele count: The average Exome Aggregation Con-
sortium [32] (ExAC) allele count of all candidate variants in the candidate
gene is used.
For M-CAP, RVIS, pLI, and ExAC, if the original resource did not offer

relevant values, we assigned a default “null” value (Supplementary
Methods).

Other gene prioritization tools
We compared InpherNet’s performance to seven other gene prioritiza-
tion tool configurations, in two conceptual sets. PhenIX [12], Phrank_H-
POA [13], and Phranken_HPOA target genes that have patient-based
Mendelian disease associations, while Phevor [11], Phive [12] and
hiPhive [12], similar to InpherNet, use additional non-patient-based

information and also infer novel pathogenic candidates (Fig. 1).
Phrank_HPOA ranks candidate genes by their Phrank match score using
patient-derived gene annotations from the HPO-A database. Similarly,
Phranken_HPOA normalizes the Phrank score using the maximal
possible Phrank score between the patient and gene phenotype sets
(Supplementary Methods). PhenIX ranks candidate genes by their
phenotype annotations similarities with the patient’s phenotypes both
in HPO and the candidate variants’ pathogenicity. Phevor [11] combines
multiple ontologies to rank patient candidate genes. We used Phevor in
two ways: “Phevor_HPOA” uses only HPO-A similar to other clinical tools,
and “Phevor_all” uses additional non-patient-based ontologies similar to
the other inference tools. Phive ranks candidate genes using mouse
phenotypic data, and most comparable to InpherNet, hiPhive combines
functional data derived from human, mouse, and zebrafish genes and
the candidate genes’ relatedness in a PPI network to the suspected
causative gene to rank candidate genes. We took great care to compare
the causative gene-ranking performance of all methods on equal footing
(Supplementary Methods).

InpherNet training set
We constructed a set of synthetic patients to train InpherNet’s Gradient
Boosting Tree classifier to conserve all real patient data for testing. For this
process, we used 2,504 sequenced individuals from the 1,000 Genomes
Project (KGP) [33], Mendelian pathogenic variants with an OMIM disease
identifier from ClinVar [34], and HPO-A phenotypes associated with each
OMIM disease. To construct each synthetic patient, we took a KGP genome,
added a randomly selected pathogenic variant from ClinVar for a known
OMIM disease, and associated the patient with a subset of noisily sampled
and augmented HPO-A disease-associated phenotypes, mimicking imper-
fect prediagnosis clinical annotations (Supplementary Methods). We also
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Fig. 3 The power of orthology. HPO-A contains human gene–phenotype relationships for about 3,400 out of 20,000 human protein-coding
genes. Thus, clinical evidence-based gene prioritization methods that only use known patient phenotype associations cannot prioritize 82.4%
of human protein-coding genes. However, many unannotated human genes have functionally annotated orthologs in mouse and zebrafish
that can be combined via Monarch Initiative’s Upheno cross-species phenotype ontology to triple the annotation coverage to 56% of human
protein-coding genes compared to the original 17.5%.
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ensured that no causative gene in the training set is the causative gene of
any real patient used for testing or validation. Using this method, we
generated 2,504 different synthetic patients with an average of 9.1
phenotypes and 300.4 candidate genes per patient.

InpherNet test set
We tested InpherNet’s performance on real singleton patients with their
prediagnosis phenotypes and clinician-verified Mendelian diagnoses
(Supplementary Methods). Since InpherNet is meant to complement
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clinical evidence-based tools, we created test sets containing diagnosed
patient cases whose causative genes were incorrectly given low priority by
clinical evidence gene-ranking tools. This helps to examine InpherNet’s
ability to augment clinical evidence, where such augmentation is most
needed. We first ran Phrank_HPOA and PhenIX on all available 255 real
patients to find a cohort of patients where Phrank_HPOA failed to rank the
causative gene in top 10 (Phrank > 10), and a cohort of patients where
PhenIX failed to rank the causative gene in top 10 (PhenIX > 10; Table S2).
Phrank > 10 contains 70 patients (with an average of 8.6 phenotypes and
321.0 candidate genes per patient), and PhenIX > 10 contains 115 patients
(with an average of 7.8 phenotypes and 309.0 candidate genes per
patient). Assuming the top 10 genes from these clinical tools would
already have been scrutinized by a clinician and discarded as noncausative,
we removed the top 10 Phrank_HPOA- or PhenIX-ranked genes from the
candidate gene list for each patient in each test cohort, respectively.

InpherNet’s feature ablation analysis
We analyzed which above listed features contribute most to the accuracy
of the model by performing a feature ablation test. We iteratively removed
each feature, retrained the model, then recorded how the causative genes’
rankings changed. We used the same 2,504 synthetic patients for training
and the same two test sets, Phrank > 10 and PhenIX > 10, for testing. The
importance of each feature was measured using the average causative
gene rankings.

Interpreting InpherNet gene rankings
To provide human-interpretable explanations for InpherNet’s gene
rankings, we included a ranked list of each candidate gene’s neighbors
ordered by the Phranken phenotype match score between the patient’s
phenotypes and neighbor-associated phenotypes (Fig. S1). This list helps
researchers see which neighbor is phenotypically most similar to the
patient’s phenotypes, and via the InpherNet graph (Fig. 2) and Monarch,
link back to the original databases and publications supporting these
claims.

RESULTS
InpherNet outperforms existing phenotype ranking-based
methods
First, of the two clinical data based tools we use to examine their
top 10 genes, Phrank and PhenIX, we see that Phrank leaves over
40% fewer cases unresolved (70 vs. 115) and performs much
better on the PhenIX > 10 set than PhenIX does on the Phrank > 10
set (Fig. 4), in concordance with earlier tool evaluations [13]. After
removing the clinical evidence-based top 10 genes from
consideration (guaranteed to not include the correct causative
gene), InpherNet offers a very significant improvement on all tools
for the Phrank > 10 set, with over three times as many cases where
the causative gene ranks 1, and almost twice as many cases where
it ranks 1–5 as all other tools (Fig. 4b). InpherNet also offers a
marked improvement over the weaker (larger) PhenIX > 10 set,
with at least 10 more cases ranked 1–5 compared to all other tools
(Fig. 4c).

InpherNet ranks candidate genes that lack patient phenotype
annotations
Ranking candidate genes that lack any patient phenotype
annotations is critical for the discovery of novel pathogenic genes
and helpful where one’s knowledgebase may be missing clinical
annotations for a known causative gene. In our real patient test
cohort Phrank > 10, an average of 79% of patient candidate genes
(7,749 unique genes across all 70 patients) do not have any HPO
annotations and are therefore automatically ranked at the bottom
by methods that rely exclusively on HPO-A clinical evidence
(Supplementary Methods). But InpherNet can rank a causative
gene high even in the absence of any direct clinical evidence. For
example, in our Phrank > 10 test set, patient 122 causal gene BPTF
is one of 246 patient candidate gene for which our knowledge-
base contains no human patient phenotypic evidence, but
InpherNet ranks BPTF top 10. For patient 104, the causative gene
PTCHD1 is one of 303 genes with no patient phenotypes, yet
InpherNet ranks it 10.

Feature ablation test
We performed feature ablation as described in “Materials and
Methods.” All ablated models performed worse compared to the
full model (i.e., InpherNet). InpherNet’s average causative gene
ranking was 8.67 and 6.98 for Phrank > 10 and PhenIX > 10,
respectively while the ablated models’ averages increased up to
13.78 and 13.63, respectively. The most informative features were
average ExAC allele count, interaction partner, and mouse
ortholog (Fig. S2).

Interpretability of InpherNet’s prediction process
All four neighbor types (orthology, paralogy, pathways, and
interactions) contribute to InpherNet’s performance. We observe
that all categories of neighbors are represented as the most
important contributor in our top rankings (Fig. 4d, e). Table 1
provides an example each where the correct causal gene ranking
is best supported by each evidence type.
For example, in patient 096, the causative gene CTNNB1 is ranked

1 by InpherNet, most strongly supported through its mouse
ortholog Ctnnb1. The patient presented six phenotypes including
Achilles tendon contracture (HP:0001771) and childhood-onset
truncal obesity (HP:0008915). In our HPO-A, the causative gene
CTNNB1 is annotated by some relevant phenotypes including
abnormality of the hair (HP:0001595), abnormality of skin
pigmentation (HP:0001000), and obesity (HP:0001513). However,
its annotation does not explain the patient’s phenotypes fully and
lacks a clear match, resulting in a lower Phrank_HPOA rank of 22
among 364 candidate causative genes. However, InpherNet ranks
CTNNB1 at the very top because its mouse ortholog, Ctnnb1, is
annotated with more relevant phenotypes such as abnormal
forelimb morphology (MP:0000550) and abnormal melanogenesis
(MP:0005077) [35].
Similarly, InpherNet ranks the causative gene KCNA2 for patient

128 at the top of 389 candidate genes, best supported by

Fig. 4 InpherNet improves on existing indirect evidence gene prioritization methods and provides the strongest gene neighbor
contributor to the ranking. (a) We took 255 real patients with diverse prediagnosed conditions and first used two patient evidence-based
methods to highlight cases where either patient evidence is missing or differs significantly from the current patient. In 115 cases the causative
genes were not among the top 10 PhenIX-ranked genes, and in ~40% fewer cases (70), the causative gene was not in the Phrank_HPOA top-
ranked 10 genes. Each case is then reviewed by 8 inference tools after removing the highest ranked 10 genes that were already determined as
not causative. (b) InpherNet offers a large improvement on all tools for the tougher (preferred, smaller) Phrank > 10 set, with over three times
as many cases where the causative gene ranks 1, and almost twice as many cases where it ranks 1–5 as all other tools. (c) InpherNet still
outperforms all other tools over the larger (weaker) PhenIX > 10 set, ranking 10 or more causative genes among top 1–2, 1–3, and 1–5 as all
other tools. (d,e) InpherNet also outputs a list of gene neighbors ranked by their relevance to the patient phenotype. In both test sets we see
that all 4 types of indirect evidence (i.e., orthology, paralogy, pathways, and interactions) contribute the most to the correct gene being ranked
on top for different candidates.
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information about its in-paralog, KCNA1. Human patients with rare
variants in KCNA1 have shown phenotypes similar to this patient’s
phenotypes including abnormality of movement (HP:0100022),
global developmental delay (HP:0001263), hearing impairment
(HP:0000365), hypotonia (HP:0001252), intellectual disability
(HP:0001249), and seizures (HP:0001250). The patient’s actual
causative gene, KCNA2, lacks clinical motor- or hearing-related
patient-based phenotype annotations in our database resulting in
low rank (53 for Phrank_HPOA and 121 for PhenIX) for the clinical
ranking tools, while inference tool hiPhive ranks this gene 31.
In the case of patient 123, the causative gene identified is GNB1.

Phrank_HPOA ranks this gene at 26, and hiPhive 25. InpherNet
ranks this gene at the top among 312 candidate causative genes,
supported predominantly through ITPR, which is in the same Ca2+

pathway [25] as GNB1.
Finally, the connection between interaction partners PHF8 and

TAF1 bring the correct causative gene PHF8 for patient 073 to the
top, compared to Phrank_HPOA at 29 and hiPhive at 11 among 321
candidate genes. While rare variants in both PHF8 and TAF1 are
known to cause X-linked mental retardation, the phenotypic
abnormalities associated with each of these genes in our knowl-
edgebase differ. PHF8 is associated with phenotypic abnormalities
unobserved in this patient such as cleft upper lip (HP:0000204).
However, its well-known interaction partner TAF1 is associated with
much more relevant phenotypes including delayed gross motor
development (HP:0002194), delayed speech and language develop-
ment (HP:0000750), microcephaly (HP:0000252), and neurodevelop-
mental delay (HP:0012758).

DISCUSSION
To make a conclusive diagnosis, the desired outcome is finding
one or more rare functional variants in a patient’s genome that
match the disease state of previously diagnosed patients. This
however only currently happens in 30% of analyzed cases. [4, 36]
Furthermore, to decrease the cost of genomic diagnosis, one
would like to use computational tools to effectively prioritize
candidate variants so that clinicians use their time efficiently.
However, as our body of knowledge is constantly growing [14], it
is impossible to guarantee that any knowledgebase we provide
our tools will be comprehensive. Here we show that InpherNet, by
using indirect evidence—namely, evidence other than previous
human patients-derived phenotypes known to be tied to the
candidate gene—is able to help in both scenarios. By leveraging
the phenotypes associated with orthologs, paralogs, pathway
members, and potential interaction partners, InpherNet is able to
rank the causative gene high both when few or no human
phenotypes are known that match the patient phenotypes or in
cases the knowledgebase is lacking a full annotation. InpherNet
has shown to improve performance on previous tools that have
been devised for the same purpose such as Phevor [11], Phive [12],
and hiPhive [12]. We carefully ensure a fair comparison including
testing InpherNet, Phrank_HPOA, Phranken_HPOA, and all Exomiser
tools on the same clinical annotation set (HPO-A), and only
querying Phevor (web API access only) several months later.
InpherNet leverages a potent combination of resources available
from Ensembl [20] and the Monarch Initiative [19]. InpherNet uses a
Phrank [13] based metric to measure set similarity, filters protein
interactions by anatomical colocalization, adds variant-related
features, and applies a gradient boosting tree classifier. Of particular
value are Monarch’s cross-species anatomy and phenotype
ontologies, Uberon and Upheno, respectively, which allow one to
compare model organism annotations, in a structured way, with
those of human patients.
The boosting tree model, which is at the heart of InpherNet,

allowing it to assign different weights to different evidence
combinations, makes it robust. For example, we see no correlation

across our real patients test sets between the InpherNet rank of the
causative gene and the relative number of disease-associated
paralogs each of the patient candidate gene has (Fig. S3). InpherNet
currently uses only mouse and zebrafish annotations because of the
richness of annotations these two species offer. For example, our
graph includes 184,313 mouse-based gene–phenotype relationships
and 42,367 zebrafish-based gene–phenotype relationships. The next
best vertebrate species, rat, has only 1,231 relationships. However,
we show that using these two species the number of phenotypically
annotated human genes increases fourfold. As additional species’
functional data grows, they can be easily integrated into InpherNet’s
flexible gradient boosting tree model. And while InpherNet’s overall
performance is high, we see that it performs better over dominant
cases than recessive cases (Fig. S4) suggesting that featurizing
and learning candidate genes’ zygosity may further improve its
performance.
Our testing methodology currently advocates a hybrid

approach. Scan the first few computationally ranked candidates
based on clinical patient data. Should no quick diagnosis be found
that way, we show that it is beneficial to switch to prioritizing
indirect gene evidence from a variety of sources. It is interesting to
note that of the hundreds of real patient cases we start with, a
large 34–45% of cases are better served by this strategy. It would
be beneficial in future work to build a method unifying both
strategies that may boost performance even further. Meanwhile,
we have improved the way to leverage indirect evidence, from
both human and model organisms, and accelerate the detection
of a causative gene where direct information about it is lacking or
missing from our knowledgebase or indeed from the body of
scientific knowledge.
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