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When genetic testing detects a candidate variant (CV) in a gene
that is not known to cause disease in humans, clinicians face a
dilemma. Where can they find the additional evidence needed to
make a diagnosis? One action a clinician can take is to search for
additional patients with a deleterious variant in the same gene.
Here we present a case study where the electronic health record
(EHR) was used to facilitate genotypic matchmaking to help
diagnose a patient at Vanderbilt’s Undiagnosed Disease Network
(UDN)1 clinical site.
A 26-year-old female with unexplained mild intellectual

disability (ID), autism spectrum disorder (ASD), obsessive compul-
sive disorder (OCD), high myopia, and joint hypermobility had
exome sequencing (ES) as part of her work-up for the UDN.
Interestingly, a de novo MSL2 p.S232Tfs*10 variant was included in
the ES report along with its possible association with ASD.2

The MSL2 protein had been reported to be part of a complex
that plays a major role in chromatin regulation and structure
through histone H4 acetylation and H2B ubiquitylation.3,4 Due to
the participant’s CV being a frameshift, de novo, and the function
of the MSL2 protein, the Vanderbilt University Medical Center
(VUMC) UDN team considered it an attractive candidate, but the
lack of a previously reported role in Mendelian disease precluded
it from being diagnostic.
The UDN’s process to find additional cases is to upload CVs to

PhenomeCentral, a founding member of Matchmaker Exchange.5

A widely used, similar strategy is for the provider to post the
candidate gene in GeneMatcher, MyGene2, and/or Matchmaker
Exchange.6–8 These online connection tools rely on other
providers using these platforms, require some length of waiting
time, and need communication between providers to share
additional information to possibly solidify a match. To date, the
VUMC team has not had any MSL2 matches through
PhenomeCentral.
Having failed to find a match through available matchmaking

platforms, the Vanderbilt UDN team searched for “MSL2” in
VUMC’s Synthetic Derivative (SD), a continuously updated, de-
identified database of EHRs for more than 3 million patients.9 This
revealed two patients whose charts were subsequently reviewed
using SD Discover, a browser-based application developed at
Vanderbilt to facilitate chart review. Both patients were found to
have de novo MSL2 variants identified through clinical trio ES and
had strikingly similar phenotypes to the proband.
The first patient identified through SD was a 15-year-old male

with a history of ASD, mild ID, obsessive–compulsive disorder
(OCD), hypermobile Ehlers–Danlos syndrome (EDS), and high
myopia. He was heterozygous for a de novo p.Pro25Ser MSL2 CV, a

well conserved variant that is predicted to be damaging based on
in silico models. The second patient was a 13-year-old female with
a history of global developmental delay, ASD, attention deficit
disorder (ADD), visual and language processing disorder, OCD,
high myopia, and hypermobile EDS. She was heterozygous for a
de novo p.Thr217AspfsX2 MSL2 CV, a variant that created a
premature stop codon and was predicted to cause loss of normal
protein function. The variants found in both patients were absent
from large population cohorts.
In both cases, clinical genetics providers were suspicious of the

MSL2 CV as a cause of their patients’ ASD, behavioral problems,
and possibly their hypermobility. They documented that there was
not enough evidence to consider the MSL2 CV to be diagnostic.
All three individuals had a de novo, likely gene disrupting, MSL2

CV. Since all three individuals also had similar phenotypes (ASD,
OCD, mild ID or learning disabilities, and an EDS type III or joint
hypermobility), this suggests its causative role in a new disorder.
These additional patients gave the team the confidence to initiate
contact with clinical laboratories to find more individuals with
MSL2 as a candidate gene and connect with a team doing
functional studies. Finding these two additional individuals was an
integral part of giving the UDN participant a molecular diagnosis
for a new disease.
The American College of Medical Genetics and Genomics

(ACMG) recently published a statement encouraging providers to
optimize their use of genomic testing results in the EHR.10 Based
on the experience with MSL2, VUMC’s team proposes another use
for genomic testing results in the EHR: a full text search for a gene
name to quickly ascertain additional individuals with shared
phenotype(s) and candidate gene(s). We have termed this strategy
“EHR-based genotype matchmaking” to indicate the process of
finding a genotype match that has been clinically tested and
might provide evidence for causality.
EHR-based genotype matchmaking offers several benefits

beyond what is realized by current methods. EHRs contain dense
and longitudinal medical histories that are not always available to
clinical laboratories; also, EHRs contain a large and growing
population of patients who have received genetic testing
compared with patient cohorts whose data have been uploaded
to matchmaking platforms. Motivated by the successful resolution
of the case above, the Vanderbilt UDN team has added EHR-based
genotype matchmaking to its variant analysis pipeline and is in
the process of reanalyzing past cases.
The VUMC UDN team recognizes that this powerful tool has

potential barriers that complicate implementation. Like many
medical centers, VUMC does not currently store genetic data in an
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easily accessible format. Genetic testing reports are mainly
uploaded to the EHR as PDF files that are currently not searchable
in the text-based SD. Our geneticists and genetic counselors
record genetic results as text in the EHR, but this is a time-
consuming process that is subject to typos and errors, and not all
VUMC providers record genetic test results in this way.
Fortunately, many genes have fairly distinctive names—the search
for “MSL2” easily found the two records above. However, searching
for gene names that are short (e.g., TR), overlap with common
terms, or that are frequently reported as somatic variants (e.g.,
EGFR) can yield thousands of irrelevant records.
Major EHR vendors are beginning to develop and market

ancillary systems and modules to store structured genetic test
results. If adopted, these new features, along with standard
reporting of results from laboratories, will greatly simplify the
process of identifying patients with matching genotypes. In the
meantime, the UDN team plans to continue to index medical
records based on a string-matching approach for new cases, and
to reanalyze previous undiagnosed cases. The database that stores
these string matches has become an invaluable resource for
rapidly assessing new UDN cases, and the growth illustrates the
rapid growth over the last decade of genetic data in the EHR.
More work is needed to streamline the dissemination of

knowledge gained from EHR-based patient matching. The
Vanderbilt UDN team is working on an institutional review board
(IRB) application that would allow them to inform the ordering
provider of the new connections regarding their patients’ genetic
testing results. While the research team is not the clinical
laboratory who performed the testing, there is still an ethical
duty to reinterpret unsolved exomes and inform the ordering
provider/patients of new conclusions.11,12 This IRB permission
would allow the research team to also ask clarifying phenotype
questions that are unanswered in the EHR. Ideally, VUMC’s search
process, which is done on a research basis, could potentially be
done as part of routine clinical care in the future.
Further work may be directed toward more automated

phenotyping methods that use the EHR. The combination of
structured genetic data and automated phenotyping methods
may facilitate more automated approaches to scaling EHR-based
matchmaking, similar to approaches used by matchmaking
platforms.
The problem with candidate genes is not restricted to a

research setting. Clinical ES, which is increasing in popularity,
often reports CVs to clinicians. Although it may not be standard for
all clinical laboratories to report variants in candidate genes, two
large clinical laboratories have reported that ~8% of their
diagnostic ES testing reports a candidate gene.13,14 One laboratory
shared that a candidate gene was included on a total of 24% of
their reports.14 Linking candidate genes found in these tests with
the medical phenome described in the EHR represents an
opportunity to improve interpretation of exomes, which will in
turn improve patient care, increase the utility of clinical genetic
testing, and further the discovery of new Mendelian diseases. The
institutional and technological changes necessary to enable this
function in other institutions will take extensive effort and
funding, but we hope that this report creates additional incentive
for change.
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