Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biallelic variants in TMEM222 cause a new autosomal recessive neurodevelopmental disorder

Abstract

Purpose

To elucidate the novel molecular cause in families with a new autosomal recessive neurodevelopmental disorder.

Methods

A combination of exome sequencing and gene matching tools was used to identify pathogenic variants in 17 individuals. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and subcellular localization studies were used to characterize gene expression profile and localization.

Results

Biallelic variants in the TMEM222 gene were identified in 17 individuals from nine unrelated families, presenting with intellectual disability and variable other features, such as aggressive behavior, shy character, body tremors, decreased muscle mass in the lower extremities, and mild hypotonia. We found relatively high TMEM222 expression levels in the human brain, especially in the parietal and occipital cortex. Additionally, subcellular localization analysis in human neurons derived from induced pluripotent stem cells (iPSCs) revealed that TMEM222 localizes to early endosomes in the synapses of mature iPSC-derived neurons.

Conclusion

Our findings support a role for TMEM222 in brain development and function and adds variants in the gene TMEM222 as a novel underlying cause of an autosomal recessive neurodevelopmental disorder.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Homozygous variants in TMEM222 lead to intellectual disability.
Fig. 2: Expression of TMEM222 in selected human tissues.
Fig. 3: Human TMEM222 is highly expressed in dendrites of mature iNeurons and partially colocalizes with postsynaptic and early endosomal markers.

Data availability

The TMEM222 variant data were submitted to LOVD database (https://www.lovd.nl/TMEM222) hosted at Leiden University Medical Center, the Netherlands. Accession numbers are available in Table 1. Additional data and materials, such as primer sequences and Sanger sequencing electropherograms, are available upon request.

References

  1. 1.

    American Psychiatric Association. Task Force on DSM-IV. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. 4th ed. (American Psychiatric Association, Washington, DC, 1994).

  2. 2.

    Leonard, H. & Wen, X. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment. Retard. Dev. Disabil. Res. Rev. 8, 117–134, https://doi.org/10.1002/mrdd.10031 (2002).

    Article  PubMed  Google Scholar 

  3. 3.

    Ropers, H. H. & Hamel, B. C. X-linked mental retardation. Nat. Rev. Genet. 6, 46–57, https://doi.org/10.1038/nrg1501 (2005).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Maulik, P. K., Mascarenhas, M. N., Mathers, C. D., Dua, T. & Saxena, S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res. Dev. Disabil. 32, 419–436, https://doi.org/10.1016/j.ridd.2010.12.018 (2011).

    Article  PubMed  Google Scholar 

  5. 5.

    Colantuoni, C., Purcell, A. E., Bouton, C. M. & Pevsner, J. High throughput analysis of gene expression in the human brain. J. Neurosci. Res. 59, 1–10 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    Naumova, O. Y. U., Lee, M., Rychkov, S. Y. U., Vlasova, N. V. & Grigorenko, E. L. Gene expression in the human brain: the current state of the study of specificity and spatio-temporal dynamics. Child Dev. 84, 76–88, https://doi.org/10.1111/cdev.12014 (2013).

    Article  PubMed  Google Scholar 

  7. 7.

    Musante, L. & Ropers, H. H. Genetics of recessive cognitive disorders. Trends Genet. 30, 32–39, https://doi.org/10.1016/j.tig.2013.09.008 (2014).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    van Bokhoven, H. Genetic and epigenetic networks in intellectual disabilities. Annu. Rev. Genet. 45, 81–104, https://doi.org/10.1146/annurev-genet-110410-132512 (2011).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Jamra, R. Genetics of autosomal recessive intellectual disability. Med. Genet. 30, 323–327, https://doi.org/10.1007/s11825-018-0209-z (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ellison, J. W., Rosenfeld, J. A. & Shaffer, L. G. Genetic basis of intellectual disability. Annu. Rev. Med. 64, 441–450, https://doi.org/10.1146/annurev-med-042711-140053 (2013).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Riazuddin, S. et al. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability. Mol. Psychiatry 22, 1604–1614, https://doi.org/10.1038/mp.2016.109 (2017).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Kochinke, K. et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am. J. Hum. Genet. 98, 149–164, https://doi.org/10.1016/j.ajhg.2015.11.024 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Antonarakis, S. E. Carrier screening for recessive disorders. Nat. Rev. Genet. 20, 549–561, https://doi.org/10.1038/s41576-019-0134-2 (2019).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Bamshad, M. J., Nickerson, D. A. & Chong, J. X. Mendelian gene discovery: fast and furious with no end in sight. Am. J. Hum. Genet. 105, 448–455, https://doi.org/10.1016/j.ajhg.2019.07.011 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hamamy, H. et al. Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report. Genet. Med. 13, 841–847, https://doi.org/10.1097/GIM.0b013e318217477f (2011).

    Article  PubMed  Google Scholar 

  16. 16.

    Schmit, K. & Michiels, C. TMEM proteins in cancer: a review. Front. Pharmacol. 9, 1345, https://doi.org/10.3389/fphar.2018.01345 (2018).

  17. 17.

    Wrzesiński, T., Szelag, M. & Cieślikowski, W. A. et al. Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors. BMC Cancer. 15, 518, https://doi.org/10.1186/s12885-015-1530-4 (2015).

  18. 18.

    Aruga, J. & Mikoshiba, K. Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol. Cell. Neurosci. 24, 117–129 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    Yuan, J. P., Zeng, W., Dorwart, M. R., Choi, Y.-J., Worley, P. F. & Muallem, S. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat. Cell. Biol. 11, 337–343, https://doi.org/10.1038/ncb1842 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Foulquier, F. et al. TMEM165 deficiency causes a congenital disorder of glycosylation. Am. J. Hum. Genet. 91, 15–26, https://doi.org/10.1016/j.ajhg.2012.05.002 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Brady, O. A., Zheng, Y., Murphy, K., Huang, M. & Hu, F. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum. Mol. Genet. 22, 685–695, https://doi.org/10.1093/hmg/dds475 (2013).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res 47, D427–D432, https://doi.org/10.1093/nar/gky995 (2019).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930, https://doi.org/10.1002/humu.22844 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    de Brouwer, A. P. M., van Bokhoven, H. & Kremer, H. Comparison of 12 reference genes for normalization of gene expression levels in Epstein-Barr virus-transformed lymphoblastoid cell lines and fibroblasts. Mol. Diagn. Ther. 10, 197–204, https://doi.org/10.1007/BF03256458 (2006).

    Article  PubMed  Google Scholar 

  25. 25.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T]) method. Methods. 25, 402–408, https://doi.org/10.1006/meth.2001.1262 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    Frega, M., van Gestel, S. H. C. & Linda, K. et al. Rapid neuronal differentiation of induced pluripotent stem cells for measuring network activity on micro-electrode arrays. J. Vis. Exp. 8, 54900, https://doi.org/10.3791/54900 (2017).

  27. 27.

    Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894, https://doi.org/10.1093/nar/gky1016 (2019).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Genome Aggregation Database Consortium, KarczewskiK. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 581, 434–443, https://doi.org/10.1038/s41586-020-2308-7 (2020).

    CAS  Article  Google Scholar 

  29. 29.

    GTex Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585, https://doi.org/10.1038/ng.2653 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).

    CAS  Article  Google Scholar 

  31. 31.

    Frischmeyer, P. A. & Dietz, H. C. Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893–1900, https://doi.org/10.1093/hmg/8.10.1893 (1999).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Maquat, L. E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA. 1, 453–465 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515, https://doi.org/10.1093/nar/gky1049 (2019).

  34. 34.

    Klaassen, R. V. et al. Shisa6 traps AMPA receptors at postsynaptic sites and prevents their desensitization during synaptic activity. Nat. Commun. 7, 10682, https://doi.org/10.1038/ncomms10682 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Vandervore, L. V. et al. TMX2 is a crucial regulator of cellular redox state, and its dysfunction causes severe brain developmental abnormalities. Am. J. Hum. Genet. 105, 1126–1147, https://doi.org/10.1016/j.ajhg.2019.10.009 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Agbaga, M.-P., Brush, R. S., Mandal, M. N. A., Henry, K., Elliott, M. H. & Anderson, R. E. Role of Stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc. Natl. Acad. Sci. U. S. A. 105, 12843–12848, https://doi.org/10.1073/pnas.0802607105 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Aldahmesh, M. A. et al. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am. J. Hum. Genet. 89, 745–750, https://doi.org/10.1016/j.ajhg.2011.10.011 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Cadieux-Dion, M. et al. Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large French-Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol. 71, 470, https://doi.org/10.1001/jamaneurol.2013.6337 (2014).

    Article  PubMed  Google Scholar 

  39. 39.

    Sievers, F. et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539, https://doi.org/10.1038/msb.2011.75 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the families who have participated in this study. This work was supported the EU FP7 Large-Scale Integrating Project Genetic and Epigenetic Networks in Cognitive Dysfunction (241995) (to H.v.B.), an ERC grant (to S.E.A.), National Institute on Neurological Disorders and Stroke (R01NS107428) (to Sheikh Riazuddin), the National Institute of Neurological Disorders and Stroke (NINDS) under award number K08NS092898, Jordan’s Guardian Angels and the Brotman Baty Institute (to G.M.M.) and state assignment of Ministry of Science and Higher Education of the Russian Federation for RCMG. D.L.P. is recipient of a CAPES Fellowship (99999.013311/2013-01). Part of this work was supported by Higher Education Commission of Pakistan (NRPU project number 10700 to M.S.).

Author information

Affiliations

Authors

Contributions

Conceptualization: D.L.P., M.A.F., P.M., H.v.B., Sheikh Riazuddin. Data curation: D.L.P., A.P.M.d.B., H.v.B. Formal analysis: D.L.P., H.V., H.v.B., N.N.K. Methodology: D.L.P., A.P.M.d.B., H.V., K.L., F.F., N.F., O.A.L., P.N., P.M., M.H., S.v.H., A.K.B., P.H., Z.T., S.Z., M.S.F., J.H.M.S.H., M.S., L.D.K., H.T.B., L.R.F., J.C., A.P., J.P., N.A.D., A.L.C., V.S.S., A.T.M., N.N.K., H.H., F.A.S., Z.M.A., S.H., M.Y., M.A., M.S. G.R., E.E., A.T.S., S.B., G.M.M. Supervision: M.A.F.F., R.P., Saima Riazuddin, Sheikh Riazuddin, F.P., A.V.L., S.E.A., M.A.F., H.v.B. Validation: D.L.P., H.v.B. Visualization: D.L.P., P.M., H.v.B. Writing—original draft: D.L.P., H.v.B. Writing—review & editing: D.L.P., M.A.F.F., R.P., Saima Riazuddin, Sheikh Riazuddin, F.P., A.K.B., A.V.L., S.E.A., M.A.F., H.v.B.

Corresponding author

Correspondence to Hans van Bokhoven.

Ethics declarations

ETHICS DECLARATION

Individuals were identified in different centers worldwide in diagnostic or research settings approved by the respective institutional review boards: the Institutional Review Board Commissie Mensgebonden Onderzoek Regio Arnhem-Nijmegen, the Netherlands; Institutional Review Board at University of Maryland School of Medicine, Baltimore, Maryland, USA; Institutional Review Board, Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan; Institution Board of Jordan University Hospital, Amman, Jordan; Bioethics Committee of the University Hospitals and the Canton of Geneva, Switzerland; Ethics Committee of the Research Centre for Medical Genetics, Moscow, Russia; Persian BayanGene Research and Training Center Ethics Committee, Shiraz, Iran; institutional review boards of the Hanover Medical School the Children’s and Youth Hospital Auf der Bul, Hannover, Germany. Written informed consents were obtained from all the participating adults and guardians of affected individuals. Specific written informed consent was obtained for publishing the patients’ photographs. This study adhered to the World Medical Association Declaration of Helsinki (2013).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polla, D.L., Farazi Fard, M.A., Tabatabaei, Z. et al. Biallelic variants in TMEM222 cause a new autosomal recessive neurodevelopmental disorder. Genet Med (2021). https://doi.org/10.1038/s41436-021-01133-w

Download citation

Search

Quick links