Outcome of publicly funded nationwide first-tier noninvasive prenatal screening

Abstract

Purpose

Noninvasive prenatal screening (NIPS) using cell-free DNA has transformed prenatal care. Belgium was the first country to implement and fully reimburse NIPS as a first-tier screening test offered to all pregnant women. A consortium consisting of all Belgian genetic centers report the outcome of two years genome-wide NIPS implementation.

Methods

The performance for the common trisomies and for secondary findings was evaluated based on 153,575 genome-wide NIP tests. Furthermore, the evolution of the number of invasive tests and the incidence of Down syndrome live births was registered.

Results

Trisomies 21, 18, and 13 were detected in respectively 0.32%, 0.07%, and 0.06% of cases, with overall positive predictive values (PPVs) of 92.4%, 84.6%, and 43.9%. Rare autosomal trisomies and fetal segmental imbalances were detected in respectively 0.23% and 0.07% of cases with PPVs of 4.1% and 47%. The number of invasive obstetric procedures decreased by 52%. The number of trisomy 21 live births dropped to 0.04%.

Conclusion

Expanding the scope of NIPS beyond trisomy 21 fetal screening allows the implementation of personalized genomic medicine for the obstetric population. This genome-wide NIPS approach has been embedded successfully in prenatal genetic care in Belgium and might serve as a framework for other countries offering NIPS.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Incidence of rare autosomal trisomies.
Fig. 2: Percentage of pregnancies with a fetal or maternal imbalance from first-tier genome-wide NIPS.
Fig. 3

Data availability

This clinical utility study presents aggregated clinical data. All data are presented within the paper.

References

  1. 1.

    Vermeesch, J. R., Voet, T. & Devriendt, K. Prenatal and pre-implantation genetic diagnosis. Nat. Rev. Genet. 17, 643–656 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Fan, H. C., Blumenfeld, Y. J., Chitkara, U., Hudgins, L. & Quake, S. R. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc. Natl. Acad. Sci. U. S. A. 105, 16266–16271 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Chiu, R. W. K. et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc. Natl. Acad. Sci. U. S. A. 105, 20458–20463 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Gil, M. M., Accurti, V., Santacruz, B., Plana, M. N. & Nicolaides, K. H. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound Obstet. Gynecol. 50, 302–314 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Taylor-Phillips, S. et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open 6, e010002 (2016).

    Article  Google Scholar 

  6. 6.

    Badeau, M. et al. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women. Cochrane Database Syst. Rev. 11, CD011767 (2017).

    PubMed  Google Scholar 

  7. 7.

    Gregg, A. R. et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet. Med. 18, 1056–1065 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Committee opinion no. 640: cell-free DNA screening for fetal aneuploidy. Obstet. Gynecol. 126, e31–e37 (2015).

  9. 9.

    Society for Maternal-Fetal Medicine (SMFM) Publications Committee. SMFM statement: clarification of recommendations regarding cell-free DNA aneuploidy screening. Am. J. Obstet. Gynecol. 213, 753–754 (2015).

  10. 10.

    Benn, P. et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat. Diagn. 35, 725–734 (2015).

    Article  Google Scholar 

  11. 11.

    Bianchi, D. W. & Chiu, R. W. K. Sequencing of circulating cell-free DNA during pregnancy. N. Engl. J. Med. 379, 464–473 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Gadsbøll, K. et al. Current use of noninvasive prenatal testing in Europe, Australia and the USA: a graphical presentation. Acta Obstet. Gynecol. Scand. 99, 722–730 (2020).

    Article  Google Scholar 

  13. 13.

    Van Elslande, J. et al. The sudden death of the combined first trimester aneuploidy screening, a single centre experience in Belgium. Clin. Chem. Lab. Med. 57, e294–e297 (2019).

    Article  Google Scholar 

  14. 14.

    FPS Public Health. Opinion no. 66 of 9 May 2016—non-invasive prenatal testing (NIPT). https://www.health.belgium.be/en/opinion-no-66-non-invasive-prenatal-testing-nipt (2016).

  15. 15.

    Belgium Society of Human Genetics prenatal working group. Belgian Guidlines for managing incidental findings detected by NIPT. https://www.college-genetics.be/assets/recommendations/fr/guidelines/BELGIAN%20GUIDELINES%20FOR%20MANAGING%20INCIDENTAL%20FINDINGS%20DETECTED%20BY%20NIPT%20(2019).pdf.

  16. 16.

    Kalia, S. S. et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet. Med. 19, 249–255 (2017).

    Article  Google Scholar 

  17. 17.

    Bayindir, B. et al. Noninvasive prenatal testing using a novel analysis pipeline to screen for all autosomal fetal aneuploidies improves pregnancy management. Eur. J. Hum. Genet. 23, 1286–1293 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Dheedene, A. et al. Implementation of non-invasive prenatal testing by semiconductor sequencing in a genetic laboratory. Prenat. Diagn. 36, 699–707 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Raman, L., Dheedene, A., De Smet, M., Van Dorpe, J. & Menten, B. WisecondorX: improved copy number detection for routine shallow whole-genome sequencing. Nucleic Acids Res. 47, 1605–1614 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Engel, E. A fascination with chromosome rescue in uniparental disomy: Mendelian recessive outlaws and imprinting copyrights infringements. Eur. J. Hum. Genet. 14, 1158–1169 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    Brison, N. et al. Accuracy and clinical value of maternal incidental findings during noninvasive prenatal testing for fetal aneuploidies. Genet. Med. 19, 306–313 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Ammon Avalos, L., Galindo, C. & Li, D.-K. A systematic review to calculate background miscarriage rates using life table analysis. Birth Defects Res. A Clin. Mol. Teratol. 94, 417–423 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Gyselaers, W., Hulstaert, F. & Neyt, M. Contingent non-invasive prenatal testing: an opportunity to improve non-genetic aspects of fetal aneuploidy screening. Prenat. Diagn. 35, 1347–1352 (2015).

    Article  Google Scholar 

  24. 24.

    Yaron, Y. The implications of non-invasive prenatal testing failures: a review of an under-discussed phenomenon. Prenat. Diagn. 36, 391–396 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    van der Meij, K. R. M. et al. TRIDENT-2: national implementation of genome-wide noninvasive prenatal testing as a first-tier screening test in the Netherlands. Am. J. Hum. Genet. 105, 1091–1101 (2019).

    Article  Google Scholar 

  26. 26.

    Pertile, M. D. et al. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci. Transl. Med. 9, eaan1240 (2017).

  27. 27.

    Scott, F. et al. Rare autosomal trisomies: Important and not so rare. Prenat. Diagn. 38, 765–771 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Brison, N. et al. Predicting fetoplacental chromosomal mosaicism during non-invasive prenatal testing. Prenat. Diagn. 38, 258–266 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Amant, F. et al. Presymptomatic identification of cancers in pregnant women during noninvasive prenatal testing. JAMA Oncol. 1, 814–819 (2015).

    Article  Google Scholar 

  30. 30.

    Brison, N. et al. Maternal copy-number variations in the DMD gene as secondary findings in noninvasive prenatal screening. Genet. Med. 21, 2774–2780 (2019).

  31. 31.

    Robson, S. J. & Hui, L. National decline in invasive prenatal diagnostic procedures in association with uptake of combined first trimester and cell-free DNA aneuploidy screening. Aust. N. Z. J. Obstet. Gynaecol. 55, 507–510 (2015).

    Article  Google Scholar 

  32. 32.

    Larion, S. et al. Association of combined first-trimester screen and noninvasive prenatal testing on diagnostic procedures. Obstet. Gynecol. 123, 1303–1310 (2014).

    Article  Google Scholar 

  33. 33.

    Platt, L. D. et al. Impact of noninvasive prenatal testing in regionally dispersed medical centers in the United States. Am J Obstet. Gynecol. 211, 368.e1–7 (2014).

    Article  Google Scholar 

  34. 34.

    van Schendel, R. V. et al. Attitudes of pregnant women and male partners towards non-invasive prenatal testing and widening the scope of prenatal screening. Eur. J. Hum. Genet. 22, 1345–1350 (2014).

    Article  Google Scholar 

  35. 35.

    Hill, M. et al. Has noninvasive prenatal testing impacted termination of pregnancy and live birth rates of infants with Down syndrome? Prenat. Diagn. 37, 1281–1290 (2017).

    Article  Google Scholar 

  36. 36.

    Dondorp, W. et al. Noninvasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Eur. J. Hum. Genet. 23, 1438–1450 (2015).

    Article  Google Scholar 

  37. 37.

    Grati, F. R. et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell-free DNA. Genet. Med. 22, 309–316 (2020).

  38. 38.

    Malvestiti, F. et al. Interpreting mosaicism in chorionic villi: results of a monocentric series of 1001 mosaics in chorionic villi with follow-up amniocentesis. Prenat. Diagn. 35, 1117–1127 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Toutain, J., Goutte-Gattat, D., Horovitz, J. & Saura, R. Confined placental mosaicism revisited: impact on pregnancy characteristics and outcome. PLoS One 13, e0195905 (2018).

    Article  Google Scholar 

  40. 40.

    van Schendel, R. V. et al. What do parents of children with Down syndrome think about non-invasive prenatal testing (NIPT)? J. Genet. Couns. 26, 522–531 (2017).

    Article  Google Scholar 

  41. 41.

    Crombag, N. M., Page-Christiaens, G. C., Skotko, B. G. & de Graaf, G. Receiving the news of Down syndrome in the era of prenatal testing. Am. J. Med. Genet. A 182, 374–385 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work was funded by KULeuven funding (C1/018).

Author information

Affiliations

Authors

Contributions

Conceptualization: K.V.D.B., K.D., J.R.V. Investigation & methodology: K.V.D.B, N.B. Formal analysis: L.L., N.B. Visualization: V.G. Data curation: M.B., B.B., F.B. L.B., A.D.L., MD., J.D., A.Dheedene., A.Duquenne., N.F., A.F., J.G., K.J., S.J., D.L., A.M., B.M. C.M. L.P., B.P. E.S., E.V, V.B., G.S., Y.S. Supervision: K.V.D.B., K.D., J.R.V. Validation: N.B., K.V.D.B. Writing—original draft, review, and editing: K.V.B., L.L., N.B., K.J., K.D., J.R.V.

Corresponding author

Correspondence to Joris Robert Vermeesch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Den Bogaert, K., Lannoo, L., Brison, N. et al. Outcome of publicly funded nationwide first-tier noninvasive prenatal screening. Genet Med (2021). https://doi.org/10.1038/s41436-021-01101-4

Download citation

Search

Quick links