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Purpose: The American College of Medical Genetics and
Genomics (ACMG) and the Association for Molecular Pathology
(AMP) have developed guidelines for classifying germline variants
as pathogenic or benign to interpret genetic testing results.
Cosegregation analysis is an important component of the guide-
lines. There are two main approaches for cosegregation analysis:
meiosis counting and Bayes factor–based quantitative methods. Of
these, the ACMG/AMP guidelines employ only meiosis counting.
The accuracy of either approach has not been sufficiently addressed
in previous works.

Methods: We analyzed hypothetical, simulated, and real-life
data to evaluate the accuracy of each approach for cancer-
associated genes.

Results: We demonstrate that meiosis counting can provide
incorrect classifications when the underlying genetic basis of the
disease departs from simple Mendelian situations. Some Bayes
factor approaches are currently implemented with inappropriate

penetrance. We propose an improved penetrance model and
describe several critical considerations, including the accuracy of
cosegregation for moderate-risk genes and the impact of pleiotropy,
population, and birth year. We highlight a webserver, COOL (Co-
segregation Online, http://BJFengLab.org/), that implements an
accurate Bayes factor cosegregation analysis.

Conclusion: An appropriate penetrance model improves the
accuracy of Bayes factor cosegregation analysis for high-penetrant
variants, and is a better choice than meiosis counting whenever
feasible.
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INTRODUCTION
Classification of germline variants within disease-causing
genes as pathogenic or benign is crucial for the translation of
clinical genetic testing results. The American College of
Medical Genetics and Genomics (ACMG) and the Associa-
tion for Molecular Pathology (AMP) classification standards
and guidelines have been developed to interpret germline
variants and are now widely used.1 In the guidelines, a
strength level (supporting, moderate, strong, or very strong)
is assigned to each line of evidence for or against variant
pathogenicity. These strength levels are then summed
up within a scoring system to classify the variant as
pathogenic, benign, likely pathogenic, likely benign, or
variant of uncertain significance (VUS).
Cosegregation analysis, measuring how often an allele and a

disease are inherited together in a pedigree, is a component of
the ACMG/AMP approach for assessing germline variant
pathogenicity.1 Cosegregation can be assigned a base strength
level of pathogenic supporting (code name PP1) when
cosegregation with the disease is observed, or benign strong
(code name BS4) when cosegregation is lacking. There is an
allowance for PP1 to be up-weighted to PP1_moderate or

PP1_strong with increasing evidence. It is noteworthy that
cosegregation data alone are not sufficient evidence for
pathogenicity, irrespective of the magnitude of evidence in
favor of pathogenicity, because the variant of interest may be
in linkage disequilibrium with the true pathogenic variant.
That is, variant-specific data are required to support causality.
Cosegregation analysis requires designation of a proband in
each pedigree to adjust for ascertainment bias. Proband is
defined here as the first person to be tested positive for the
variant.
There are two main approaches for cosegregation analysis

of variant causality. The first one is meiosis counting,2 which
is easy to calculate without using any computer software. Use
of meiosis counting has been denoted in gene-specific
adaptations of the ACMG/AMP criteria for MYH7,3 CDH1,4

PTEN,5 RUNX1,6 and TP537 (Table S1). All these genes
associate with a complex disease or diseases characterized by
variable age at onset, phenocopies, and incomplete pene-
trance. It is important to note that the original meiosis
counting method considers both presence of variant in
affected individuals and absence of variant in unaffected
individuals,2 while the above ACMG/AMP rules consider only
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affected individuals.1 Throughout this paper, meiosis count-
ing refers to the ACMG/AMP approach for PP1.
Another method is the Bayes factor–based approach, which

measures the likelihood that cosegregation patterns represent a
gene–disease penetrance model. Applications of this approach
include full-likelihood Bayes (FLB)8 and cosegregation like-
lihood ratio (CSLR)9. This method considers variant allele
frequency, background disease incidence in the population,
expected risk elevation conferred by a pathogenic variant, and
age and sex of each individual. These are important factors for
the analysis of complex diseases such as cancers. This
approach produces a Bayes factor, which can be integrated
with other lines of evidence within a quantitative multifactorial
likelihood variant classification scheme.10,11 Further, given the
recent publication demonstrating that ACMG/AMP guidelines
can be modeled as a Bayesian framework, the Bayes factor
from one or more families with the same variant can also be
transformed into strength categories to be used in the
application of the ACMG/AMP guidelines.12 Overall, Bayes
factor–based approach has superior power, accuracy, and
flexibility compared with meiosis counting, although at the
cost of requiring parameters that may only be accessible for
well-studied genes.
Penetrance parameters for Bayes factor cosegregation

analysis are values corresponding to the probability of
developing the disease(s) of interest among individuals with
zero, one, or two copies of the putative risk allele, respectively.
This definition is relatively straightforward for Mendelian
diseases, but more complicated for complex diseases due
to the consideration of age, sex, and multiple phenotypes
associated with pathogenic variants in a given gene. For
example, most cancer susceptibility genes increase cancer risk
at multiple sites (Table S2), and both background incidence

and risk elevation conferred by germline pathogenic variants
vary by age, sex, and cancer site (Fig. S1).13–15

To address this issue, ideally one would provide a
penetrance value for each individual (or group of indivi-
duals) based on age, sex, disease type, and other relevant
factors. Each distinct penetrance value is called a liability
class. For phenotypes that are age-dependent, the approach
is to model disease incidence using a survival analysis
approach, whereby individuals who are diagnosed at age t
years are considered unaffected until age t–1 and then
become affected at age t (Eq. 2), hereafter referred to as the
“survival model.” This approach has been used to estimate
risks for many adult-onset diseases, most recently for breast
and ovarian cancer in individuals carrying a PALB2 loss-of-
function variant (hereafter “carrying” denotes being hetero-
zygous for the variant predisposing to a dominantly
inherited disease).16 However, various implementations of
cosegregation analysis tend to just use cumulative risks,
hereafter referred to as the “cumulative risk model," or to use
incidence rate for affected and cumulative risk for unaffected
individuals, hereafter referred to as the “incidence rate
model.” An example of the former is the Bayes factor
cosegregation analysis methods implemented in Analyze-
MyVariant,17 while the latter was used in both linkage
studies18,19 and in the assessment of cosegregation in most
previous studies of VUS classification.8,20,21 Difference in
these approaches will manifest themselves primarily in the
contribution to the cosegregation likelihood ratio of older
individuals who carry the variant.

MATERIALS AND METHODS
We analyzed a hypothetical pedigree (Fig. 1) to compare
different cosegregation analysis approaches for BRCA1. We
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Fig. 1 A hypothetical pedigree used to compare different cosegregation methods. We varied the status of individual II-1 in multiple ways to assess
the impact of affection status and genotype on cosegregation analysis. See Table 1 and Table S3 for results from these comparisons. Affected affected with
breast cancer, Age age of onset for affected and age of the last examination for unaffected individuals, Het heterozygous for the allele of interest, Neg the
individual is known to not have the allele of interest, P and arrow proband, question mark and TBD both affection status and genotype are to be
determined.
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chose this gene because reliable age-specific relative risk
estimation is available (Table S2).13–15 Affection status in the
hypothetical pedigree was selected to refer to breast cancer
only, since breast cancer has the highest incidence among
BRCA1-associated cancers, the relative risk shows a decreas-
ing trend with age, and breast cancer is the most frequently
observed in individuals harboring a BRCA1 pathogenic
variant. Age-dependent cancer incidence rate in the general
population was obtained from the Cancer Incidence in Five
Continents (CI5),22 United Kingdom population, year range
2008–2012. Incidence in individuals carrying a germline
pathogenic variant was calculated as the product of incidence
without a pathogenic variant and the relative risk for the
disease in each age group. We calculated the incidence rates
so that the combined incidence, based on an estimated allele
frequency, was equal to the observed population incidence in
CI5. The cumulative risk was calculated as the probability of
having any one of these diseases at any age before the last
examination:

Cumulative Riskt ¼ 1� e�
P

s

Pt

i¼1
Is;i (1)

where t is age in years, s denotes an associated disease, I is
incidence rate, and e is 2.71828. The survival penetrance was
calculated as follows:

Survival Penetrancet ¼
affectedwith diseases: 1� Cumulative Riskt�1ð Þ ´ Is;t

unaffected: Cumulative Riskt

�
(2)

where t is age of diagnosis for affected and age of last exam
for unaffected individuals. For affected individuals, this
penetrance corresponds to the probability of not developing
any one of the relevant diseases before age t multiplied by
the probability of developing the observed disease at age t.
Meiosis counting was performed manually based on
affection status disregarding age of onset. Two software
tools were used to carry out the Bayes factor–based
approaches: (1) an in-house pipeline implementing the
full-likelihood Bayes that is described further in Appendix
S1; and (2) the AnalyzeMyVariant website (http://analyze.
myvariant.org/), which permits segregation analysis using
full-likelihood Bayes or cosegregation likelihood ratio.17

Note that the website originally set up to perform
cosegregation likelihood ratio calculations9 (https://www.
msbi.nl/cosegregation/) was not accessible at the time of this
analysis.

Real-life pedigrees (Fig. S2) with a PALB2 variant
NM_024675.3(PALB2):c.3113G>A (NP_078951.2:p.Trp1038Ter)
were obtained from the University of Cambridge (Cambridge,
UK) and the Huntsman Cancer Institute (Salt Lake City, UT,
USA) after removing protected health information. Pedigrees
with ATM variants have been published previously.23 Breast,
ovarian, and pancreatic cancer risks associated with germline
PALB2 pathogenic variants were obtained from Yang et al.16

Risks of female breast cancer and pancreatic cancer conferred by
ATM pathogenic variants were obtained from Thompson et al.24

To evaluate the accuracy of cosegregation methods, we
simulated pedigrees with pathogenic or benign germline
variants by SLINK.25,26 This program took the abovemen-
tioned ATM pedigrees as input, then simulated genotypes
based on a provided penetrance model (Appendix S2). We
then calculated a full-likelihood Bayes factor using the same
penetrance as that in the simulation. Based on the Bayes
factor to ACMG/AMP strength level conversion method,12 we
calculated that PP1_moderate was met if the Bayes factor was
≥4.33. BS4_moderate was met if the Bayes factor was ≤0.23,
the reciprocal of the corresponding PP1_moderate Bayes
factor. We also tested the performance of using a more
stringent threshold, 18.7 for PP1_strong and 0.053 for
BS4_strong.12 We did 100,000 simulations to calculate the
probability of meeting either PP1 or BS4 by Bayes factor
cosegregation as a function of relative risk and number of
pedigrees.

RESULTS
Limitations of meiosis counting for complex diseases
In the current ACMG/AMP guidelines, evidence against
cosegregation is not considered by the PP1 rules (Table S1).
Moderate-amount evidence against pathogenicity for a
variant is ignored by both PP1 and BS4 rules, for example,
when the variant is present in one or two unaffected
individuals. This will lead to a systematic bias toward an
inflated type I error when pedigrees are small. Also, meiosis
counting may falsely consider nonexistent evidence for
pathogenicity if the age of onset is not handled properly. It
has been known that relative risks for breast cancer conferred
by BRCA1 and BRCA2 are high at a young age and
consistently decrease with age.13–15 For people in their 80s,
germline variants have little to no effect on disease risk (Fig.
S1). Therefore, diagnosis with cancer at 80 years of age
provides little evidence for pathogenicity. On the other hand,
absence of cancer before 80 years of age in individuals
carrying a variant provides evidence against pathogenicity.
Take the hypothetical pedigree from Fig. 1 as an example: if
individual II-1 is affected and carries the variant, and if we do
not consider her age of onset, meiosis counting incorrectly
upgrades cosegregation from 5 meioses to 6 meioses (Table 1).
A simple solution to provide more realistic weights is to count
only early-onset cases, by a stringent definition of early-onset
disease in which pathogenic variants would confer a high
relative risk. However, this approach would fail to recognize
the evidence for pathogenicity, albeit it lower, provided by
individuals affected at a slightly older age than the early-onset
cutoff. More importantly, it still does not solve the problem of
ignoring moderate evidence against pathogenicity. Note that
diagnosis at old age is not treated as unaffected by the current
ACMG/AMP rules and hence will not be counted toward
BS4. Furthermore, meiosis counting does not consider sex,
phenocopy, incomplete penetrance, allele frequency, and
multiple diseases associated with the same gene (see below).
Therefore, meiosis counting is not suitable for complex
diseases like cancers.
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Limitations of the cumulative risk and incidence rate
models
We analyzed a hypothetical pedigree (Fig. 1) to demonstrate
the performance of different penetrance models for Bayes
factor cosegregation analysis. We varied cancer and genotype
status for individual II-1, aged 81. Table 1 summarizes results
from the analysis of the pedigree considering different
genotype and affection status for individual II-1, using full-
likelihood Bayes under the cumulative risk, incidence rate,
and survival models (Fig. S3). We set the relative risk to 1 for
age group 80–90. Therefore, if a model is correct, we expect
the following: (1) Bayes factors are the same within each
genotype stratum (variant presence or absence) irrespective of
affection status, because affection status of individual II-1
does not provide evidence for or against pathogenicity; (2) the
variant-present stratum has a Bayes factor lower than the
variant-absent stratum, because presence of the variant in
unaffected individuals is evidence against pathogenicity, while
absence of the variant in unaffected individuals is comple-
mentary evidence that the variant cosegregates with the
disease. As shown in Table 1, these characteristics were
observed only from the survival model.
Using the incidence rate model for BRCA1, the Bayes factor

is 6.66 if the individual carries the variant and has no cancer
before 81, but 21.8 if the individual develops breast cancer at
age 81 years. The difference in Bayes factor can be explained
by the fact that in the first scenario, this unaffected individual
provides evidence against pathogenicity, while in the second
scenario, she does not provide any evidence against or for
pathogenicity. To demonstrate this point, note that the Bayes
factor (21.8) when this individual has an unknown genotype
is the same as that from the second scenario. This problem
stems from the lack of consideration of hidden data in the
pedigree. The definition of likelihood is the probability of
observed data given a hypothesis. In the case of individual II-
1 when she is affected, the data are (1) she is affected at 81
years old, and (2) she is not affected before 81 years old. The
incidence rate model only considers the first part, leaving out
the second. The fact is, the second part of the data is evidence
against variant pathogenicity and should be considered in a
causality analysis.

Results also demonstrate a concerning limitation of the
cumulative risk model. Not only does this model fail to
recognize the evidence against pathogenicity provided by the
fact that II-1 did not have cancer before 81 years old, but it
also treats an affected II-1 as evidence for variant
pathogenicity even though there is no such evidence in the
data. Therefore, when individual II-1 is affected and carries
the variant, the cumulative risk model yielded a considerably
higher Bayes factor (46.5) than the survival model (3.85),
even higher than that observed for the incidence rate model
(21.8). It should be noted that the difference between
Bayes factors of 3.85 and either 21.8 or 46.5 is considerable;
this would translate to a change of strength category from
PP1 to PP1_strong following the criteria proposed by
Tavtigian et al.12

Because the full-likelihood Bayes and cosegregation like-
lihood ratio methods implemented via AnalyzeMyVariant use
a liability class model based on cumulative risk, they showed
similar behaviors as the cumulative risk model calculated by
our in-house program (Table S3). Slight differences in Bayes
factor values are probably due to the differences in relative
risk and background incidence rate used. Note also that the
AnalyzeMyVariant implementation of these two methods
does not allow cancer site–specific liability classes, which is
another concern in cosegregation analysis (see below).

Consideration of pleiotropy, population, and birth year in
Bayes factor cosegregation
Pathogenic variants in some hereditary cancer genes are
associated with increased risks of cancer at multiple sites
(Table S2), a phenomenon known as pleiotropy.27 Both
background disease risk in the general population and the risk
elevation conferred by genes vary by cancer site (Fig. S1).
Accordingly, liability classes should be further divided into
subgroups by cancer sites, in addition to age, sex, and
affection status. Therefore, any tool that applies one
penetrance model for multiple cancer sites is losing informa-
tion, as well as potentially assigning incorrect weights for the
data provided. The extent to which this incorrect strategy will
affect variant classification will differ depending on individual
pedigree structures.

Table 1 Analysis results of the hypothetical pedigree in Fig. 1.

Meiosis countinga Full-likelihood Bayes factor following different Bayesian

analytical models

Affection status and genotype of individual II-1 in Fig. 1 Number of meioses Cumulative risk Incidence rate Survival

Affected, variant present 6 46.5 21.8 3.85

Unaffected, variant present 5 8.50 6.66 3.85

Affected, variant absent 5 7.78 21.8 19.7

Unaffected, variant absent 5 43.5 34.0 19.7

Affected, variant untested 5 27.1 21.8 11.8
Cumulative risk, incidence rate, and survival refer to the different liability class models (see text). Affection status refers to breast cancer only. Untested: genetic test not
conducted.
aMeiosis counting is based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) rules, in which only affected
individuals are considered, while absence of the variant of interest in unaffected individuals is not treated as informative meioses.1
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To demonstrate this issue, we analyzed two real-life
pedigrees with a PALB2 variant NM_024675.3(PALB2):
c.3113G>A (NP_078951.2:p.Trp1038Ter) (Fig. S2). One of
these pedigrees had a pancreatic cancer case who carried the
variant (Pedigree B). With a survival model that includes
separate liability classes for breast, ovarian, and pancreatic
cancer, using the full-likelihood Bayes approach, we obtained
a Bayes factor of 5.25 combining two pedigrees (PP1_mode-
rate). When we used pancreatic cancer liability classes only,
the Bayes factor reduced to 3.99 (PP1_supporting). This is
expected because the relative risk for breast cancer is much
higher than pancreatic cancer. When we used breast cancer
liability classes only, the Bayes factor was overestimated at
11.7. Although still falling in the moderate evidence category,
there is potential for such overestimation to compound with
the analysis of multiple pedigrees. Therefore, using a liability
class model limited to one cancer site is not recommended as
it can incorrectly estimate the strength of evidence to be
applied for variant classification.
Another issue to consider is that cancer incidence rates

differ between races and countries, and they change over time.
Using incidence rates from one population for the analysis of
pedigrees from another population will lead to systematic
bias. Although the difference may be small, systematic bias
accrues with an increasing number of pedigrees included in
analysis. This is an emerging problem as genetic testing is
becoming available to a broader range of populations. To
solve this issue, we developed a program to automatically
generate a liability class model based on a user’s choices of
population, cohort, and relative risk. Population incidence
rate is obtained from the Cancer Incidence in Five Continents
(CI5),22 which has data from all cancer registries in the world
at five-year intervals. To demonstrate the importance of using
appropriate cancer incidence rates, we analyzed the hypothe-
tical pedigree in Fig. 1 (setting individual II-1 as unaffected
and untested for the variant) based on differing population

incidence rates. We observed that the Bayes factor for this
pedigree varied from 33.8 to 46.6 between populations, a non-
negligible difference for variant classification (Fig. 2). The
differences among US_White, Japan, and India are substan-
tial, suggesting the importance of using population-specific
incidence. Also, the declining Bayes factor for Japan
corresponds to the increasing incidence in Japanese, demon-
strating the importance of considering cohort in some
populations.

Limitations of cosegregation analysis for moderate-risk
genes
Moderate-risk genes,28 such as CHEK2 and ATM, are
included in most multigene cancer panel tests. The smaller
effect size of pathogenic variants in these genes, about a
twofold increased risk of cancer, generates a challenge for
cosegregation analysis.
To evaluate the impact of an effect size smaller than that

conferred by BRCA1, BRCA2, or PALB2, we simulated data
with a pathogenic variant associated with a relative risk
ranging from 2 to 40. Results show that cosegregation would
be helpful (>80% power) when the relative risk is around 10
and at least seven pedigrees are observed, while the power to
reach PP1 is very low (23%) with seven pedigrees when the
increased risk is at twofold. (Fig. 3a). Variants with a
smaller effect size have a numerically higher rate of meeting
BS4 than those with a higher relative risk (Fig. 3b). Bayes
factor cosegregation using a lower relative risk model
demonstrates a lower probability of meeting BS4 (Fig. 3c)
and a higher rate of meeting PP1 (Fig. 3d) on benign
variants. These results show that cosegregation analysis
using a Bayes factor approach for moderate-risk genes can
be both powerless and misleading. The same trend is also
observed for the strong category of PP1 and BS4 (Fig. 3e–h),
where the false BS4 (Fig. 3f) and false PP1 rates are below
5% (Fig. 3h).
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Fig. 2 Cosegregation results based on different population incidence.
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We also analyzed real-life pedigrees with moderate-risk
ATM variants (Table S4) to assess the practicality of using
cosegregation data for the classification of variants in genes
like ATM. We excluded the variant NM_000051.3(ATM):
c.7271T>G (NP_000042.2:p.Val2424Gly), which is associated
with a high risk of breast cancer.23 There were 12 pedigrees
with eight unique variants, and only two variants were
observed in more than one pedigree. No variant reached the
PP1 supportive level based on Bayes factor. If we combined
these pedigrees in one analysis as if they carry the same
variant, the resulting Bayes factor was 0.51, a value that falls
into the uninformative range (0.48–2.08).12

DISCUSSION
We demonstrate that meiosis counting is not suitable for variant
classification in many common cancer-associated genes due to
the violation of assumptions inherent in meiosis counting.
These assumptions include complete penetrance, no phenoco-
pies, no age or sex difference in disease risk conferred by the
variant, and the same elevated risk to different cancer sites.
Modifying the method to be used for complex diseases, such as
relaxing nonsegregation criteria and filtering individuals by age,
will lead to other problems such as systematically omitting
moderate-level evidence against pathogenicity and difficulty in
determining an appropriate age cutoff.
A Bayes factor approach can solve these problems

when a reasonably accurate penetrance estimation is
available. However, the current implementations of the
Bayes factor approaches have limitations. Notably, neither
the cumulative risk nor the incidence rate penetrance model
accurately represents pathogenicity evidence in data. We
propose a survival penetrance model that addresses these

limitations and show that it yields results consistent with
expectation.
We show that the use of different penetrance models can

result in significant differences when analyzing a single
pedigree using a Bayes factor approach, which can be
sufficient to result in different strength categories in the
context of variant classification using ACMG/AMP guide-
lines. Logically, using different penetrance models may thus
impact the final classification of individual variants and the
clinical management of individuals who carry them. It is thus
vital to encourage the usage of appropriate gene-specific
penetrance by researchers, genetic testing laboratories, and
variant curation panels. This should preferably include efforts
to standardize between institutes the input information
regarding age-, sex-, and site-dependent relative risk con-
ferred by a given cancer predisposition gene.
The survival liability class model presented here is

implemented as a freely available webtool named COOL
version 2 (Co-segregation Online, http://BJFengLab.org/)
described in the Supplementary Information (Appendix S1).
The platform currently provides relative risk tables for 16
different cancer risk genes (Table S2), and permits the use of a
customized relative risk table for other cancer genes, or using
a customized penetrance file for noncancer genes. It should be
noted that three genes, ATM, CHEK2, and MEN1, are
annotated as inappropriate for cosegregation analysis due to
current evidence indicating an association with a moderate
(<5-fold) risk of cancer. We have also demonstrated the
importance of selecting appropriate incidence rates based on
population and birth year. We provide easy access to this
information through the website. However, even with
population-specific incidence, the analysis of non-European
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Fig. 3 Accuracy of cosegregation analysis as a function of variant effect size. Upper panels are moderate categories; lower panels are strong
categories. (a, b, e, f) Probability of meeting PP1 or BS4 when variants are pathogenic. (c, d, g, h) Probability of meeting BS4 or PP1 when variants are
benign. Relative risks in these four panels refer to parameters in cosegregation analysis. BS4 benign category by cosegregation, PP1 pathogenic category by
cosegregation, RR relative risk, Thresholds Bayes factor cutoff values for meeting PP1 or BS4.
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populations assumes that relative risks are constant across
populations. A large-scale study has demonstrated that the
disease risks of BRCA1, BRCA2, PALB2, ATM, and CHEK2 in
Japanese were comparable with Europeans.29 Similar studies
in other populations will inform future testing and variant
classification processes in non-Europeans. For complex
diseases characterized by variable age at onset and pleiotropy,
another crucial consideration is age of each family member.
For cancer-associated genes, the proper approach may depend
on the degree to which treatment for the first cancer affects
risk of developing cancer at other sites. We would propose to
use a model in which each family member is followed up until
the diagnosis of first cancer, risk-reducing treatment, or the
last observation, whichever occurred first.16

Lastly, we have demonstrated the difficulty of applying
standard cosegregation approaches for assessing causality of
moderate-penetrance alleles, with very low power to meet PP1
even when data are available from a large number of
pedigrees. We also show that this approach is likely to
provide misleading evidence, reaching BS4 for a true
pathogenic variant. This suggests that there will be little
value in allocating resources to genotyping of relatives for
segregation analysis of variants of uncertain significance in
moderate-penetrance genes.
In summary, we provide a method to remedy a problem

that is ubiquitous in the widely used liability class model.
More efforts are required to estimate the age-, sex-, site-, and
population-specific relative risk conferred by cancer-
associated genes to improve the accuracy of segregation
analysis results.
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