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Purpose: The exocyst complex is a conserved protein complex that
mediates fusion of intracellular vesicles to the plasma membrane
and is implicated in processes including cell polarity, cell migration,
ciliogenesis, cytokinesis, autophagy, and fusion of secretory vesicles.
The essential role of these genes in human genetic disorders,
however, is unknown.

Methods: We performed homozygosity mapping and exome
sequencing of consanguineous families with recessively inherited
brain development disorders. We modeled an EXOC7 splice variant
in vitro and examined EXOC7 messenger RNA (mRNA) expression
in developing mouse and human cortex. We modeled exoc7 loss-of-
function in a zebrafish knockout.

Results: We report variants in exocyst complex members, EXOC7
and EXOC8, in a novel disorder of cerebral cortex development. In
EXOC7, we identified four independent partial loss-of-function

(LOF) variants in a recessively inherited disorder characterized by
brain atrophy, seizures, and developmental delay, and in severe
cases, microcephaly and infantile death. In EXOC8, we found a
homozygous truncating variant in a family with a similar clinical
disorder. We modeled exoc7 deficiency in zebrafish and found the
absence of exoc7 causes microcephaly.

Conclusion: Our results highlight the essential role of the exocyst
pathway in normal cortical development and how its perturbation
causes complex brain disorders.
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INTRODUCTION
Eight genes in the human genome, EXOC1–EXOC8, encode
the exocyst complex, a multimeric, evolutionarily conserved
complex that traffics vesicles within the cell to the plasma
membrane for fusion. The exocyst complex has been shown to
play a role in several cellular processes, including cell polarity,
cell migration, ciliogenesis, cytokinesis, autophagy, and fusion
of secretory vesicles,1 but human disorders associated with

definitive loss-of-function variants in any of these compo-
nents have not yet been reported. Although a missense variant
in EXOC82 was reported in a single case of Joubert syndrome
(MIM 213300), and a missense variant in EXOC43 was
reported in a case of Meckel–Gruber syndrome (MIM
249000), the pathogenicity of these two variants has not yet
been confirmed. As such, the essential role of individual
proteins of the exocyst complex remains unclear.
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Several of the reported functions of the exocyst complex, cell
polarity and migration, cytokinesis, and ciliogenesis,1,4–6 are
integral processes during cerebral cortical development and so
motivated us to test the hypothesis that variants in exocyst
encoding genes cause brain development disorders. First,
establishing cell polarity and cell migration are essential for
cortical development. Variants in radial glial cell progenitors
(RGC) polarity genes, such as Pals1 and Par3, disrupt cortical
development through massive cell death or premature cell cycle
exit, respectively.7,8 In addition, variants in genes required for
neuronal migration can cause one of several cortical malforma-
tions, including lissencephaly (MIM 607432, PAFAH1B1/
LIS19), double cortex syndrome (MIM 300067, DCX10,11), and
cortical dysplasia (MIM 610031, TUBB3,12 TUBB5,13 KIF5C,14

KIF2A14). Second, robust and rapid cell division of cortical
progenitors is essential for cortical development and several
genetic causes of microcephaly (MIM 251200) exhibit disrupted
cytokinesis as a result of supernumerary (CDK5RAP2,15,16

KATNB117,18), or missing spindle poles (ASPM,19 WDR6220)
stemming from dysfunctional centrosomes.21 Finally, defects in
cilia formation lead to ciliopathy syndromes (MIM 209900),
complex syndromes with disrupted brain development
(INPP5E,22 C2CD3,23 BBS124).
Here we provide a systematic analysis of variants in two

exocyst components, by defining several variants in EXOC7
and EXOC8. We identify four independent, partial loss-of-
function variants in EXOC7, associated with developmental
brain disorders of variable severity characterized by develop-
mental delay, seizures, brain atrophy, microcephaly, and
infantile death. We also describe one loss-of-function variant
in EXOC8 similarly associated with severe developmental
delay, seizures, brain atrophy, microcephaly, and premature
death. We further provide a zebrafish genetic model of
EXOC7 loss-of-function and offer genetic evidence that
EXOC7 is required for neuron survival.

MATERIALS AND METHODS
Human subjects
This study was conducted with the approval of institutional
review boards and according to the ethical standards of the
participating institutions: Boston Children’s Hospital; Uni-
versity of California–San Diego; the Faculty of Medicine,
United Arab Emirates University; and AP-HP Sorbonne
Université. Informed consent was received from all partici-
pants. Permission was received to publish patient photographs.

IACUC approval of zebrafish housing and experiments
A complete description of the husbandry and environmental
conditions in housing for the fish used in these experiments is
available as a collection in protocols.io (https://doi.org/
10.17504/protocols.io.mrjc54n). All animals were cared for
humanely and all experiments were approved by Boston
Children’s Hospital Institutional Animal Care and Use
Committee (IACUC).

Exome sequencing
DNA was extracted from whole blood and exome sequencing
was performed (See Supplement). We filtered out variants
with allele frequency >10% in the Middle Eastern
population.25

Sanger sequencing
Primers surrounding the reported variant in each family were
used for polymerase chain reaction (PCR) and subsequent
Sanger sequencing to confirm genotype from exome sequen-
cing and determine segregation within the family.

Minigene cloning and expression
A ~5-kb section of human EXOC7 locus was amplified with
primers (F: AAGGACTGAAGGAGCATTTC, R: CAGGGA
GTCGAAGGTCTTCT) from a BAC and cloned into pCAG
expression vector. The splice acceptor variant from family I
was introduced with site-directed mutagenesis. Wild-type
(WT) or splice variant containing vector was transfected into
mouse N2A cells and after 48 hours RNA was isolated and
retrotranscribed into complementary DNA (cDNA). N2A
cells were cultured at 37 °C and 5% CO2 in high-glucose
DMEM (GIBCO) supplemented with 10% fetal bovine serum
and 1% penicillin–streptomycin.

HAP1 mutant cell line
HAP1 human cell line was cultured at 37 °C and 5% CO2 in
high-glucose DMEM (GIBCO) supplemented with 10% fetal
bovine serum and 1% penicillin–streptomycin. The splice
acceptor variant from family I was introduced into a HAP1
cell line as a hemizygous variant using CRISPR/Cas9
mutagenesis (Supplemental Methods)26 (Horizon Discovery).
Immunoblot was performed using human EXOC7 antibody
(Abcam, ab118792).

Exoc7 alternative splicing in developing cortex
Alternative splicing analysis of EXOC7 in developing human
(GW13–16) and mouse (E14.5) cortex was performed as
described previously.27 Aligned BAM files from RNA
sequencing data sets were analyzed with the MISO pipeline
(version 0.4.6) to determine the inclusion frequency of
alternatively spliced exons.

Generation of exoc7 mutant zebrafish lines
Exoc7 mutant zebrafish were generated by CRISPR/Cas9
mutagenesis. Cas9 messenger RNA (mRNA) (250 ng/μl)
and exoc7 targeting guide RNA (target: CCGTCCTCA
TCCTGGACGCC, 80 ng/μl) were injected into 1-cell
embryos. Embryos developed to adulthood and then Sanger
sequencing was used to identify potential heterozygous
exoc7 mutant carriers in F1 progeny. A 1-bp frameshift
deletion in exon 5 was identified and this fish was
backcrossed to WT to generate heterozygous carriers. This
allele is mh111.
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Toluidine blue staining of zebrafish
Five days postfertilization (dpf) embryos were fixed in 4%
PFA overnight at 4 °C and then embedded in JB-4 resin
according to manufacturer’s protocol (Polysciences Inc). Fish
were sectioned at 2 μm, and then matching sections were
stained with toluidine blue and imaged with a bright-field
microscope.

Immunostaining of zebrafish progenitor cells
Five dpf embryos were fixed in 4% PFA overnight at 4 °C,
embedded in OCT, and sectioned coronally at 20 μm on a
cryostat. Matched sections were stained with a primary
antibody against Sox2 (Abcam, ab97959). Tissue was
permeabilized and blocked in 3% BSA, 0.3% Triton X-100,
0.3% sodium azide in PBS. Primary antibodies were incubated
overnight at 4 °C. Sections were stained with Alexa secondary
antibodies and Hoechst. Imaging was done on Zeiss 510
confocal microscope. Sox2-positive nuclei in telencephalon
were counted.

TUNEL staining in developing zebrafish
Five dpf embryos were fixed in 4% PFA overnight at 4 °C,
embedded in OCT, and cryosectioned coronally. Apoptotic
cells in matched sections were labeled with TUNEL staining
using the Apoptag kit (Millipore) according to the manu-
facturer’s instructions. Imaging was done on Zeiss 510
confocal microscope. TUNEL positive cells in telencephalon
were counted.

RNAscope
RNAscope on human fetal brain tissue was performed
according to manufacturer’s protocol (ACDBio). Tissue was
fixed in 4% PFA, frozen, and sectioned at 20 μm on a cryostat.

Quantification and statistical analysis
In all analyses, mean values are presented for pooled data and
errors bars are SEM. For all quantifications, statistical
significance was determined using a two-tailed, unpaired
t test (GraphPad Prism).

RESULTS
EXOC7 and EXOC8 variants in recessive developmental
disorders
In mapping developmental disorders affecting the cerebral
cortex, we identified variants in EXOC7 and EXOC8
associated with recessive brain development syndromes with
a range of symptom severity including developmental delay,
seizures, brain atrophy, microcephaly, and infantile death
(Table 1).
Family I is a consanguineous family with the most severely

affected children, who have infantile lethality with neonatal
microencephaly, seizures, and arthrogryposis (Fig. 1a, S1A).
The family had two daughters who were born with myoclonic
seizures and arthrogryposis multiplex. One had documented
microcephaly (−2.7 SD), and both died within the first
months of life. Imaging of both siblings showed a cerebrum Ta
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smaller than the skull cavity with a thin cortex and extremely
simplified gyri, enlarged ventricles, reduced white matter, and
a very small cerebellum and brainstem (Table S1). These
findings are consistent with global cerebral cortical mal-
development, and likely brain atrophy, reflecting neuronal
loss (Fig. 1a). Homozygosity mapping in this family identified
a region on chromosome 17 linked to disease with a
statistically suggestive maximum logarithm of the odds
(LOD) score of 1.93 (Fig. S2A). Exome sequencing identified
a homozygous splice variant in EXOC7 within this region
(exon 7 splice acceptor, NC_000017.10:g.74087318T>C
[hg19], c.809–2A>G, Fig. 1a); this variant is heterozygous in
2/251,414 alleles from normal controls (frequency= 7.96 ×
10−6) and never homozygous (gnomAD28). This variant
mutates a highly conserved base, disrupts the canonical splice
acceptor for exon 7 (ag|G>gg|G), and segregates perfectly with
disease in this family. One additional rare homozygous
variant was found in the same linkage region that caused a
missense variant in CYB5D2 (NC_000017.10:g.4057982C>T
[hg19], p.Arg136Trp), a gene that encodes a heme binding
protein29 with low expression in the developing cerebral
cortex (Fig. S4). In the gnomAD database, this CYB5D2
variant is heterozygous in 3/276,426 alleles from normal
controls (frequency= 1.22 × 10−5, 0 homozygous alleles), and
there are three additional homozygous missense and one
homozygous stop-gain variants in CYB5D2 in gnomAD.
Although little is known about CYB5D2 function, its
expression is much lower than EXOC7 in developing cortex
and the greater relative severity of the EXOC7 splice acceptor
variant favors it as causative in this family.
Family II has one affected male child, of consanguineous

parents, with severe developmental delay, seizures, and mild
microcephaly (−2.6 SD) (Fig. 1b). Brain imaging showed
central and cortical atrophy prominent in the temporal lobes
(Table S1). Exome sequencing identified a homozygous 3-
base-pair deletion in exon 3 of EXOC7 that removes a serine
at position 48 (NC_000017.10:g.74097928_74097930delGAT
(hg19), Ser48del, Fig. 1b). This variant is heterozygous in 2/
276,426 alleles from normal controls (frequency= 7.24 ×
10−6) and never homozygous (gnomAD), and segregates
perfectly with disease. Recent work presents two important

roles for EXOC7’s N-terminal domain, (1) binding to EXOC8
to promote exocyst complex assembly30 and (2) binding to
Wave regulatory complex for cell migration.31 As Ser48 is
located in this region, its deletion could disrupt these
functions, consistent with it being a pathogenic variant.
Family III is nonconsanguineous with two affected fetuses

with mild microcephaly and cerebellar hypoplasia, confirmed
by autopsy following termination of pregnancy (Fig. 1c,
S1F–H, Table S1). Exome and Sanger sequencing identified
two compound heterozygous variants in EXOC7 in the
affected fetuses that segregated with disease. One variant is
the same exon 7 splice variant found in family I
(NC_000017.10:g.74087318T>C [hg19], c.809–2A>G, Fig. 1c).
The second variant is an in-frame deletion of 15 bp that
removes five amino acids in exon 10 (NM_001145297.2:
c.1212_1226delTGGGCTGATGCTTGA, Fig. 1c, S3). This
variant is absent from normal controls (gnomAD).
Family IV is consanguineous with three siblings affected

with recessively inherited seizures, intellectual disability, and
developmental delay (Fig. 1d). Brain imaging showed atrophy
in two of the three affected siblings (Table S1). Homozygosity
mapping identified a single linkage region on chromosome 17
with the maximum possible LOD score of 2.9 (Fig. S2B).
Exome sequencing identified a homozygous missense variant
in exon 15 of EXOC7 within the linkage region
(NC_000017.10:g.74081807C>T [hg19], Ala523Thr, Fig. 1d).
This variant is heterozygous in 2/277,066 alleles from normal
controls (frequency= 7.22 × 10−6) and never homozygous
(gnomAD), and segregates perfectly with disease. Alanine 523
is a highly conserved amino acid that is conserved from
humans to zebrafish.
Family V exhibits recessively inherited global develop-

mental delay with regression, seizures, and microcephaly in
three daughters of consanguineous parents (Fig. 1e, S1B–E).
Brain imaging showed atrophy in all three affected
individuals (Table S1). Homozygosity mapping identified
multiple linkage regions with a maximum possible LOD
score of 2.5, including a large region on chromosome 1
(Fig. S2C). Exome sequencing identified a homozygous
2-base-pair deletion in exon 1 of EXOC8 in the linkage
region (NC_000001.10:g.231471676_231471677delCT (hg19),

Fig. 1 EXOC7 variants cause a recessive brain development disorder. (a) Left, pedigree of family I showing consanguineous parents and recessive
inheritance of lethal microcephaly in I-01 and I-05. Middle, coronal and axial brain magnetic resonance image (MRI) (I-01) or computed tomography (CT)
(I-05) show extremely simplified gyral pattern, small cortex, and fluid accumulation with age-matched normal MRI for comparison. Right, Sanger sequencing
of EXOC7 intron 6/exon 7 boundary shows intronic A>G variant that mutates the canonical splice acceptor (ag|G to gg|G). This variant is homozygous in
affected individuals and segregates with disease. (b) Left, pedigree of family II showing consanguineous parents and recessive inheritance of brain atrophy,
microcephaly, and seizures in II-04. Middle, Sanger sequencing of EXOC7 exon 3 reveals a homozygous 3-base-pair ATC deletion in the affected individual
that segregates with disease. Right, this deletion removes amino acid Serine 48, which is located in the EXOC7 N-terminal region responsible for binding to
EXOC8.30 (c) Left, pedigree of family III showing recessive inheritance of fetal microcephaly and cerebellar hypoplasia in III-03, III-04. Middle, Sanger
sequencing showing EXOC7 exon 7 heterozygous splice acceptor variant. Right, diagram of 15-bp heterozygous deletion in EXOC7 exon 10. (d) Left,
pedigree of family IV showing consanguineous parents and recessive inheritance of brain atrophy and seizures in IV-05, IV-07, and IV-09. Middle, Sanger
sequencing of EXOC7 exon 15 reveals a homozygous G>A variant in affected individuals that segregates with disease. Right, this variant changes amino acid
523, a highly conserved amino acid from humans to zebrafish, from alanine to threonine. (e) Family V has recessive inheritance of a syndrome of
developmental regression and delay, seizures, brain atrophy, and early death. Homozygosity mapping and exome sequencing reveals a homozygous 2-base-
pair deletion in EXOC8 that causes early protein truncation. aa amino acid.
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Asp607Ter, Fig. 1e), which is absent from normal controls
(gnomAD). This frameshifting deletion creates a premature
stop codon at amino acid 607, short of the full-length protein
(725 aa), and segregates perfectly with disease in this family.
One additional homozygous variant was detected in the
family (stop-gain in RP1L1). In gnomAD, this variant is
present as a homozygote in one individual and RP1L1 is
associated with adult-onset retinitis pigmentosum (OMIM
613587), so this variant is unlikely to contribute to
microcephaly in this family.
In total, we report four novel missense and splice site

variants in EXOC7 and one novel truncating variant in
EXOC8 in families with a recessive syndrome of brain
atrophy, seizures, and developmental delay, and in more
severe cases microcephaly and infantile death (Table 1). The
presence of cerebral atrophy in all families indicates
neurodegeneration and suggests EXOC7 and EXOC8 are
required for neuronal survival. Loss-of-function variants in
EXOC7 have not been previously linked to human disease,
and we have recently reported one homozygous missense
variant in EXOC8 in a single case of Joubert syndrome.2

EXOC7 splice variant disrupts mRNA splicing patterns and
reduces protein expression
EXOC7 is an alternatively spliced gene with 5 verified
transcripts;32 three of which include exon 7. We generated a
minigene assay to model the exon 7 splice acceptor variant
found in both families I and III and found this variant
disrupts splicing and decreases EXOC7 protein level. The
minigene was constructed using 5 kb of genomic DNA from
the human EXOC7 locus spanning exon 6 to exon 9 (Fig. 2a).
Reverse transcription PCR (RT-PCR) of mRNA transcribed
from the minigene plasmid expressed in mouse N2A cells
revealed three splicing disruptions caused by the human
variant (Fig. 2a). First, cDNA encoding a high-abundance
transcript (including exons 6, 7, and 9) was isolated from
wild-type minigene but completely absent from the variant
(Fig. 2a). A low-abundance larger product that could not be
subcloned for sequencing was found in wild-type and likely
encodes a transcript including exons 6, 7, 8, and 9 (*, Fig. 2a).
Second, two novel out-of-frame splice forms that are
predicted to encode early truncations were found exclusively
in variant minigene cDNA (Fig. 2a). Form A splices in the last
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Arrows from each band in gel point to splicing diagram determined by Sanger sequencing of the cDNA. Wild-type (WT) minigene generated two in-frame
isoforms (left), whereas variant minigene generated one in-frame isoform and two novel out-of-frame isoforms (right). Two variant isoforms encode novel
stop codons that lead to premature protein truncation. Asterisk (*) indicates low-abundance product that could not be subcloned for sequencing. (b)
Immunoblot of EXOC7 protein in WT and variant HAP1 cells showing reduction of two EXOC7 isoforms. GAPDH is a protein loading control. (c)
Quantification of (b) showed significant 50% reduction of larger EXOC7 band (band 1, p= 0.045), while the lower weight band (band 2) was not
significantly reduced. P values calculated by two-tailed t test. Error bars represent SEM.
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37 bases of intron 6 causing a frameshift that is predicted to
create a premature stop codon at amino acid 286, well short of
the full-length protein of 684 amino acids. Form B splices out
the first 14 bases of exon 7 causing a frameshift, predicted to
create a premature stop codon at amino acid 290. An isoform
that skips exon 7 and includes exons 6 and 9 was observed in
both wild-type and variant minigenes. These minigene results
show that the variant disrupts EXOC7 mRNA splicing. To
assess the variant’s effect on EXOC7 protein we mutated a
HAP1 cell line to encode the patient variant (hemizygous).
Immunoblot of EXOC7 protein showed reduced expression in
variant HAP1 cells (Fig. 2b, c). We detected two isoforms: (1)
a larger isoform was significantly reduced by 50% (two-tailed
t test, p= 0.045) and (2) a smaller isoform showed a trend
towards reduction (two-tailed t test, p= 0.088). Together,
these results support the pathogenicity of this variant.

EXOC7 is highly expressed in developing cerebral cortex
EXOC7 is highly expressed in the developing human cortex,
consistent with the affected individuals’ phenotypes. In situ
hybridization using RNAscope in human fetal cortex
showed abundant EXOC7 expression in the ventricular
zone (adjacent to the ventricle and coexpressing VIM), the
outer subventricular zone (coexpressing TBR2) and in the
cortical plate (adjacent to the pial surface) (Fig. 3a, b).
Similarly, Exoc7 is expressed in developing mouse cortex
(MGI). RNA sequencing analysis of human fetal cortex33

confirms this expression pattern with expression in the
ventricular zone and the inner and outer subventricular

zones at a similar level as ASPM, a canonical microcephaly
gene, and in the cortical plate (Fig. 3c). EXOC7 expression
in both progenitors and postmitotic neurons suggests it has
important roles in both cell types during cortical develop-
ment. Notably, exon 7 of EXOC7, which contains a splice
acceptor variant in families I and III, is differentially spliced
in cortical progenitors compared with postmitotic cortical
neurons. Using a previously published method,27 we
identified differentially spliced exons in the developing
cortex with RNA sequencing of separated cortical progeni-
tors and postmitotic neurons isolated from both developing
mouse and human brain tissue. During fetal human cortical
development (GW15), exon 7 is included in 93% of
transcripts from the cortical plate and 47% of
transcripts from ventricular zone (Fig. 3d). Similarly, during
cortical development in mice (E14.5), exon 7 is included in
87% of transcripts isolated from the cortical plate and 35%
of transcripts from the ventricular zone (Fig. 3d). The
role of this differential splicing in the regulation of
EXOC7 function in development is unknown, but our
evidence that the splicing variant identified in families I and
III alters this differential expression, by eliminating
expression of the exon 7 included isoform (Fig. 2), suggests
this variant is pathogenic by disrupting cortical
development.

Exoc7 is essential for vertebrate embryonic development
EXOC7 protein is highly conserved among vertebrates
(Fig. 4a). To further characterize the function of EXOC7 in
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brain development, we examined Exoc7 loss in both zebrafish
and mouse. Mice deficient for Exoc7 have been created by
Lexicon Pharmaceuticals and are reported to be homozygous
lethal (personal communication). This is consistent with the
phenotype for loss-of-function variants in other exocyst
components also reported to be early embryonic lethal,34,35

and suggests that the three human alleles identified retain
some function and are partial loss-of-function.
To facilitate analysis of Exoc7 function during develop-

ment, we took advantage of the ease of genome editing in
the zebrafish. We created an exoc7 mutant zebrafish with
predicted loss of function of the encoded protein that

c

b

d

Wild type

exoc7 null

Control

1 mm

1 mm

200 um 200 um

exoc7 null

Wild type

4.0600
1.00

0.75

0.50

0.25

0.00

550

500Normal

Dead
Small eyes

450

400

3.5

3.0

2.5

2.0

10

20

15

10

5

0

8

6

4

2

0

735

D. rerio exoc7

1

1851

exoc7 null

e f

28

A
dj

. h
ea

d 
di

a.
 (

um
)

B
od

y 
le

ng
th

 (
m

m
)p = 7 × 10–5

p = 0.2

Control exoc7 null

Control

S
ox

2+
 c

el
ls

4

p = 0.0019

A
po

pt
ot

ic
 c

el
ls

Control

5 5

p = 0.0023h

i

Control exoc7 null

Control exoc7 null

Apoptag Apoptag

Sox2 Sox2

Control

exoc7 null

g

Exon 5 gRNA

1bp deletion

Hs
Mm

Dr

EXOC7 protein alignmenta

24

Null

29

Control

25

Null

Null

Control Null

5

100 um 100 um

100 um100 um

100 um

100 um

Fig. 4 Exoc7 is essential for zebrafish telencephalon development. (a) Exoc7 amino acid sequence is highly conserved between human, mice, and
zebrafish. (b) exoc7 1-bp frameshift deletion variant in exon 5 is confirmed by DNA sequencing and predicted to cause a frameshift and subsequently a
protein truncation through a premature stop codon at amino acid 186. gRNA guide RNA. (c) exoc7 homozygous mutant fish have gross developmental
abnormalities by 5 dpf, notably small eyes and head edema. Green line shows measurement of adjusted head diameter calculated by subtracting edema (red
lines). (d) Heterozygous exoc7 zebrafish crosses generated mutant fish (small eye/edema or dead) at expected Mendelian ratio. Genotyping confirmed that
phenotypically mutant larvae were homozygous for the exoc7 variant. (e) Quantification of adjusted head diameter, which is significantly reduced in
homozygous mutant fish. (f) Body length is not significantly changed in homozygous mutant fish. (g) Toluidine blue stain of 5-dpf wild-type and exoc7
mutant zebrafish. (h) Apoptag staining shows a significant increase of apoptotic cells in the exoc7 mutant telencephalon. (i) Immunohistochemical staining
of neuronal progenitors using Sox2. The number of Sox2+ progenitors is significantly decreased in the exoc7mutant telencephalon. P values calculated with
two-tailed t test. Error bars represent SEM.

COULTER et al ARTICLE

GENETICS in MEDICINE | Volume 22 | Number 6 | June 2020 1047



allowed us to examine the function of exoc7 in development.
We used CRISPR/Cas9 mutagenesis to create a 1-bp
deletion in exon 5 of exoc7 that generates a predicted
frameshift and subsequent nonsense variant. This variant is
predicted to lead to a prematurely truncated protein 185
amino acids long, well short of the full-length peptide at 735
(Fig. 4b).
We found that exoc7 is essential for zebrafish development.

At 5 dpf, approximately 25% of progeny from a heterozygous
incross showed head edema and small eyes, consistent with
Mendelian inheritance (Fig. 4c, d, g). Genotyping confirmed
that these phenotypes were associated with loss of exoc7 and
demonstrated that the phenotype was highly penetrant
(Fig. S5A). The mutant fish from the incross (edema and
small eyes) die shortly after day 5, showing exoc7 is essential
for early zebrafish survival.
Quantification of the small eye phenotype revealed that the

eye area was reduced by 26% in mutant fish (two-tailed t test,
3.6 × 10−24, Fig. S5B). Broader characterization of the
phenotype in exoc7 mutant fish revealed general defects in
head size although this was partially masked with the present
edema. To account for the changes caused by the edema, we
measured the distance from the outside of one eye to the other
and then subtracted the regions of edema (Fig. 4c). Even with
this conservative measure, head diameter was 4% smaller in
exoc7 null fish compared with clutch controls (two-tailed
t test, p= 6.8 × 10−5, Fig. 4e). We detected no difference in
body length in mutant fish, suggesting that these defects are
specifically caused by the loss of exoc7 and not simply by
developmental delay or allometric changes (two-tailed t test,
p= 0.21, Fig. 4f).

Cellular defects in exoc7 null developing telencephalon
To identify cellular mechanisms underlying microphthalmia
and microcephaly in exoc7 mutant zebrafish (Fig. 4g), we
measured apoptosis and counted progenitor cells in the
developing telencephalon. At 5 dpf, we found a threefold
increase in the number of apoptotic cells (TUNEL stain) in
the telencephalon of exoc7 null zebrafish (control n= 5,
exoc7 knockout [KO] n= 5, two-tailed t test, p= 0.0023,
Fig. 4h). At the same age, we also found a 53% decrease in
the number of Sox2-positive telencephalon progenitor cells
(control n= 4, exoc7 KO n= 5, two-tailed t test, p= 0.0019,
Fig. 4i). The number of Sox2-positive neuroprogenitors was
also decreased in the retina of exoc7 null fish, with a 76%
decrease compared with controls (control n= 11, exoc7 KO
n= 10, two-tailed t test, p= 3.0 × 10−6, Fig. S5C). We
examined Hoechst-stained mitotic figures in developing
telencephalon and did not find a detectable increase in
abnormal mitoses in exoc7 null fish, suggesting normal
cytokinesis (Fig. S5E). Together, these results highlight
specific cellular defects that drive microcephaly in zebrafish
in the absence of exoc7, and further suggest that the atrophy
and microcephaly observed in humans with EXOC7 variants
reflect loss of proliferating progenitor cells and postmitotic
neurons.

DISCUSSION
We identified four independent presumably hypomorphic
variants in EXOC7 and one predicted loss-of-function variant
in EXOC8 causing a recessive human brain development
disorder characterized by brain atrophy, seizures, and
developmental delay and in more severe cases, microcephaly
and infantile death. We show that EXOC7, a member of the
mammalian exocyst complex, is highly expressed in develop-
ing human cortex. In addition, a zebrafish model of Exoc7
deficiency recapitulates the human disorder with increased
apoptosis and decreased progenitor cells during telencephalon
development, suggesting that the brain atrophy in human
cases reflects neuronal degeneration. These findings provide
key inroads into understanding the role of the exocyst
complex in normal cortical development and complex
neurodegenerative disorders.

Exocyst variants cause a range of brain development
disorders
Our work represents the first systematic genetic analysis of
the role of exocyst components in human genetic disease. The
four distinct alleles that we describe in EXOC7 show a range
of severity consistent with the degree to which they likely
damage the protein, with the splicing variant being most
severe, a 5–amino acid deletion having similar severity, a
1–amino acid deletion being less severe, and an amino acid
substitution being the mildest. However, all families share
central nervous system (CNS) disease and specifically cortical
atrophy.
We also report a null variant in EXOC8 associated with

severe phenotypes within this spectrum. Interestingly, we
previously reported that a single affected individual with
Joubert syndrome had a homozygous missense variant
(E265G) in EXOC8.2 This variant occurred at a highly
conserved amino acid and was predicted to be damaging to
protein function. Careful clinical review of the affected
individuals here confirms that they do not have classic signs
of Joubert syndrome. It is possible that these two alleles,
E265G and Asp607Ter, lead to different clinical syndromes
based on differing variant severity, where a hypomorphic
missense variant causes Joubert syndrome and a null variant
causes cortical atrophy and microcephaly. Consistent with
this idea, homozygous null Exoc8 mice are reported to have
early embryonic lethality (MGI, Mouse Phenotyping Con-
sortium). Here we report that loss-of-function variants in
either EXOC7 or EXOC8 lead to highly overlapping clinical
features, suggesting perhaps that disruption of the exocyst
complex broadly impairs normal cortical development. This
is supported by previous work reporting an individual with
Meckel–Gruber syndrome and microcephaly had a homo-
zygous missense variant (Gln578Arg) in another exocyst
component, EXOC4.3 The exact mechanism for exocyst
dysfunction causing microcephaly and cortical atrophy is
unknown, but previous work and our current results suggest
the exocyst may be essential for multiple molecular
processes during cortical development. Joubert syndrome
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and Meckel–Gruber syndrome both have features of
ciliopathies, and the exocyst is reported to localize to the
primary cilium where some members are required for
normal ciliogenesis (EXOC536). In developing zebrafish, a
ciliopathy phenotype of abdominal or cardiac edema,
upward tail curvature, and small eyes has been observed
with loss of exoc5,37 and knockdown of Joubert syndrome
gene arl13b38 (OMIM 612291). We find that exoc7 mutant
zebrafish have a phenotype with some ciliopathy features
including small eyes with edema but missing other features
such as abdominal edema or upward tail curvature
(Fig. S5D). Further investigation will be required to
determine if loss of exoc7 causes mild cilia dysfunction.
Interestingly, the patients we report with EXOC7 hypo-
morphic variants do not have classic ciliopathy features. We
find that loss of EXOC7 leads to apoptosis, cell loss, and
atrophy in the developing brain and further studies will
determine which cellular processes (or combination thereof)
are disrupted including RGC polarity and cilia function.

Exocyst complex in cortical development
Our results agree with previous studies of Exoc7 function in
neurons and add new details for its role in brain development.
Previous work reported that expression of dominant negative
Exoc7 in developing mouse cortex impaired neuron migra-
tion39 and in vitro Exoc7 knockdown in cultured neurons
disrupted polarization and prevented process outgrowth.4,5 A
conditional mouse knockout of Arp2/3, an actin binding
protein that interacts with Exoc7, in neuroprogenitors showed
cortical disorganization characterized by radial glia process
truncation, impaired neuron migration, and abundant
apoptosis.40 Here we find exoc7 deficiency in the zebrafish
developing telencephalon is also associated with abundant
apoptosis.
We report the first identification of human variants in an

exocyst member, EXOC7, and show these variants and a null
variant in another exocyst member, EXOC8, cause a
neurodevelopmental syndrome of brain atrophy, seizures,
and developmental delay with microcephaly and infantile
death. This study exposes key, shared properties of two
exocyst components in brain development. Our exoc7 loss-of-
function zebrafish model provides a new tool that can shed
light on the mechanisms of the exocyst complex in the
developing brain supporting the role of EXOC7 as the cause of
this complex neurological disorder.
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