Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

When to test fetuses for RASopathies? Proposition from a systematic analysis of 352 multicenter cases and a postnatal cohort

Abstract

Purpose

Recent studies have identified suggestive prenatal features of RASopathies (e.g., increased nuchal translucency [NT], cystic hygroma [CH], hydrops, effusions, congenital heart diseases [CHD], polyhydramnios, renal anomalies). Our objective is to clarify indications for RASopathy prenatal testing. We compare genotype distributions between pre- and postnatal populations and propose genotype–phenotype correlations.

Methods

Three hundred fifty-two chromosomal microarray–negative cases sent for prenatal RASopathy testing between 2012 and 2019 were collected. For most, 11 RASopathy genes were tested. Postnatal cohorts (25 patients with available prenatal information and 108 institutional database genotypes) and the NSeuroNet database were used for genotypic comparisons.

Results

The overall diagnostic yield was 14% (50/352), with rates >20% for effusions, hydrops, and CHD. Diagnostic yield was significantly improved in presence of hypertrophic cardiomyopathy (HCM), persistent or associated CH, any suggestive finding combined with renal anomaly or polyhydramnios, or ≥2 ultrasound findings. Largest prenatal contributors of pathogenic variants were PTPN11 (30%), RIT1 (16%), RAF1 (14%), and HRAS (12%), which considerably differ from their prevalence in postnatal populations. HRAS, LZTR1, and RAF1 variants correlated with hydrops/effusions, and RIT1 with prenatal onset HCM.

Conclusion

After normal chromosomal microarray, RASopathies should be considered when any ultrasound finding of lymphatic dysplasia or suggestive CHD is found alone or in association.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Genotype distribution in RASopathy patients.
Fig. 2: Genotype distribution in RASopathy patients according to prenatal ultrasound (US) findings.

Data availability

Data and materials can be supplied individually, upon request.

References

  1. 1.

    Tajan, M., Paccoud, R., Branka, S., Edouard, T. & Yart, A. The RASopathy family: consequences of germline activation of the RAS/MAPK pathway. Endocr. Rev. 39, 676–700 (2018).

    Article  Google Scholar 

  2. 2.

    Tartaglia, M. & Gelb, B. D. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms. Ann. N. Y. Acad. Sci. 1214, 99–121 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Tidyman, W. E. & Rauen, K. A. Expansion of the RASopathies. Curr. Genet. Med. Rep. 4, 57–64 (2016).

    Article  Google Scholar 

  4. 4.

    Aoki, Y., Niihori, T., Inoue, S. & Matsubara, Y. Recent advances in RASopathies. J. Hum. Genet. 61, 33–39 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Capri, Y. et al. Activating mutations of RRAS2 are a rare cause of Noonan syndrome. Am J. Hum. Genet. 104, 1223–1232 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Higgins, E. M. et al. Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight 2, e91225 (2017).

    Article  Google Scholar 

  7. 7.

    Motta, M. et al. Enhanced MAPK1 function causes a neurodevelopmental disorder within the RASopathy clinical spectrum. Am J. Hum. Genet. 107, 499–513 (2020).

    CAS  Article  Google Scholar 

  8. 8.

    Tartaglia, M., Gelb, B. D. & Zenker, M. Noonan syndrome and clinically related disorders. Best Pract. Res. Clin. Endocrinol. Metab. 25, 161–179 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    Dunnett-Kane, V., Burkitt-Wright, E., Blackhall, F. H., Malliri, A., Evans, D. G. & Lindsay, C. R. Germline and sporadic cancers driven by the RAS pathway: parallels and contrasts. Ann. Oncol. 31, 873–883 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    Kratz, C. P. et al. Cancer spectrum and frequency among children with Noonan, Costello, and cardiofaciocutaneous syndromes. Br. J. Cancer 112, 1392–1397 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Gripp, K. W. et al. The sixth international RASopathies symposium: precision medicine-From promise to practice. Am. J. Med. Genet. A 182, 597–606 (2020).

    Article  Google Scholar 

  12. 12.

    D’Amours, G., Brunel-Guitton, C., Delrue, M. A., Dubois, J., Laberge, S. & Soucy, J. F. Prenatal pleural effusions and chylothorax: an unusual presentation for CM-AVM syndrome due to RASA1. Am. J. Med. Genet. A. 182, 2454–2460 (2020).

    Article  Google Scholar 

  13. 13.

    van der Burgt, I. Noonan syndrome. Orphanet J. Rare Dis. 2, 4 (2007).

    Article  Google Scholar 

  14. 14.

    Baldassarre, G. et al. Prenatal features of Noonan syndrome: prevalence and prognostic value. Prenat. Diagn. 31, 949–954 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Leach, N. T., Wilson Mathews, D. R., Rosenblum, L. S., Zhou, Z., Zhu, H. & Heim, R. A. Comparative assessment of gene-specific variant distribution in prenatal and postnatal cohorts tested for Noonan syndrome and related conditions. Genet. Med. 21, 417–425 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Croonen, E. A. et al. Prenatal diagnostic testing of the Noonan syndrome genes in fetuses with abnormal ultrasound findings. Eur J. Hum. Genet. 21, 936–942 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Gaudineau, A. et al. Postnatal phenotype according to prenatal ultrasound features of Noonan syndrome: a retrospective study of 28 cases. Prenat. Diagn. 33, 238–241 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Hakami, F., Dillon, M. W., Lebo, M. & Mason-Suares, H. Retrospective study of prenatal ultrasound findings in newborns with a Noonan spectrum disorder. Prenat. Diagn. 36, 418–423 (2016).

    Article  Google Scholar 

  19. 19.

    Myers, A. et al. Perinatal features of the RASopathies: Noonan syndrome, cardiofaciocutaneous syndrome and Costello syndrome. Am. J. Med. Genet. A. 164A, 2814–2821 (2014).

    Article  Google Scholar 

  20. 20.

    Yaoita, M. et al. Spectrum of mutations and genotype–phenotype analysis in Noonan syndrome patients with RIT1 mutations. Hum. Genet. 135, 209–222 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Bakker, M., Pajkrt, E. & Bilardo, C. M. Increased nuchal translucency with normal karyotype and anomaly scan: what next? Best. Pract. Res. Clin. Obstet. Gynaecol. 28, 355–366 (2014).

    Article  Google Scholar 

  22. 22.

    Stuurman, K. E. et al. Prenatal ultrasound findings of rasopathies in a cohort of 424 fetuses: update on genetic testing in the NGS era. J. Med. Genet. 56, 654–661 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Noonan Syndrome Guideline Development Group. Management of Noonan syndrome – a clinical guideline. University of Manchester, DYSCERNE. https://rasopathiesnet.org/wp-content/uploads/2014/01/265_Noonan_Guidelines.pdf (2010).

  24. 24.

    Houweling, A. C., de Mooij, Y. M., van der Burgt, I., Yntema, H. G., Lachmeijer, A. M. & Go, A. T. Prenatal detection of Noonan syndrome by mutation analysis of the PTPN11 and the KRAS genes. Prenat. Diagn. 30, 284–286 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Pergament, E., Alamillo, C., Sak, K. & Fiddler, M. Genetic assessment following increased nuchal translucency and normal karyotype. Prenat. Diagn. 31, 307–310 (2011).

    Article  Google Scholar 

  26. 26.

    Ali, M. M., Chasen, S. T. & Norton, M. E. Testing for Noonan syndrome after increased nuchal translucency. Prenat. Diagn. 37, 750–753 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Lee, K. A. et al. PTPN11 analysis for the prenatal diagnosis of Noonan syndrome in fetuses with abnormal ultrasound findings. Clin. Genet. 75, 190–194 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Chen, Y. N., Chen, C. P., Lin, C. J. & Chen, S. W. Prenatal ultrasound evaluation and outcome of pregnancy with fetal cystic hygromas and lymphangiomas. J. Med. Ultrasound 25, 12–15 (2017).

    Article  Google Scholar 

  29. 29.

    Grande, M. et al. Genomic microarray in fetuses with increased nuchal translucency and normal karyotype: a systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 46, 650–658 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    European Network on Noonan syndrome and related disorders. University Hospital Magdeburg, Genetics IoH. https://nseuronet.com/php/ (2020).

  31. 31.

    Motta, M. et al. Clinical and functional characterization of a novel RASopathy-causing SHOC2 mutation associated with prenatal-onset hypertrophic cardiomyopathy. Hum. Mutat. 40, 1046–1056 (2019).

    CAS  PubMed  Google Scholar 

  32. 32.

    Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424. (2015).

    Article  Google Scholar 

  33. 33.

    Allanson, J. E. & Roberts, A. E. Noonan syndrome. In GeneReviews (eds Adam, M. P. et al.) (Seattle, University of Washington, 1993).

  34. 34.

    Schönfeld, M. et al. Rapid detection by hydrops panel of Noonan syndrome with PTPN11 mutation (p.Thr73Ile) and persistent thrombocytopenia. Mol. Genet. Genomic Med. 8, e1174 (2020).

    Article  Google Scholar 

  35. 35.

    Strullu, M. et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J. Med. Genet. 51, 689–697 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    CAS  Article  Google Scholar 

  37. 37.

    Thompson, D. et al. RAF1 variants causing biventricular hypertrophic cardiomyopathy in two preterm infants: further phenotypic delineation and review of literature. Clin. Dysmorphol. 26, 195–199 (2017).

    Article  Google Scholar 

  38. 38.

    Lorenz, S., Petersen, C., Kordaß, U., Seidel, H., Zenker, M. & Kutsche, K. Two cases with severe lethal course of Costello syndrome associated with HRAS p.G12C and p.G12D. Eur J. Med. Genet. 55, 615–619 (2012).

    Article  Google Scholar 

  39. 39.

    Bertola, D. et al. Phenotypic spectrum of Costello syndrome individuals harboring the rare HRAS mutation p.Gly13Asp. Am. J. Med. Genet. A. 173, 1309–1318 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Motta, M. et al. Activating MRAS mutations cause Noonan syndrome associated with hypertrophic cardiomyopathy. Hum. Mol. Genet. 29, 1772–1783 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by funding from European Joint Programme on Rare Diseases: EJP-RD (NSEuronet, to M.T.), Associazione Italiana per la Ricerca sul Cancro: AIRC (IG 21614, to M.T.), and the Italian Ministry of Health (Ricerca Corrente 2019 and 2020, to M.T. and A.D.L.).

Author information

Affiliations

Authors

Contributions

Conceptualization: A.S., M.-A.D., A.D.L. Formal analysis: A.S., N.D.G., V.P., P.D., T. Mazza, A.-M.L., M.-A.D., A.D.L. Funding acquisition: M.T., A.D.L. Investigation: A.S., N.D.G., V.P., M.T., M.-A.D., A.D.L. Methodology: A.S., M.-A.D., A.D.L. Project administration: A.S., M.T., M.-A.D., A.D.L. Resources: V.P., P.D., S.C., V.D., E.A., A.M., F.S., G.T., D.M., C.D.M., M.R., I.D., A.Z., E.G., V.G.N., G.M., P.V., F.P., F.C.R., T. Mattina, G.D., L.P., T. Mazza, A.G., A.P., M.-A.D., A.D.L. Supervision: A.S., M.T., M.-A.D., A.D.L. Visualization: A.S. Writing—original draft: A.S., N.D.G., M.T., M.-A.D., A.D.L. Writing—review & editing: A.S., N.D.G., A.-M.L., M.T., M.-A.D., A.D.L.

Corresponding authors

Correspondence to Alexandra Scott or Marco Tartaglia or Alessandro De Luca.

Ethics declarations

Ethics declaration

The study was performed in accordance with the principles set out in the Declaration of Helsinki. The CHU Sainte-Justine Research Ethics and the Fondazione IRCCS Ethics Committees approved the study based on chart review. Because patients and clinical data were de-identified and the study was considered to have minimal risks, the need for consent was waived by the Research Ethics committee.

Competing interests

A.-M.L. received an honorarium for a conference given by Sobi (Swedish Orphan Biovitrum AB [publ] reg. number 556038–9321). The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott, A., Di Giosaffatte, N., Pinna, V. et al. When to test fetuses for RASopathies? Proposition from a systematic analysis of 352 multicenter cases and a postnatal cohort. Genet Med (2021). https://doi.org/10.1038/s41436-020-01093-7

Download citation

Further reading

Search

Quick links