DLG4-related synaptopathy: a new rare brain disorder



Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.


The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.


The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit–hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.


The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Facial features of the individuals.
Fig. 2: DLG4 variants shown on PSD-95.
Fig. 3: Structural modeling of DLG4 missense variants.

Data availability

All data that are not already included in the supplementary material are available upon request.


  1. 1.

    Sheng, M. & Kim, E. The postsynaptic organization of synapses. Cold Spring Harb. Perspect. Biol. 3, a005678 (2011).

    Article  Google Scholar 

  2. 2.

    Nithianantharajah, J. et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat. Neurosci. 16, 16–24 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Philips, A. K. et al. X-exome sequencing in Finnish families with Intellectual Disability - Four novel mutations and two novel syndromic phenotypes. Orphanet J. Rare Dis. 9, 49 (2014).

    Article  Google Scholar 

  4. 4.

    Tarpey, P. et al. Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation. Am. J. Hum. Genet. 75, 318–324 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    Guo, H. et al. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol. Autism 9, 64 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Xu, B., Roos, J. L., Levy, S., Van Rensburg, E. J., Gogos, J. A. & Karayiorgou, M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat. Genet. 40, 880–885 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry 17, 142–153 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Feyder, M. et al. Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams’ syndrome. Am. J. Psychiatry 167, 1508–1517 (2010).

    Article  Google Scholar 

  9. 9.

    Coley, A. A. & Gao, W. J. PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Sci. Rep. 9, 9486 (2019).

    Article  Google Scholar 

  10. 10.

    Winkler, D. et al. Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93. Behav. Brain Res. 352, 35–45 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Rauch, A. et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 380, 1674–1682 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Lelieveld, S. H. et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194–1196 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Fitzgerald, T. W. et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 519, 223–228 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Bosch, D. G. M. et al. Novel genetic causes for cerebral visual impairment. Eur. J. Hum. Genet. 24, 660–665 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Xing, J. et al. Resequencing and association analysis of Six PSD-95-related genes as possible susceptibility genes for schizophrenia and autism spectrum disorders. Sci. Rep. 6, 27491 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Moutton, S. et al. Truncating variants of the DLG4 gene are responsible for intellectual disability with marfanoid features. Clin. Genet. 93, 1172–1178 (2018).

  17. 17.

    Baker, S. W. et al. Automated clinical exome reanalysis reveals novel diagnoses. J. Mol. Diagn. 21, 38–48 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 36, 928–930 (2015).

    Article  Google Scholar 

  19. 19.

    Firth, H. V. et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17, 405–424 (2015).

    Article  Google Scholar 

  21. 21.

    Amendola, L. M. et al. Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the Clinical Sequencing Exploratory Research Consortium. Am. J. Hum. Genet. 98, 1067–1076 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Coban-Akdemir, Z. et al. Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am. J. Hum. Genet. 103, 171–178 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell. 176, 535–548 (2019).

    CAS  Article  Google Scholar 

  24. 24.

    McGee, A. W., Dakoji, S. R., Olsen, O., Bredt, D. S., Lim, W. A. & Prehoda, K. E. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol. Cell 8, 1291–1301 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    Fomina, S. et al. Self-directed assembly and clustering of the cytoplasmic domains of inwardly rectifying Kir2.1 potassium channels on association with PSD-95. Biochim. Biophys. Acta 1808, 2374–2389 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 27, 343–350 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Krab, L. C. et al. Delineation of phenotypes and genotypes related to cohesin structural protein RAD21. Hum. Genet. 139, 575–592 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V. & Skrzypek, E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Grant, S. G. N. Synapse diversity and synaptome architecture in human genetic disorders. Hum. Mol. Genet. 28, R219–R225 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Tristán-Noguero, A. & García-Cazorla, À. Synaptic metabolism: a new approach to inborn errors of neurotransmission. J. Inherit. Metab. Dis. 41, 1065–1075 (2018).

    Article  Google Scholar 

  31. 31.

    Zapata, J. et al. Epilepsy and intellectual disability linked protein Shrm4 interaction with GABA B Rs shapes inhibitory neurotransmission. Nat. Commun. 8, 14536 (2017).

    Article  Google Scholar 

  32. 32.

    Ung, D. C. et al. Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mouse. Mol. Psychiatry 23, 1356–1367 (2017).

    Article  Google Scholar 

  33. 33.

    Abela, L. & Kurian, M. A. Postsynaptic movement disorders: clinical phenotypes, genotypes, and disease mechanisms. J. Inherit. Metab. Dis. 41, 1077–1091 (2018).

    Article  Google Scholar 

  34. 34.

    Jang, M. et al. Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons. Sci. Rep. 5, 14773 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Morigaki, R. & Goto, S. Postsynaptic density protein 95 in the striosome and matrix compartments of the human neostriatum. Front. Neuroanat. 9, 154 (2015).

    Article  Google Scholar 

  36. 36.

    Gamss, R. P., Slasky, S. E., Bello, J. A., Miller, T. S. & Shinnar, S. Prevalence of hippocampal malrotation in a population without seizures. Am. J. Neuroradiol. 30, 1571–1573 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    Chan, S. et al. Hippocampal malrotation is associated with prolonged febrile seizures: Results of the FEBSTAT study. Am. J. Roentgenol. 205, 1068–1074 (2015).

    Article  Google Scholar 

  38. 38.

    Krishnan, M. L. et al. Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infant. Nat. Commun. 8, 428 (2017).

    Article  Google Scholar 

  39. 39.

    Ohnuma, T., Kato, H., Arai, H., Faull, R. L. M., McKenna, P. J. & Emson, P. C. Gene expression of PSD95 in prefrontal cortex and hippocampus in schizophrenia. Neuroreport. 11, 3133–3137 (2000).

    CAS  Article  Google Scholar 

  40. 40.

    Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).

    CAS  Article  Google Scholar 

Download references


We thank all the affected individuals and families for their collaboration. Several authors of this publication are members of the European Reference Network for Developmental Anomalies and Intellectual Disability (ERN-ITHACA) ITHACA (EU Framework Partnership Agreement ID: 3HP-HP-FPA ERN-01–2016/739516). We thank Jette Rasmussen for graphical assistance and Cristina Guilera and Juanjo Martínez for technical assistance.


Funding information can be found in Supplementary text 2.

Author information




Conceptualization: K.A.A., K.A.L., B.d.V., W.B.D., A.P., Z.T. Data curation: A.R.-P., M.M.B., D.G.-A., I.M.-A., B.P., P.G.-P., Z.T. Formal analysis: A.R.-P., M.M.B., D.G.-A., B.P., E.V., P.G.-P. Investigation: K.A.A., B.P., D.B.E., A.K.-L., S.A., V.B., G.B., A.-M.B., A.-L.B., T.D.C., B.C., C.C., S.A.d.M., A.-S.D.-P., T.J.D., F.E., L.F., S.G.-M., E.G., N.G., T.B.H., C.R.H.-E., B.I.H., J.H., A.C.E.H., B.I., M.J.-S., L.K., S.K., M.K., Y.E.L., K.A.L., A.L., A.M., G.M., B.A.M., S.M., J.E.M., S.M., A.J.M., M.C.O., M.P.-M., M.P.-B., S.P., R.P., B.P.-S., A.R., E.R., A.R.-P., M.J.R., C.A.L.R., E.S., J.M.S., A.S., B.S.-G., Z.S., C.S.-S., J.S., M.S., S.S., H.T., F.T.M.-T., B.v.B., I.v.d.B., I.M.B.H.v.d.L., E.v.D., M.M.v.H., C.M.v.R.-A., E.V., A.V., S.W., S.W., C.Z., C.E.P., B.B.A.d.V., W.B.D., S.F.R., P.G.-P., A.P., Z.T. Project administration: M.M.B., V.A.B., Z.T. Visualization: W.B.D., S.F.R., P.G.-P., Z.T. Writing—original draft: A.P., M.M.B., A.R.-P., Z.T. Writing—review & editing: A.R.-P., D.G.-A., K.A.A., B.P., D.B.E., A.K.-L., S.G.-M., T.G., L.K., G.M., M.C.O., M.P.-B., E.R., A.R.-P., J.M.S., F.T.M.-T., C.M.v.R.-A., C.E.P., S.F.R., P.G.-P., Z.T.

Corresponding author

Correspondence to Zeynep Tümer.

Ethics declarations

Ethics declaration

Informed written consent for genetic testing and publication of the clinical information including clinical pictures was obtained from the parents or the legal guardians of each individual according to the Declaration of Helsinki. The work carried out at the corresponding author’s (Z.T.) institution has been approved by the Regional Ethical Committee, Capital Region of Denmark (H15007871).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Palmero, A., Boerrigter, M.M., Gómez-Andrés, D. et al. DLG4-related synaptopathy: a new rare brain disorder. Genet Med (2021). https://doi.org/10.1038/s41436-020-01075-9

Download citation


Quick links