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Cystic fibrosis–related diabetes onset can be predicted using
biomarkers measured at birth
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PURPOSE: Cystic fibrosis (CF), caused by pathogenic variants in the CF transmembrane conductance regulator (CFTR), affects
multiple organs including the exocrine pancreas, which is a causal contributor to cystic fibrosis–related diabetes (CFRD). Untreated
CFRD causes increased CF-related mortality whereas early detection can improve outcomes.
METHODS: Using genetic and easily accessible clinical measures available at birth, we constructed a CFRD prediction model using
the Canadian CF Gene Modifier Study (CGS; n= 1,958) and validated it in the French CF Gene Modifier Study (FGMS; n= 1,003). We
investigated genetic variants shown to associate with CF disease severity across multiple organs in genome-wide association
studies.
RESULTS: The strongest predictors included sex, CFTR severity score, and several genetic variants including one annotated to
PRSS1, which encodes cationic trypsinogen. The final model defined in the CGS shows excellent agreement when validated on the
FGMS, and the risk classifier shows slightly better performance at predicting CFRD risk later in life in both studies.
CONCLUSION: We demonstrated clinical utility by comparing CFRD prevalence rates between the top 10% of individuals with the
highest risk and the bottom 10% with the lowest risk. A web-based application was developed to provide practitioners with patient-
specific CFRD risk to guide CFRD monitoring and treatment.
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INTRODUCTION
Genome-wide association studies (GWAS) have been successful at
identifying genetic contributors to disease,1 however, clinical
utility of GWAS findings has been slow to follow. One explanation
is that the genetic architecture of complex phenotypes is
multifaceted and individual GWAS findings have small effect
sizes that limit their potential alone as predictors of disease.2

Although GWAS has provided us with important mechanistic
insight into disease, further defining genetic markers for risk
prediction could have significant impact on personalized
medicine. Here, we investigate genomic-based risk prediction
for cystic fibrosis–related diabetes (CFRD).

Cystic fibrosis (CF) is a life-limiting genetic disease caused by
loss-of-function pathogenic variants in the cystic fibrosis trans-
membrane conductance regulator (CFTR) and affects multiple
organs including the exocrine pancreas. Pancreatic damage and
the resulting exocrine pancreatic insufficiency (PI) contribute to
CFRD,3 which is seen in 19% of adolescents and 40~50% of CF
individuals by age 40.4 CFRD is associated with increased
morbidity due to worsening lung and nutritional status, which
often precedes CFRD diagnosis, and increased mortality if CFRD
remains untreated.4 Early identification could improve clinical
outcomes and reduce mortality.5 Current guidelines recommend
annual CFRD screening with 2-hour oral glucose tolerance testing
(OGTT) after 10 years of age; however, there is poor adherence
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with screening rates reported below 50%.6 Identifying individuals
at greatest risk of developing CFRD as early as possible could
improve adherence.
CFRD occurs predominantly in individuals with severe CFTR

pathogenic variants that result in PI.7 Thus, currently the best
predictor of CFRD risk is whether an individual has CFTR
pathogenic variants associated with PI (85% of the CF popula-
tion8); however, we expect variation in risk even within individuals
that are PI. In addition to the CFTR contribution, GWAS has
identified genetic modifiers of CFRD at SLC26A9 and several
established type 2 diabetes susceptibility loci.9,10 Consistent with
PI CFTR variants’ elevating risk for CFRD, recent studies have
suggested a major cause of CFRD to be prenatal and early
postnatal damage to the exocrine pancreas.3 The degree of
pancreatic damage and reduction in acinar tissue are reflected by
circulating immunoreactive trypsinogen (IRT), which is partially
encoded by serine protease 1 (PRSS1). Newborn-screened (NBS)
IRT and its longitudinal measures in the first 2 years of life have
been shown to associate with CFRD risk in two independent
samples.3 However, routine longitudinal measurement of IRT is
not standard of care for young CF individuals and is unavailable
for older CF individuals who were diagnosed later in life but are at
greatest CFRD risk today. Therefore, this study aims to identify
biomarkers that can predict CFRD onset using genetic and easily
accessible clinical measures early in life. With the Canadian CF
Gene Modifier study (CGS), we developed a prediction model to
identify individuals at highest risk of CFRD at different ages and
validated our prediction in an independent CF cohort from France.

MATERIALS AND METHODS
Demographics, genotyping, and phenotyping
Two independent population-based cohorts were included in this study:
the CGS (n= 1,958) and the French CF Gene Modifier Study (FGMS, n=
1,003). CGS was used to develop the predictive model while FGMS was
used to validate the predictions. Ninety-seven percent of the CGS
participants included in this study were diagnosed by characteristic clinical
manifestations of CF and subsequently genotyped on genome-wide
Illumina microarrays.11 We included 1,958 individuals from the CGS who
have CFTR variants associated with PI or have a CFTR genotype carried by
individuals diagnosed with CFRD in the CGS. Specifically, CFRD was seen in
CGS participants who had a PI pathogenic variant and one of the following
“mild” CFTR alleles: 2789+5G>A, A455E, G85E, and IVS8(5T). Thus, we
included ten individuals without a CFRD diagnosis but with these same
CFTR genotypes.
Recorded clinical measures available early in life included sex, body

mass index (BMI), and meconium ileus (MI), an intestinal obstruction at
birth found in ~15% of CF individuals. Although BMI was shown to
associate with type 2 diabetes in the general population,12 we did not find
time-varying BMI to be a strong predictor of future CFRD risk and we
removed it from the analyses.
Dramatic improvements in median survival over the last few decades13

have been met with increased rates of CFRD diagnosis that previously did
not have time to manifest or went undetected. The first consensus
guidelines for CFRD screening were not established until 1990.14 Therefore,
CF individuals born before 1970 were not subject to uniform CFRD
screening during adolescence. Not surprisingly, we discovered significant
cohort effects within the CGS and FGMS data sets in which different
generations of CF individuals have different CFRD prevalence rates. To
account for these differences, we defined cohort based on the decade in
which an individual was born and adjusted for cohort effects when
constructing the prediction model. For instance, individuals born in the
1970s or the 1980s were grouped into separate cohorts. Moreover, we
excluded French and Canadian participants born before 1970 for all
subsequent analyses.
In CF, the standard of care is to employ annual OGTT testing to conclude

the presence of CFRD, but there is poor adherence to this time-consuming
test that requires an overnight fast.15 In the CGS, CFRD status was
determined using a combination of chart review and the Canadian CF
patient registry.9 Patients diagnosed with CFRD had a physician’s

diagnosis, were not reported to have type 1 or type 2 diabetes (T1DM;
T2DM), and satisfied one of the following:

1. Daily treatment with insulin or oral diabetes medication
2. 2-hour glucose level exceeding 11.1 mmol/L (200mg/dL)

during OGTT
3. HbA1c of at least 7%

Individuals without CFRD were censored at the last clinic visit or year of
organ transplant. Individuals with post-transplant diabetes, gestational
diabetes, and steroid-induced diabetes were removed from analysis.
In the FGMS, CF individuals were recruited from 48 French CF centers.

Inclusion and diagnostic criteria used in the FGMS were the same as
defined in the CGS. Genotyping design was reported previously.11

The two cohorts did not differ by sex or MI prevalence (Table 1).
However, CF individuals in the CGS were slightly older than the FGMS
participants. Given that CFTR pathogenic variants are indicators of exocrine
pancreatic disease severity,16 we constructed a CFTR severity score based
on the combination of CFTR pathogenic variants from both alleles, with
details provided in Appendix A.
For the predictive model we evaluated a set of 3,984 single-nucleotide

polymorphisms (SNPs) that were annotated to genes previously identified
as CF modifiers. These included genes that code for proteins residing at
the apical plasma membrane alongside CFTR;17,18 variants identified as
genetic modifiers of CFRD9 or SNPs associated with other common CF
comorbidities including MI11 and lung function decline.19

To address the potential for population stratification in the CGS training
data, we used KING20 to perform principal component analysis (PCA). SNPs
with minor allele frequency greater than 0.05 and with low pairwise
linkage disequilibrium (r2 < 0.2) were included. The Tracy–Widom test
determined that ten principal components (PCs) were statistically
significant (p < 0.01) in the CGS and were incorporated as predictors in
feature selection and model fitting (Appendix B). The lack of differences in
model performance with and without adjustment for the PCs (Appendix C)

Table 1. Characteristics of cystic fibrosis (CF) individuals across the
discovery (Canadian GMS; CGS) and the validation (French GMS;
FGMS) data set.

Variable Canadian GMS
(n= 1,958)

French GMS
(n= 1,003)

CFRD (cases) 619 (31.6%) 374 (37.3%)

Sex (females) 926 (47.3%) 480 (47.9%)

Meconium ileus 334 (17.1%) 141 (14.1%)

Newborn screened 58 (3.0%) 415 (42.5%)a

CFTR variant score

5 51 (2.6%) 14 (1.4%)

4 389 (19.9%) 201 (20.0%)

3 1185 (60.5%) 667 (66.5%)

2 170 (8.7%) 68 (6.8%)

1 163 (8.3%) 53 (5.3%)

Age cohort (year of birth)

1970s 336 (17.2%) 128 (12.8%)

1980s 634 (32.4%) 317 (31.6%)

1990s 737 (37.6%) 392 (39.1%)

After 2000 251 (12.8%) 166 (16.6%)

Individuals enrolled in the FGMS are less likely to carry a mild CFTR
pathogenic variant compared with participants in the CGS.
CFRD cystic fibrosis–related diabetes, GMS Gene Modifier Study.
aTwenty-seven French GMS individuals were missing information for
newborn screening. A higher proportion of French individuals were
newborn screened since nationwide newborn screening was imple-
mented in France in 200237, earlier than that in all Canadian provinces
and territories.
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suggests limited confounding due to population structure in the CGS.
Moreover, both studies are ethnically homogeneous (>94% Europeans)
with non-Europeans defined as >3 SD from the center of the 1000
Genomes European cluster (Appendix D).
The variables included in model training consisted of the 3,984

preselected SNPs, MI, sex, CFTR severity score, and the first ten PCs.

Developing risk scores for CFRD
With the goal of predicting CFRD, all 1,958 individuals in the CGS were
included to construct a prediction model that was then validated on the
independent FGMS cohort (n= 1,003). To compare model performance
across the two independent studies, we performed internal cross-
validation within the CGS to reduce overfitting. Since using a single pair
of training and validation sets can produce overly optimistic results, we
randomly partitioned 1,958 participants into a training (n= 1,300) and a
validation set (n= 658) and repeated this partition 500 times. Model fitting
was based solely on the training sets while the validation sets were used to
assess model performance. We also calculated 95% confidence intervals
(CI) for predictive accuracy at specified ages.
CFRD risk was modeled in a three-stage approach: (1) hierarchical

clustering to remove highly correlated SNPs; (2) stability selection21 and
component-wise gradient boosting22 to rank variable importance by their
selected frequencies, with a 50% cutoff used to select predictors most
strongly associated with CFRD risk; and (3) Cox proportional hazards (Cox PH)
model was used to re-estimate overpenalized effect sizes23 (Appendix J).
We compared our three-stage approach to a univariate, pruning, and

thresholding polygenic risk score (PRS) analysis24,25 with different p value
cutoffs (0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001; Appendix F). The PRS
analysis included CFTR severity score, ten PCs, and the clinical variables sex,
MI, and cohort to ensure a fair comparison.

Evaluating CFRD risk scores
Time-dependent area under the curve (AUC(t)) was evaluated to compare
model performance and its change over time. Given the paucity of CFRD
events at early ages, we investigated our model’s capability to accurately
predict CFRD risk between 15 and 35 years, with emphasis on early
detection. The AUC(t) curves were plotted for both CGS and FGMS cohorts,
to compare performance between the studies.
We calculated age-dependent positive predictive values (PPV) and

negative predictive values (NPV) using different CFRD risk score thresholds
(Appendix H). This provides a comprehensive display of model perfor-
mance with flexibility in modifying risk thresholds for CFRD screening. To
assess model performance using a more clinically relevant measure, we
compared CFRD prevalence rates among individuals with the highest and
the lowest 10% risk. Since individuals at the tails of the risk distribution are
most affected by clinical decisions,26 clinicians could emphasize the need
for more frequent OGTT testing for the high-risk individuals.

RESULTS
We calculated the CFRD-free probabilities and their 95% CIs at
different ages for Canadians (CGS) with different CFTR severity
scores (Appendix E). CFRD-free probabilities for individuals with
the least severe CFTR score (Supplementary Fig. 4, red curve) are
higher than the other groups across all ages. In contrast, CFRD-free
probabilities for individuals with other CFTR scores either overlap
extensively (scores 2 to 4) or cannot be reliably estimated due to
the smaller sample size (score 5). To avoid excess uncertainty in
the fitted model, we dichotomized CFTR scores into a high (scores
2 to 5) and a low (score 1) group for all subsequent analyses rather
than using an ordinal scale; this choice had little impact on the
final model performance (Appendix G).
We ranked variable importance by stability selection using all

individuals in the CGS (Fig. 1a). Eight variables exceed the 50%
threshold (red, Fig. 1a). The CFTR severity score is by far the
strongest predictor (hazard ratio [HR] 95% CI: [2.01, 4.54]), selected
in 100% of the stability selection subsets. Sex and cohort effect are
the second and third most important variables for predicting
CFRD risk, both chosen in 92% of the subsets. SNPs annotated to
genes that contribute to exocrine pancreatic disease severity are
also ranked highly as predictors including rs4077468 annotated to

the previously identified MI and CFRD modifier SLC26A9 (HR 95%
CI: [1.07,1.34]) and rs1964986 annotated to PRSS1 (HR 95% CI:
[1.09,1.38]). PRSS1 encodes cationic trypsinogen and had not been
reported to associate with CFRD, although it has been previously
associated with MI in CF.11

In addition to the predictors that exceed the predefined
threshold (Fig. 1a, red), we further included known CFRD risk
factors or confounders to construct the final prediction model.
These include the ten PCs to adjust for population structure;
rs7903146 (TCF7L2; Fig. 1a, blue), an established type 2 diabetes
gene27 that was ranked highly among the predictors even if it did
not exceed the 50% threshold; and another highly ranked
predictor, MI (Fig. 1a, rank 14, blue). MI is also correlated with
exocrine pancreatic disease severity3,11 and was previously shown
to be a marker of the known but not widely measured CFRD risk
factor, NBS IRT.11 Although MI is associated with exocrine
pancreatic disease severity, it remains associated with increased
CFRD risk after adjusting for CFTR severity score in our model. Both
MI and rs7903146 surpassed the majority of the SNPs not shown
in the figure as greater than 96% of the SNPs evaluated were
selected in less than 10% of the iterations.
Table 2 lists the HRs and the corresponding 95% CIs fitted in a

multivariate Cox PH model after adjusting for cohort effects and
the 10 PCs in the CGS. The risk allele or risk group is noted in
parentheses. As expected, CF individuals carrying more severe
pathogenic variants (higher CFTR scores) have much higher risk of
CFRD. Females and individuals born with MI also exhibit higher
CFRD risk. For the SLC26A9 SNP rs4077468, the A allele is
associated with increased CFRD risk while CF individuals carrying
the T allele at rs7903146 also show greater susceptibility to CFRD.
The results indicate both genetic and clinical characteristics
contribute to CFRD risk, with genotype information beyond CFTR
improving the model’s explained variation in CFRD risk from 12%
to 18% in the CGS.
Fig. 1b shows the time-dependent accuracy measure, AUC(t), for

CGS and FGMS. The age-dependent model defined in the CGS
shows excellent agreement when validated in the FGMS,
demonstrating that our approach has selected stable predictors
generalizable to other populations. The risk classifier also shows
slightly better performance at predicting CFRD risk later in life
(e.g., AUC= 0.71, age= 28 in FGMS) in both study cohorts. Of
note, our model outperforms univariate PRS regardless of the
chosen p value cutoff (Appendix F).
To further investigate model performance between CGS and

FGMS, we plotted univariate log HR and the 95% CI for each
selected predictor (Fig. 1c). Increase in CFRD risk for females and
those with at least one copy of the type 2 diabetes risk allele
(rs7903146[T]) show good agreement in both studies. Those with
at least one copy of the PRSS1 (rs1964986(C)) and those with at
least one copy of the SLC26A9 risk variant (rs4077468[A]) also
show similar increases in CFRD risk in both independent data sets.
However, several predictors including MI, the variants rs12318809
(SLC5A8), rs7822917 (NRG1), and rs959173 (CAV1) have much
weaker effects in the FGMS. The effect size of the CFTR score is
comparable in the FGMS and CGS, albeit with a wider CI for the
FGMS since relatively fewer individuals carry mild CFTR pathogenic
variants in the FGMS. Wider CIs can also be observed for other
predictors due to a smaller sample size in FGMS. Consequently,
the ability of our model to stratify CFRD risk based on the CFTR
score may be underutilized in the FGMS and leads to under-
estimated performance at younger ages. Winner’s curse, in which
the associations of selected predictors in the training data set are
more likely to be overestimated, might also be a contributing
factor.28

Since AUC(t) only measures a model’s ability to rank individuals
based on their estimated risk, we further evaluated a more
clinically relevant metric by comparing CFRD prevalence rates
between individuals with the highest and lowest 10% risk.
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Figure 2b shows the CFRD prevalence rates at specified ages for
both independent cohorts. Individuals with the highest/lowest
CFRD risk in the FGMS were identified using the model trained on
the CGS, while internal validation was used for assessing CFRD
prevalence in the CGS. At age 18, 37% of the highest-risk
individuals would have developed CFRD in FGMS, compared with

less than 3% among the lowest-risk individuals. At age 25, 53% of
the highest-risk individuals would have developed CFRD in CGS,
compared to 6% of the lowest-risk individuals. In both data sets,
the highest-risk individuals have much higher CFRD prevalence
rates than the lowest-risk individuals. Age-dependent PPVs and
NPVs (Appendix H) further demonstrate successful differentiation
between high-risk and low-risk individuals across a wider range of
risk scores. Using a 70% cutoff (Supplementary Fig. 7, dark blue,
PPV), we expect >80% of individuals with the highest estimated
risk (top 30%) to be diagnosed with CFRD by their early 30s.
Similarly, the model also demonstrates considerable differentia-
tion for the NPVs between individuals with varying CFRD risk
(Supplementary Fig. 7).
To facilitate clinical use of the model, we have developed an

application (https://predictcfrd.research.sickkids.ca/) that allows
users to enter their genetic and clinical measurements and
returns the estimated age-dependent CFRD risk (Appendix I).
Fig. 2a demonstrates the information returned for CF individuals
with different estimated risk. For a CF individual with a risk score
of 0.90, which falls in the 90th percentile of the risk distribution,
observed CFRD prevalence rates (Fig. 2a, left) demonstrate that
~10% of individuals in this percentile will be diagnosed with CFRD
by the age of 15 and nearly 50% by the age of 25. Conversely, we
expect <15% of individuals that fall in the 10th percentile of risk
(Fig. 2a, right) to be diagnosed with CFRD by their mid-20s.

DISCUSSION
We developed a model to estimate an individual’s CFRD risk using
genetic and clinical measures available at birth. The final model

Table 2. Effect sizes (hazard ratios) and the 95% confidence
intervals fitted using a multivariate Cox proportional hazard (PH)
model in the CGS.

Gene
annotation

Predictor Hazard ratio 95% CI

CFTR CFTR variant score 3.02 (2.01, 4.54)

– Sex (female) 1.48 (1.26, 1.74)

SLC5A8 rs12318809 (G) 1.35 (1.16, 1.57)

CAV1 rs959173(C) 1.27 (1.10, 1.47)

PRSS1 rs1964986(C) 1.23 (1.09, 1.38)

SLC26A9 rs4077468 (A) 1.20 (1.07, 1.34)

NRG1 rs7822917 (T) 1.31 (1.16, 1.48)

– Meconium ileus (MI) 1.29 (1.05, 1.59)

TCF7L2 rs7903146 (T) 1.18 (1.05, 1.34)

CGS Canadian Cystic Fibrosis Gene Modifier Study, CI confidence interval.
Risk allele/risk group noted in parentheses after the listed predictor.
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Fig. 1 Feature selection and model performance for the cystic fibrosis–related diabetes (CFRD) prediction model. (a) Stability selection
and component-wise gradient boosting with 100 iterations. Black dashed line: predefined threshold at 50% of iterations. Red: predictors
exceeding stability selection threshold. Blue: meconium ileus (MI) and rs7903146 (TCF7L2), previously shown to be associated with
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can differentiate individuals with varying CFRD risk with reason-
able accuracy across different ages. The selected variables that are
among the strongest predictors of CFRD risk—CFTR severity score,
MI, and the genetic variants annotated to PRSS1 and SLC26A9—
suggest that measures of exocrine pancreatic disease severity are
major predictors of CFRD. These results are supported by findings
from earlier studies that showed increased risk in those born with
MI,9 and that SNPs annotated to SLC26A9 are associated with
CFRD9 through their impact on exocrine pancreatic damage.3,11

The SLC26A9 variant (rs4077468) and MI were shown to associate
with CFRD in a previous study using partially overlapping
individuals from the CGS.9 However, the results were confirmed
in our study using 555 (28%) new participants from the CGS and
an independent French population cohort (FGMS) not included in
the initial study.9 Investigating other factors independent of those
associated with exocrine pancreatic damage, we found that

females exhibit higher CFRD risk, consistent with previous
findings;7,29 and the type 2 diabetes gene, TCF7L2, also ranks
highly among the predictors.
Our application (https://predictcfrd.research.sickkids.ca/) can

assist clinicians in determining an individual’s CFRD risk across
the age spectrum from measures obtained one time as early as
birth. The Cystic Fibrosis Foundation recommends universal
annual screening for CFRD. Findings here should not impact the
recommended annual screening, even for those predicted to have
the lowest risk, as less frequent monitoring would likely have a
negative impact, regardless of risk category. Poor adherence to
annual screening has, however, hindered its efficacy. Providing a
percentile of an individual’s risk estimate and the CFRD prevalence
rates across ages would highlight individuals at greater risk earlier
in their disease course and could motivate improved adherence to
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regular OGTT measurements, or perhaps greater frequency, for the
high-risk subgroup at the discretion of their care provider.
We compared CFRD prevalence between individuals with the

highest and lowest 10% risk since those at the tails of the risk
distribution are most affected by clinical decision making.26 The
model is capable of identifying individuals most susceptible to
CFRD at different ages while maintaining a reliable estimation for
those at low risk. In addition to age-distributed CFRD prevalence
rates for each CF individual, age-dependent PPVs and NPVs using
different thresholds for the CFRD high-risk category (Appendix H)
serve to showcase the efficacy of the model and provide
additional information to facilitate clinical decision making.
Moreover, the results also demonstrate the benefit of genotyping
modifiers in addition to the CFTR common causal variants in
newborn screening programs, as incorporating modifier genotype
information in addition to CFTR and clinical measurements (e.g.,
sex, MI, cohort) significantly increased the explained variation in
CFRD risk (12% to 18%) in the CGS.
Despite taking extra precautions to avoid overfitting in our

training data, winner’s curse might still contribute to over-
estimated effect sizes and lead to predictors being less robust in
the validation cohort.30 The comparable predictive performance
between the CGS and FGMS, however, provides some reassurance
that our model is capturing a robust component of the genetic
predisposition to CFRD. Moreover, by leveraging both Canadian
and French cohorts, we provide further assurance that our model
can be generalized outside of the population on which it was
trained.31

In both the CGS and FGMS, the CFRD diagnosis data came from
individual physicians. As most diagnoses are supported with
OGTT, we do not expect significant impact from adopting a 7%
cutoff for HbA1c compared with the general guideline of 6.5%.4

However, it is plausible that the use of a higher HbA1c cutoff in
this study resulted in underdiagnosis in our analyzed cohorts.
Moreover, although CFRD presents differently than T1DM, and
T1DM and other forms such as maturity onset diabetes of the
young (MODY) are rare in CF, it is possible that a small number of
individuals may have been misrepresented as having CFRD.
We note a few limitations of this study, especially for the

model’s use in clinical settings. The tool is designed to serve as an
additional piece of information to enhance clinical care for CFRD
and requires discretion by the clinical care provider to dichot-
omize CF individuals into high and low-risk groups based on the
reported age-distributed prevalence. The CF gene modifiers are
not routinely genotyped on CFTR diagnostic panels, and this
change is needed to enable clinical use. The proposed model is
constructed from measures obtained one time, as early as birth,
and does not update risk predictions based on a patient’s current
age or other longitudinal factors. Although a conditional risk
model would be of interest, given the limited sample size and the
corresponding stability of the model, we chose to focus on
leveraging genetic and clinical measurements available at birth to
emphasize early detection.
Although the model shows clinically relevant performance in

stratifying CFRD risk among individuals in the Canadian and
French studies, its clinical utility for future CF individuals relies
upon the assumption that the CFRD diagnosis guidelines and
prevalence remain static. Highly effective CFTR modulators could
potentially affect the natural history of CFRD and reduce its
prevalence in the modulator-treated population,32 although the
impact of current therapies on pancreatic morbidity in CF remains
unknown.33 Trikafta™ has been approved for 90% of CF
individuals, yet variability in its effectiveness has been reported.34

Moreover, it remains unavailable in many countries including
Canada. Clinical utility in patients on highly effective CFTR
modulators will need to be reinvestigated in future work.

Conclusion
CFRD is associated with poor prognosis in individuals with CF
while early diagnosis and aggressive treatment contribute to
improvements in survival.4 Thus, annual CFRD screening from 10
years of age is recommended.35 Despite these recommendations,
compliance with testing is low.36 We have developed a model that
estimates an individual’s CFRD risk at different ages over the
course of their disease. The risk estimates can be used by clinical
care providers to improve adherence to recommended annual
screening or to trigger increased testing frequency. The hope is
that improved adherence or more frequent testing will lead to
earlier diagnosis and contribute to further gains in median survival
that the CF population have been realizing over the last few
decades.
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