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PURPOSE: Newborn screening disorders increasingly require genetic variant analysis as part of second-tier or confirmatory testing.
Sanger sequencing and gene-specific next-generation sequencing (NGS)-based tests, the current methods of choice, are costly and
lack scalability when expanding to new conditions. We describe a scalable, exome sequencing-based NGS pipeline with a priori
analysis restriction that can be universally applied to any NBS disorder.

METHODS: De-identified abnormal newborn screening specimens representing severe combined immune deficiency (SCID), cystic
fibrosis (CF), VLCAD deficiency, metachromatic leukodystrophy (MLD), and in silico sequence read data sets were used to validate
the pipeline. To support interpretation and clinical decision-making within the bioinformatics pipeline, variants from multiple
databases were curated and validated.

RESULTS: CFTR variant panel analysis correctly identified all variants. Concordance compared with diagnostic testing results for
targeted gene analysis was between 78.6% and 100%. Validation of the bioinformatics pipeline with in silico data sets revealed a
100% detection rate. Varying degrees of overlap were observed between ClinVar and other databases ranging from 3% to 65%.
Data normalization revealed that 11% of variants across the databases required manual curation.

CONCLUSION: This pipeline allows for restriction of analysis to variants within a single gene or multiple genes, and can be readily

expanded to full exome analysis if clinically indicated and parental consent is granted.
Genetics in Medicine (2021) 23:767-776; https://doi.org/10.1038/s41436-020-01058-w

INTRODUCTION

Genomic sequencing has been eyed by the newborn screening
community for many years as a means to validate and further
understand biochemical and metabolic newborn screening (NBS)
results.” In a 2015 study using genome sequencing (GS) of trios
(proband plus parents) the method was shown to be a viable
adjunct to traditional NBS. Results provided fewer false positives,
were used to resolve inconclusive results, and could be deployed
to detect a wider range of diseases than metabolic tests alone.'
Sequence-based augmentation of the NBS workflow is of
importance due to variable disease presentation, to aid inter-
pretation of borderline results and for disorders that rely on
variant analysis in second-tier screening and confirmatory
diagnostics.*"® Variable presentation of clinical features is a key
issue in the interpretation of NBS results. The range of variants
across each gene may contribute differently to the phenotype,
complicating traditional screening interpretation.®'? Resultant
efforts across the globe have seen the use of next-generation
sequencing (NGS) methodology to improve the clinical workflow
to diagnose seriously ill neonates, to test the feasibility of
deployment of exome panels for subsets of NBS testing, and to
explore the use of sequence-based tests to disorders not
amenable to biochemical diagnosis.®™'* While Sanger sequencing
and allele specific tests—most commonly used today—'>"'® are
labor-intensive, time-intensive, and costly, neither method is
scalable, and the process requires de novo method design and
revalidation when expanding testing to additional variants or
genes.!”

We describe the development and validation of a universal
second-tier sequencing-based testing method that can be

expanded to additional disorders and gene sets. We show that
this methodology is scalable and would not require extensive
redesign and revalidation when expanded to additional disorders.
The efforts comprised the establishment of both a laboratory
framework and standardized variant curation and interpretation
processes. We developed and validated a laboratory method
using two 3.2-mm dried blood spot (DBS) punches. We show
similar turnaround time and cost impact compared with Sanger
and amplicon-based NGS tests and we show that in contrast to
Sanger and amplicon sequencing this methodology is highly
scalable. A key component of the genomics approach is the
postsequencing analysis that enables us to provide competitive
turnaround times. Within the bioinformatics pipeline, we have
curated multiple variant resources to aid the clinical team in
variant-impact interpretation. This curation work demonstrates the
wide distribution of knowledge pertaining to disease-causing
variants, and we provide a generic suite of tools that can be
implemented in other disorder cases.

MATERIALS AND METHODS

Detailed information for all methods is available in Supplementary
materials and methods.

Exome sequencing

Figure 1 summarizes the ES pipeline. Exome libraries were generated from
DNA extracted from two 3.2-mm DBS punches using lllumina’s Nextera
DNA Flex Dried Blood Spot Extraction Protocol Guide and Nextera Flex for
Enrichment kit. Libraries were sequenced on an lllumina NextSeq 550
Sequencing System as paired-end runs with 149 cycles per read (2 x 149)
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Fig. 1 Overview of the Utah Newborn Screening (NBS) Program exome sequencing and analysis pipeline. The pipeline consists of two
parts: a laboratory pipeline and a bioinformatics pipeline. The laboratory portion of the pipeline takes a dried blood spot (DBS) sample as
input and uses two 3.2-mm DBS punches to generate an exome library. Exome library generation is performed using the Nextera Flex for
Enrichment kit and is sequenced on the lllumina NextSeq 550 platform. FASTQ generation from BCL files is performed on the instrument. The
bioinformatics pipeline is based on the GATK Best Practices pipeline. This pipeline can be run in full starting with (a) a DBS sample or can take
input such as (b) extracted DNA and begin with exome library prep, (c) raw sequence reads in FASTQ format and begin with sequence analysis

or (d) a VCF file and begin with variant interpretation.

and ten cycles per index read. A no-template control (NTC) and PhiX
sample were included as a control and success metric.

Variant database curation pipeline

Variants associated with genes and diseases are distributed across resources
(ClinvVar and smaller disease or gene-specific databases). We surveyed
available curated data sources for variants associated with the disorder
implicated genes and found ClinVar and several Leiden Open Variation
Databases (LOVD) to contain relevant data. We did not include OMIM
variants as they are subsumed by ClinVar, and while gnomAD provides
frequency information for variants, it does not link variants with disease.'®°
Figure 2 summarizes the variant database curation pipeline. Genomic
variants from genes of interest were obtained from ClinVar and the LOVD
sources. To obtain the variant annotations, a suite of tools was developed to
extract the variant information from LOVD and ClinVar databases (https://
github.com/eilbecklab/Utah-DOH-newborn-screening). Variants from each
database were normalized using the biocommons hgvs python package and
output in comma separated value (csv) format and imported into a MySQL
database.?’ This pipeline can be run periodically to update variant
information and additional databases can be included.

Bioinformatics analysis pipeline

Custom bioinformatics pipelines for targeted, CFTR-specific, and exome
analyses were used to analyze the sequencing data. These pipelines are
based on the GATK Best Practices pipeline for germline variant discovery
(Fig. 1).22 All pipelines are contained within Snakemake workflow files
(https://github.com/UtahNBS/WES-Secondary-Testing).?*

In silico validation and utilization of simulated read data sets

NEAT (NExt-generation sequencing Analysis Toolkit, version 2.0) was used
to generate simulated paired-end 300 cycle reads representing exome
data (https://github.com/UtahNBS/WES-Secondary-Testing).2*
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RESULTS

The general validation design was defined by three broad case
categories encompassing polygenic disorders, single-gene dis-
orders, and an emerging disorder not yet included in the
recommended uniform screening panel (RUSP).

1. Polygenic NBS disorders: severe combined immune defi-
ciency (SCID). Three SCID samples were included for the
targeted analysis of 39 genes.

2. Single-gene NBS disorders: cystic fibrosis (CF) and very
long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. In
the case of CF, analysis can be limited to a set of common
variants or include the entire coding sequence of CFTR. The
Utah NBS Program currently uses the xTAG Luminex 60
variant assay for second-tier CF screening, which restricts
the analysis to 60 common variants. Seven CF samples were
subjected to analysis using an in silico panel containing the
same 60 variants as well as analysis of the entire CFTR
coding region. A VLCAD deficiency sample was included for
targeted analysis of the ACADVL gene.

3. Emerging NBS disorders: Metachromatic leukodystrophy
(MLD) is not included on any NBS panels in the United
States; however, with emerging treatment opportunities, a
screening assay has been developed in parallel.>> While the
actual study results are presented elsewhere, the application
of this approach targeting screen-positive MLD cases
illustrates the utility of this technology to emerging
disorders and the opportunity of stepwise inclusion of
additional loci based on clinical utility and investigator
initiated requests. The Utah NBS Program collaborated with
the University of Washington performing genotype analysis
for biochemical screen-positive specimens. Genetic analysis

Genetics in Medicine (2021) 23:767 -776
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Fig. 2 Variant database curation pipeline. The pipeline begins
with an input list containing genes associated with newborn
screening (NBS) disorders which can be customized by the user.
Genomic variant data within target genes was collected program-
matically via parsers/python scripts. Individual parsers are required
for ClinVar, Leiden Open Variation Database (LOVD) version 2 and
LOVD version 3 databases due to differing data formats and data
requirements. Variants are collected and Human Genome Variation
Society (HGVS) annotations are normalized using the biocommons
hgvs python package. Valid HGVS variant annotations are imported
into the local variant database while invalid variant annotations are
marked for manual curation before being imported into the variant
database. This pipeline can be run at user specified intervals to keep
the local variant database current with the remote variant
databases.

was restricted to the ARSA gene. However, two additional
loci, PSAP and SUMF1, are also associated with MLD and are
included on clinical diagnostic testing panels. With permis-
sion and per request from the collaborator, the analysis was
expanded to PSAP. The analysis of SUMF1 was not
requested.

Validation of ES and bioinformatics pipelines

Eleven DBS samples from de-identified newborns with abnormal
screening results for SCID (n=3 cases), CF (n=7 cases), and
VLCAD deficiency (n =1 case) were included in the validation. A
positive control sample from a healthy adult volunteer and an NTC
were also included. DNA extraction and exome library generation
and sequencing were performed in three independent
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experiments on a high-throughput flow cell. To establish
reproducibility between mid and high-throughput flow cells, a
subset of these samples (n =5 cases) were processed through the
entire laboratory pipeline and sequenced on a mid-throughput
flow cell in three independent experiments. A total of six
experiments were performed and concordance between diag-
nostic testing results and NGS results was reported. Diagnostic
testing refers to testing of an independently collected specimen,
tested by a clinical reference laboratory employing a validated
test, resulting in clinically actionable results.

Polygenic NBS disorders validation: SCID

Three SCID samples were sequenced on a high-throughput flow
cell with two of these samples also included on the mid-
throughput validation sample set. Concordance rates of 100%
(n =2 variants) and 83.3% (n = 6 variants) were observed between
diagnostic testing results and ES with in silico analysis restriction
to 39 genes associated with SCID in mid- and high-throughput
experiments respectively (Table 1).

One SCID case (SCID_3, Table 1) was hemizygous for a variant
impacting the splice acceptor region of IL2RG. The pathogenicity
of this variant is unknown since it has not previously been
reported. Our ES with targeted analysis method detected this
variant. Low read coverage (4x coverage) for this variant was
observed in one mid-throughput experiment which would have
resulted in the variant being filtered out of the results. SCID_1 was
confirmed through diagnostic testing revealing a homozygous
and pathogenic missense variant in the ADA gene.?® This variant
was detected on all mid and high-throughput experiments.
SCID_2 was a complex case with four variants in various genes
detected through diagnostic testing. Design based, our method
could identify three of the four variants that were indeed
identified in the study. These included a pathogenic duplication
within the LRBA gene and two single-nucleotide variants (SNVs) of
uncertain significance in IL2RA and IRF8. None of these variants
have been reported in the literature to be associated with SCID.
The variant that was not detected because it was outside the a
priori specified and selected gene set was a 15q11.2 microdeletion
that to our knowledge is associated with developmental disorders,
psychiatric disorders, attention deficit disorders, and autism
spectrum disorder (ASD) but has not been reported to be
associated with SCID.?” Additional benign variants were identified
for these samples for both mid- and high-throughput experiments
(data not shown) raising the possibility that (1) the microdeletion
is not related to SCID, (2) the identified variants are causal, or
(3) both contribute to clinical disease manifestation.

Single-gene NBS disorders validation: CF and VLCAD deficiency

Seven CF samples and a VLCAD deficiency sample were
sequenced on a high-throughput flow cell with two of the CF
samples also being included in the mid-throughput validation. The
VLCAD deficiency sample was subjected to targeted analysis of
ACADVL while CF samples were analyzed using two modalities:
(1) restricted analysis to 60 CFTR variants used by the Luminex
assay; (2) restricted analysis of the entire coding portion of the
CFTR gene with masking of poly-T/poly-TG alleles except in
conjunction with ¢.350G>A (p.Arg117His) variant.?® Studies have
shown that this variant in combination with the 5T variant of the
poly-T region is associated with CF as well as CBAVD.?*3°

Two variants in the VLCAD deficiency sample were detected
through diagnostic testing and through ES with targeted analysis
(Table 1). For CFTR, there was 100% concordance between the
Luminex assay and ES with restriction to the 60 Luminex variants
for all samples in mid- or high-throughput validation experiments
(Table 2). Variants not detected were not included in the panel or
did not meet the condition for reporting (e.g., poly-T allele only
reported if in conjunction with p.Arg117His). With regard to
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concordance between diagnostic testing results and ES with
analysis restricted to the full CFTR coding region, 4/4 (100%) and
11/14 (78.6%) variants detected by diagnostic testing were also
discovered by our method in mid- and high-throughput results
respectively. Two CF specimens had poly-T and poly-TG allele
variants identified through diagnostic testing. These could not be
validated by our pipeline. In one case, the variant was filtered out
during the indel filtering step of the targeted analysis pipeline. It
should be noted however that these variants would not be called
by the pipeline since these samples do not have the c.350G>A (p.
Arg117His) variant. Poly-T and poly-TG allele status will be
confirmed through manual review only in samples with the
¢.350G>A (p.Arg117His) variant. One CFTR variant not included on
the Luminex panel, c.1753G>T (p.Glu585Ter), was detected
through analysis of the entire CFTR coding region.

Emerging NBS disorders validation: MLD

A pilot biochemical newborn screening study for MLD was
conducted screening for sulfatide accumulation in de-identified
DBS>®> MLD screening is complicated by the presence of
pseudodeficiency alleles, whereby the structure or the expression
of the protein is altered, but disease phenotype is not observed, or
is subclinical. To validate the biochemical assay, samples with high
sulfatide levels were submitted to an ARSA enzymatic activity assay
identifying two samples with elevated sulfatides and deficient ARSA
activity. These two DBS samples along with three screen negative
samples were subjected to ES targeting ARSA, the gene most
commonly affected in MLD. Very rare forms of MLD result from
variation in PSAP or SUMF1. Following collaborators’ requests, the
analysis was expanded to include PSAP but not SUMF1. Sequencing
results from this pipeline validated biochemical findings, with
variants observed in ARSA in a compound heterozygous affected
patient, and a heterozygous unaffected individual. Three unaffected
individuals had no pathogenic variant, but two were heterozygous
for known pseudovariants. This use case demonstrates the ability to
stepwise expand this analysis to emerging disorders and genes and
to rapidly expand the analysis to investigate additional genes at the
request of the submitter.

Validation of bioinformatics pipeline using simulated read data
sets

To validate the established bioinformatics pipeline and to
circumvent a lack of available biological reference resources, we
generated variant-specific Variant Call Format (VCF) files. Twelve
VCF files containing variants associated with CF, SCID, and Pompe
disease were produced, which generated a total of 24 simulated
read data sets at 20x and 60X mean exome coverage. We
included Pompe disease to ready second-tier testing algorithms
supporting biochemical screening beginning later this year. All
variants were detected by the bioinformatics pipeline at both
mean coverages (Table S1). Additionally, there was 100%
agreement between the variant annotation tools VEP and SnpEff.

Comparison of publicly available genomic variant databases

Interpretation of sequence variants relies in part on what has been
observed and reported. Clinically actionable variants have been
cataloged in multiple disparate places, including OMIM, which
curates at the gene-level from literature reports, ClinVar, a National
Institutes of Health (NIH) supported archive of variant-condition
assertions from the testing and research communities, and smaller
disease or gene focused specialty databases.'®'® Many of these
smaller databases use the same logical schema and supporting
software, Leiden Open Variation Database (LOVD), which enables
rapid deployment and interoperability between sites.?' To provide
our interpretation team with the most comprehensive assess-
ments, we undertook a comparison and collation of the various
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databases assembling variants for our conditions of interest. The
Human Genome Variation Society (HGVS) provides a structured
nomenclature to define variants with regard to their position on
the genome and their type (deletion or insertion). Tools like
biocommons have been developed to parse and validate these
descriptions.?'>2

For the preliminary iteration of variant curation for our local NBS
variant database, we focused on the use cases of polygenic (SCID),
single-gene (a selection of metabolic disorders), and emerging NBS
disorders (MLD). For SCID, we curated variants for 39 genes
associated with the disorder previously included in a candidate
gene panel by the New York NBS program.®* Three genes known to
be associated with MLD (ARSA, PSAP, SUMFI) and 13 genes
associated with various metabolic disorders were included on the
target gene list. The genes selected for MLD and metabolic disorder
genes are known to be associated with their respective disorders
and are included on diagnostic laboratory disorder panels3%3°

In the variant curation process it was necessary to assess the
overlap and divergence between ClinVar and other variant
databases using the LOVD schema. The total number of SCID
variants in ClinVar was 14,113 and 6,865 in LOVDs. The percent
overlap between ClinVar and LOVDs for the 39 SCID genes ranged
from 3.13% to 31.21% (Fig. 3a). For metabolic disorders, 2,549
variants in ClinVar were associated with metabolic disorders while
LOVDs contained 2,172 variants. The range of overlap between
Clinvar and LOVDs for all genes associated with metabolic
disorders was between 23.31% and 65.08% (Fig. 3b). For MLD,
632 relevant variants were found in ClinVar and 519 variants were
found in LOVD databases. ARSA, the gene most commonly
associated with MLD, had a total of 440 HGVS validated variants
identified and aggregated from all databases. This gene also had
the greatest percentage of overlap between ClinVar and LOVDs
with 35.68% of variants reported in both databases (Fig. 3c). PSAP
(n=279) and SUMF1 (n=208) variants had 17.20% and 9.13%
overlap respectively between both databases.

Variant types found in all databases included substitutions,
deletions, duplications, insertions, indels, and inversions. Substitu-
tions were the most frequent variant type across ClinVar and
LOVDs (Fig. S1). Overall, ClinVar and LOVDs appear to contain
proportional amounts of variant types regardless of the disorder.

Variants that could not be annotated were binned into seven
categories and require further manual curation. Detailed informa-
tion regarding these categories is summarized in Supplementary
materials and methods. In ClinVar, the main reasons variants failed
HGVS validation were due to missing variant information and
complex HGVS annotations whereas invalid variants in LOVDs
lacked the correct reference bases or were complex HGVS
annotations (Fig. S2). ClinVar variant annotations are processed
through a quality control (QC) pipeline to validate the annotation
before upload into the database. LOVD variant databases lack
these uniform processing standards and require validation and
mapping to an updated reference sequence prior to use.

DISCUSSION

We developed an NGS-based ES pipeline for second-tier testing in
NBS that is disorder and gene agnostic. ES with a priori analysis
restriction to one or multiple genes allows initially limited analyses
to gene-specific variants and allows expansion to the entire gene-
specific coding region(s) if the variant analysis would remain
inconclusive. If candidate gene analyses would remain incon-
clusive, the analysis could be further expanded to additional
genes or the entire exome, following parental consent and clinical
indication. We have implemented the laboratory methodology
using two 3.2-mm DBS punches to generate reliably high-quality
sequence data. Data analysis is performed using a custom
bioinformatics pipeline. In silico restriction of the analysis is
limited to a priori defined genes. As part of the sequencing
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pipeline, a local variant database resource was generated and
populated with data from an automated pipeline, curating
genomic variants from multiple publicly available variant data-
bases. In theory, this method can be applied as a second-tier test
to any NBS disorder.

One of the strengths of our method is the multiple entry points
for analysis (Fig. 1). While we developed the pipeline for second or
third-tier testing from DBS, the analysis can also be performed
using already extracted DNA. We demonstrated this for MLD
specimens we analyzed using crude DNA extracts.”> Analysis can
also be initiated using raw sequence files (FASTQ) or limited to
interpretation using VCF files. Considering the importance of
validation of second or third-tier testing methodologies, executing
analyses using VCF files is a key strength of initial validation as well
as ensuring ongoing accuracy and precision assessments.

The developed pipeline also allows analysis expansion to
secondary genes or all coding sequences if no variant information
is found in selected genes. While such expanded analysis reduces
genetic odysseys, we would require secondary consent by parents
or guardians prior to expanded analysis. Such consent must be
documented in the patient’s electronic health record (EHR) as well.
The expanded analysis approach was demonstrated in the analysis
of suspected MLD samples, where the ARSA gene was included in
the primary analysis with PSAP included in a secondary analysis at
the request of the submitting investigator. In cases where analyses
need to be expanded to multiple genes or in cases of diagnostic
odysseys, ES analysis can be performed with parental consent and
education or counseling strategies.

Limitations to the ES analysis pipeline include restriction to only
the coding portions of the genome, limited coverage in exon/
intron boundaries, and limited ability to detect large structural
variations. ES also does not allow for the identification of variants
in deep intronic or in regulatory regions. We observed selection

SPRINGERNATURE

bias present in the exome capture process that can result in high
read coverage for some genes while other genes are at or below
expected coverage. Omitting the exome capture step and running
experiments in full GS mode, however, can detect variants in
regulatory and deep intronic regions. As a proof of concept to
determine feasibility, the positive control was subjected to GS on a
high-throughput flow cell. When comparing coverage for select
genes in our ES and GS experiments, some of the selection bias is
removed in GS (Table S2). Our current criteria for accepting a
variant call is 30x variant coverage with manual review. This cutoff
parameter will continue to evolve as we include additional
disorders for second-tier ES analysis.

The varying degree of overlap between variant databases points
toward the requirement of frequently updating curation. It also
highlights the requirement of repeat variant analysis and updating
“clinical reports” when interpretations change. The requirements of
amended reports and the impact on clinical management
challenges newborn screening follow-up systems, requiring long-
term follow-up structures and the maintenance of accurate
demographic and provider information. Variant database upgrades
might also require revalidation of the pipeline. To deal with the
issue of approximately 10% of variants failing validation, we binned
such variants based on “failure mechanisms,” marking them for
manual assessment at a later time or when diagnostically needed.

While ClinVar is becoming the industry standard archive for
variant annotation and is heavily used as a source of reference
during clinical variant interpretation, we have demonstrated
varying degrees of overlap between the current content of
ClinVar and other curated boutique databases. We had expected
that the databases would include a larger proportion of the same
variants, and the differences would be at the level of clinical
significance. The disjunctive union between databases has multi-
ple causes. While some conditions have relatively common
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variants, such as deltaPhe(508)-CFTR in cystic fibrosis, there are
many other rare or private variants that cause disease that have
yet to propagate into the large variant resources due to very low
frequency in the population. Another reason is that variants of
uncertain significance and known benign variants may not
propagate as rapidly to the large databases. Similar results have
been observed during sequence-based NBS, where a significant
proportion of detected variants were not present in existing
databases. Here the authors showed that for commonly screened
disorders, between 13% and 38% of the observed variants were
not annotated in ClinVar. Our findings build upon this research,
and provide a reminder to those performing genomic interpreta-
tion that a single catalog of genomic variation for NBS genes has
yet to be achieved. Another source of information vital to
interpretation is variant frequency from databases such as
gnomAD.?® We believe that automated methods such as those
we have developed can be used to supplement the detailed
curation of clinical domain working groups such as those working
via the ClinGen Initiative, and provide clinical genetics providers a
single source of variant annotations to aid with their interpretation
activities.*® There are multiple clinical domain working groups in
the area of inborn errors of metabolism and this described
pipeline is a clear adjunct to those activities.?” A detailed and
comprehensive catalogue of collated NBS variant interpretations is
another tool to aid those charged with making clinical diagnoses.

Biologic variability potential at every nucleotide position mea-
sured by sequencing-based tests challenges the validation standards
and requirements of laboratory and diagnostic medicine.***' While
traditional biochemical tests measure one analyte, the validation of
the actual test measuring the single analyte is straightforward and in
general universally agreed upon. By definition, applying such
biochemical validation standards to NGS based tests would require
performance characterization at every nucleotide position, a task
that is impossible based on the number of theoretical variations and
the lack of biological reference material. While the laboratory
component of the test can be straightforwardly controlled through
extraction controls and traditional control steps, we developed
simulated, in silico reads to measure and standardize analysis
performance. Such control materials can be developed based on a
variable frequency ranging from common to rare variants. These
resources can be analyzed through the pipeline in a quality control
assurance step prior to any patient analysis, proficiency testing, or to
fulfill revalidation requirements after periodic variant database
upgrades. Furthermore, such simulated “material” can be readily
shared with auditors and collaborators to compare performance
across programs and laboratories.

Many times an initial newborn screening is inconclusive due to
the presence of an intermediate phenotype.*? Given time,
comprehensive population screening of intermediate phenotypes
in combination with the genetic variant assessment will result in a
more thorough and comprehensive understanding of the variant
space and consequences. We advocate that the community must
focus on comprehensiveness of annotation and curation of
observed variants irrespective of agreement on interpretation or
discourse. As such analyses are adopted globally, community
knowledge will advance understanding of natural history as well
as establish any underlying phenotype-genotype relationships
between marker and trait. While there are national efforts to
collect and curate variant-phenotype pairs, the NBS community is
the first responder to new variants and in a position to greatly
impact and improve the community of knowledge.'®*

We chose ES for second-tier testing from a cost/benefit
standpoint. Our current turnaround time for ES with targeted
analysis of five DBS samples is four days with variable costs at
$600 per sample. In the future, methods such as rapid GS or long
read methodologies may also be considered as they eliminate
selection bias and have significantly faster turnaround times.
Using the lllumina NextSeq platform, sequencing one genome of
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one sample on a high-throughput flow cell we observed an
average coverage of 30x. If GS was the method of choice, this
platform would not be sufficient for a production environment.
While this NGS method is not replacing biochemical NBS, it aims
to expand second-tier testing aiding in clinical decision support.
To maximize these benefits, screening programs must seek
consensus with the medical care teams regarding the utility of
the test. If testing is performed on the same dried blood specimen
are the results clinically actionable? Or should testing be
performed on an independent new specimen? Likewise, consider-
ing potentially long turnaround times, should such testing be only
performed under the umbrella of the diagnostic testing frame-
work? Expanded analyses can result in incidental findings or the
identification of disease-causing variants with unrelated disorders
or disease manifestations. Such unintended consequences have to
be part of the consenting process and must be clearly explained.
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