Abstract
Purpose
To examine the overall genomic copy-number variant (CNV) landscape of Chinese pediatric patients with developmental disorders.
Methods
De-identified chromosomal microarray (CMA) data from 10,026 pediatric patients with developmental disorders were collected for re-evaluating the pathogenic CNV (pCNV) yields of different medical conditions and for comparing the frequency and phenotypic variability of genomic disorders between the Chinese and Western patient populations.
Results
The overall yield of pCNVs in the Chinese pediatric patient cohort was 21.37%, with variable yields for different disorders. Yields of pCNVs were positively associated with phenotypic complexity and intellectual disability/developmental delay (ID/DD) comorbidity for most disorders. The genomic burden and pCNV yield in neurodevelopmental disorders supported a female protective effect. However, the stratification analysis revealed that it was seen only in nonsyndromic ID/DD, not in nonsyndromic autism spectrum disorders or seizure. Furthermore, 15 known genomic disorders showed significantly different frequencies in Chinese and Western patient cohorts, and profiles of referred clinical features for 15 known genomic disorders were also significantly different in the two cohorts.
Conclusion
We defined the pCNV yields and profiles of the Chinese pediatric patients with different medical conditions and uncovered differences in the frequency and phenotypic diversity of genomic disorders between Chinese and Western patients.
Access options
Subscribe to Journal
Get full journal access for 1 year
$499.00
only $41.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.



Data availability
The CNV data sets used for the study are available from the corresponding author upon request.
References
- 1.
Lee, C., Iafrate, A. J. & Brothman, A. R. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat. Genet. 39(7 Suppl), S48–S54 (2007).
- 2.
Itsara, A. et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am. J. Hum. Genet. 84, 148–161 (2009).
- 3.
Miller, D. T. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749–764 (2010).
- 4.
Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science. 316, 445–449 (2007).
- 5.
McTague, A., Howell, K. B., Cross, J. H., Kurian, M. A. & Scheffer, I. E. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol. 15, 304–316 (2015).
- 6.
Cooper, G. M. et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 43, 838–846 (2011).
- 7.
Shen, Y. et al. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics. 125, e727–e735 (2010).
- 8.
Coe, B. P. et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 46, 1063–1071 (2014).
- 9.
Kaminsky, E. B. et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 13, 777–784 (2011).
- 10.
Firth, H. V. et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 84, 524–533 (2009).
- 11.
Fan, Y. et al. Chromosomal microarray analysis in developmental delay and intellectual disability with comorbid conditions. BMC Med. Genomics 11, 49 (2018).
- 12.
Wang, R. et al. Application of chromosome microarray analysis in patients with unexplained developmental delay/intellectual disability in South China. Pediatr. Neonatol. 60, 35–42 (2019).
- 13.
Cheng, S. S. W. et al. Experience of chromosomal microarray applied in prenatal and postnatal settings in Hong Kong. Am. J. Med. Genet. C Semin. Med. Genet. 181, 196–207 (2019).
- 14.
Geng, J. et al. Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genomics 15, 1127 (2014).
- 15.
Zhang, C. et al. CNVbase: batch identification of novel and rare copy number variations based on multi-ethnic population data. J. Genet. Genomics 44, 367–370 (2017).
- 16.
Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020).
- 17.
Girirajan, S. et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N. Engl. J. Med. 367, 1321–1331 (2012).
- 18.
Ruderfer, D. M. et al. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat. Genet. 48, 1107–1111 (2016).
- 19.
Jacquemont, S. et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am. J. Hum. Genet. 94, 415–425 (2014).
- 20.
Ikeshima, H., Imai, S., Shimoda, K., Hata, J. & Takano, T. Expression of a MADS box gene, MEF2D, in neurons of the mouse central nervous system: implication of its binary function in myogenic and neurogenic cell lineages. Neurosci. Lett. 200, 117–120 (1995).
- 21.
Yang, Q. et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science. 323, 124–127 (2009).
- 22.
Le Meur, N. et al. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J. Med. Genet. 47, 22–29 (2010).
- 23.
Demeer, B. et al. Duplication 16p13.3 and the CREBBP gene: confirmation of the phenotype. Eur. J. Med. Genet. 56, 26–31 (2013).
- 24.
Thienpont, B. et al. Duplications of the critical Rubinstein-Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome. J. Med. Genet. 47, 155–161 (2010).
- 25.
Jordan, T. et al. The human PAX6 gene is mutated in two patients with aniridia. Nat. Genet. 1, 328–332 (1992).
- 26.
Davis, L. K. et al. Pax6 3’ deletion results in aniridia, autism and mental retardation. Hum. Genet. 123, 371–378 (2008).
- 27.
Aalfs, C. M. et al. Tandem duplication of 11p12-p13 in a child with borderline development delay and eye abnormalities: dose effect of the PAX6 gene product? Am. J. Med. Genet. 73, 267–271 (1997).
- 28.
Aradhya, S., Smaoui, N., Marble, M. & Lacassie, Y. De novo duplication 11p13 involving the PAX6 gene in a patient with neonatal seizures, hypotonia, microcephaly, developmental disability and minor ocular manifestations. Am. J. Med. Genet. A. 155A, 442–444 (2011).
- 29.
Guo, H. et al. Genome-wide copy number variation analysis in a Chinese autism spectrum disorder cohort. Sci. Rep. 7, 44155 (2017).
- 30.
Hu, G. et al. Copy number variations in 119 Chinese children with idiopathic short stature identified by the custom genome-wide microarray. Mol. Cytogenet. 9, 16 (2016).
- 31.
Truty, R. et al. Prevalence and properties of intragenic copy-number variation in Mendelian disease genes. Genet. Med. 21, 114–123 (2019).
- 32.
Park, K. B. et al. Effects of copy number variations on developmental aspects of children with delayed development. Ann. Rehabil. Med. 43, 215–223 (2019).
- 33.
Li, J., Oehlert, J., Snyder, M., Stevenson, D. K. & Shaw, G. M. Fetal de novo mutations and preterm birth. PLoS Genet. 13, e1006689 (2017).
- 34.
Zaidi, S. & Brueckner, M. Genetics and genomics of congenital heart disease. Circ. Res. 120, 923–940 (2017).
- 35.
Catusi, I. et al. Testing single/combined clinical categories on 5110 Italian patients with developmental phenotypes to improve array-based detection rate. Mol. Genet. Genomic Med. 8, e1056 (2019).
- 36.
Mullen, S. A. et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology. 81, 1507–1514 (2013).
- 37.
Coe, B. P. et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat. Genet. 51, 106–116 (2018).
- 38.
Levy, D. et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron. 70, 886–897 (2011).
- 39.
Koolen, D. A. et al. A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat. Genet. 38, 999–1001 (2006).
Acknowledgements
This work was supported by grants from CAMS Innovation Fund for Medical Sciences (2016‐I2M‐1‐008), the Beijing Natural Science Foundation (7202019 to X. Chen), the Chinese National Nature Science Fund (31671310 to X. Chen, 81873633 to Y.S.), the Eastern Scholar Fund, the Guangxi Bagui Scholar Fund, National Key Research and Development Program (2018YFC1002501), the Major Research Plan of the Provincial Science and Technology Foundation of Guangxi (AB16380214) to Y.S., Capital Health Research and Development of Special (2020-1-4071 and 2020-2-1131), and the Innovation Project of Beijing Municipal Human Resources and Social Security Bureau to X. Chen. The authors thank all involved families who contributed their de-identified CMA data to research, and are particularly grateful for the subset who collaborated on follow-up, providing detailed clinical information. The authors thank members of the collaborating clinical laboratories for performing the microarray experiments.
Author information
Affiliations
Contributions
Conceptualization: Y.S., X.Chen. Writing: Y.S., X.Chen, H.Y., J.F.G. Review and editing: Y.S., X.Chen, J.F.G. CMA data and collection: H.Y., S.S., J.L., J.S., R.Y., Shun Zhang. CNV curation and first-round pathogenic interpretation: J.L., S.S., R.Y. CNV second-round pathogenic interpretation H.Y., J.W., X.Chen, and Y.S. Data statistics analysis: Z.L. Western CNV literature review, the comparison between Chinese and Western cohorts for CNV frequency and referred phenotype: S.S., Z.L., H.Y. Clinical information collection: H.Y., Q.C., Z.G., Y.Zhu, X.W., L.Liu, J.Z., H.Li, H.Q., Y.Lin, H.Z., M.Y., M.M., L.Z., D.Z., H.W., H.Lv, Y.Liu, and L.Liang. CMA testing and validation: S.S., J.S., C.L., Shujie Zhang, W.Li, W.Lu, Y.Zhang, H.X., F.L., Q.W., B.X., C.G. Resources and software support and intelligent suggestion: Y.Liu and X.Cui.
Corresponding authors
Ethics declarations
Ethics Declaration
The study was approved by the ethics committee of the respective institutions (Capital Institute of Pediatrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region), which allowed us to perform aggregate analysis using de-identified clinical CMA data. Additional informed consents were obtained from the parents of some individuals to publish their detailed clinical information.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Yuan, H., Shangguan, S., Li, Z. et al. CNV profiles of Chinese pediatric patients with developmental disorders. Genet Med (2021). https://doi.org/10.1038/s41436-020-01048-y
Received:
Revised:
Accepted:
Published: