Neurofilament light chain levels correlate with clinical measures in CLN3 disease



CLN3 disease is a neurodegenerative disorder with onset in childhood. It affects multiple functions at different developmental stages. Incomplete understanding of the pathophysiology hampers identification of cell and tissue biochemical compounds reflective of the disease process. As treatment approaches are being explored, more sensitive, objective, quantifiable, and clinically relevant biomarkers are needed.


We collected prospective biosamples from 21 phenotyped individuals with CLN3. We measured neurofilament light chain (NEFL) levels, a marker of neuronal damage, in cross-sectional CSF and serum samples from individuals with CLN3 and in pediatric non-CLN3 controls using two different assays.


Cerebrospinal fluid (CSF) and serum NEFL levels are significantly higher in CLN3 (CSF: 2096 ± 1202; serum: 29.0 ± 18.0 pg/mL) versus similarly aged non-CLN3 (CSF: 345 ± 610; serum: 6.7 ± 3.2 pg/mL) samples. NEFL levels correlate with Unified Batten Disease Rating Scale and adaptive behavior composite scores, and magnetic resonance (MR) spectroscopy markers. NEFL levels from CSF and serum are strongly correlated (rp = 0.83; p < 0.0001).


CSF and serum NEFL levels increase in multiple neurologic conditions. Here, we show that CSF and serum NEFL levels also increase in CLN3 (versus non-CLN3) and correlate with other disease-relevant measures. These findings suggest NEFL as a relevant and feasible biomarker for applications in CLN3 clinical trials and management.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CSF NEFL level in samples from CLN3 versus non-CLN3 (PLC, CTD, SLOS) individuals, measured by enzyme-linked immunosorbent assay (ELISA).
Fig. 2: Serum NEFL level in samples from CLN3 versus non-CLN3 (PHS, CTD, SLOS) individuals, measured by SimoaTM.
Fig. 3: Correlation of NEFL levels with clinical outcome measures, by assay method.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Haltia, M. The neuronal ceroid-lipofuscinoses. J. Neuropathol. Exp. Neurol. 62, 1–13 (2003).

    Article  Google Scholar 

  2. 2.

    Ostergaard, J. R. Juvenile neuronal ceroid lipofuscinosis (Batten disease): current insights. Degener. Neurol. Neuromuscul. Dis. 6, 73–83 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Goebel, H. H. The neuronal ceroid-lipofuscinoses. J. Child. Neurol. 10, 424–437 (1995).

    CAS  Article  Google Scholar 

  4. 4.

    Mirza, M. et al. The CLN3 gene and protein: what we know. Mol. Genet. Genomic Med. 7, e859 (2019).

    Article  Google Scholar 

  5. 5.

    Kousi, M., Lehesjoki, A. E. & Mole, S. E. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum. Mutat. 33, 42–63 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Munroe, P. B. et al. Spectrum of mutations in the Batten disease gene, CLN3. Am. J. Hum. Genet. 61, 310–316 (1997).

    CAS  Article  Google Scholar 

  7. 7.

    Cialone, J. et al. Females experience a more severe disease course in Batten disease. J. Inherit. Metab. Dis. 35, 549–555 (2012).

    Article  Google Scholar 

  8. 8.

    Kuper, W. F. E. et al. Timing of cognitive decline in CLN3 disease. J. Inherit. Metab. Dis. 41, 257–261 (2018).

    Article  Google Scholar 

  9. 9.

    Adams, H. et al. Standardized assessment of behavior and adaptive living skills in juvenile neuronal ceroid lipofuscinosis. Dev. Med. Child Neurol. 48, 259–264 (2006).

    Article  Google Scholar 

  10. 10.

    Tokola, A. M., Salli, E. K., Aberg, L. E. & Autti, T. H. Hippocampal volumes in juvenile neuronal ceroid lipofuscinosis: a longitudinal magnetic resonance imaging study. Pediatr. Neurol. 50, 158–163 (2014).

    Article  Google Scholar 

  11. 11.

    Kohlschutter, A., Laabs, R. & Albani, M. Juvenile neuronal ceroid lipofuscinosis (JNCL): quantitative description of its clinical variability. Acta Paediatr. 77, 867–872 (1988).

    CAS  Article  Google Scholar 

  12. 12.

    Marshall, F. J. et al. A clinical rating scale for Batten disease: reliable and relevant for clinical trials. Neurology 65, 275–279 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    Hersrud, S. L. et al. Plasma biomarkers for neuronal ceroid lipofuscinosis. FEBS J. 283, 459–471 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Lebrun, A. H. et al. Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease. Mol. Med. 17, 1253–1261 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Sleat, D. E. et al. Proteomic analysis of brain and cerebrospinal fluid from the three major forms of neuronal ceroid lipofuscinosis reveals potential biomarkers. J. Proteome Res. 16, 3787–3804 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14, 577–589 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Millecamps, S. et al. Conditional NF-L transgene expression in mice for in vivo analysis of turnover and transport rate of neurofilaments. J. Neurosci. 27, 4947–4956 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Yuan, A. et al. Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons. J. Neurosci. 29, 11316–11329 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    Barry, D. M., Millecamps, S., Julien, J. P. & Garcia, M. L. New movements in neurofilament transport, turnover and disease. Exp. Cell Res. 313, 2110–2120 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    Gaiottino, J. et al. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS ONE 8, e75091 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Petzold, A. et al. A systematic review and meta-analysis of CSF neurofilament protein levels as biomarkers in dementia. Neurodegener. Dis. 4, 185–194 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    Skillback, T. et al. CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology 83, 1945–1953 (2014).

    Article  Google Scholar 

  23. 23.

    Steinacker, P. et al. Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J. Neurol. Neurosurg. Psychiatry 87, 12–20 (2016).

    PubMed  Google Scholar 

  24. 24.

    Alirezaei, Z. et al. Neurofilament light chain as a biomarker, and correlation with magnetic resonance imaging in diagnosis of CNS-related disorders. Mol. Neurobiol. 57, 469–491 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    Ru, Y. et al. Neurofilament light is a treatment-responsive biomarker in CLN2 disease. Ann. Clin. Transl. Neurol. 6, 2437–2447 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Weston, P. S. J. et al. Serum neurofilament light in familial Alzheimer disease: a marker of early neurodegeneration. Neurology 89, 2167–2175 (2017).

    Article  Google Scholar 

  27. 27.

    Wong, Y. Y. M. et al. Serum neurofilament light chain in pediatric MS and other acquired demyelinating syndromes. Neurology 93, e968–e974 (2019).

    Article  Google Scholar 

  28. 28.

    Augustine, E. F. et al. Standardized assessment of seizures in patients with juvenile neuronal ceroid lipofuscinosis. Dev. Med. Child Neurol. 57, 366–371 (2015).

    Article  Google Scholar 

  29. 29.

    Farmer, C. et al. Concordance of the vineland adaptive behavior scales, second and third editions. J. Intellect. Disabil. Res. 64, 18–26 (2020).

    CAS  Article  Google Scholar 

  30. 30.

    Baker, E. H., Levin, S. W., Zhang, Z. & Mukherjee, A. B. Evaluation of disease progression in INCL by MR spectroscopy. Ann. Clin. Transl. Neurol. 2, 797–809 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Suprun, M. & Suarez-Farinas, M. PlateDesigner: a web-based application for the design of microplate experiments. Bioinformatics 35, 1605–1607 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    OLink. NEURO EXPLORATORY. (2020).

  33. 33.

    OLink. Data normalization and standardization. White Papers from OLink Web site. (2020).

  34. 34.

    Masten, M. C. et al. The CLN3 disease staging system: a new tool for clinical research in Batten disease. Neurology 94, e2436–e2440 (2020).

    Article  Google Scholar 

  35. 35.

    Wong, N. K., He, B. P. & Strong, M. J. Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J. Neuropathol. Exp. Neurol. 59, 972–982 (2000).

    CAS  Article  Google Scholar 

  36. 36.

    Khalil, M. et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat. Commun. 11, 812 (2020).

    CAS  Article  Google Scholar 

  37. 37.

    Vagberg, M. et al. Levels and age dependency of neurofilament light and glial fibrillary acidic protein in healthy individuals and their relation to the brain parenchymal fraction. PLoS ONE 10, e0135886 (2015).

    Article  Google Scholar 

  38. 38.

    Kuper, W. F. E. et al. Quantifying lymphocyte vacuolization serves as a measure of CLN3 disease severity. JIMD Rep. 54, 87–97 (2020).

    Article  Google Scholar 

  39. 39.

    van der Vuurst de Vries, R. M. et al. High neurofilament levels are associated with clinically definite multiple sclerosis in children and adults with clinically isolated syndrome. Mult. Scler. 25, 958–967 (2019).

    Article  Google Scholar 

  40. 40.

    Olsson, B. et al. NFL is a marker of treatment response in children with SMA treated with nusinersen. J. Neurol. 266, 2129–2136 (2019).

    Article  Google Scholar 

  41. 41.

    Menke, R. A. et al. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann. Clin. Transl. Neurol. 2, 748–755 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Kuhle, J. et al. Serum neurofilament is associated with progression of brain atrophy and disability in early MS. Neurology 88, 826–831 (2017).

    CAS  Article  Google Scholar 

Download references


We dedicate this work to the study participants, their families, and the support organizations for the motivation and inspiration they have provided. We thank Jonathan W. Mink (University of Rochester Medical Center) for his expert inputs on UBDRS implementation. We thank colleagues and staff who enabled the conduct of this study and the preparation of the manuscript. The National Institutes of Health (NIH) Intramural Research Program of NICHD, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Mental Health (NIMH), the NIH Clinical Center, National Institute of Neurological Disorders and Stroke (NINDS), and an NIH Clinical Center Bench-to-Bedside Award supported this work.

Author information




Conceptualization: A.D.D., E.H.B, A.E.T., B.B., F.D.P.; Data curation: A.D.D., N.S., R.R.M., E.H.B., A.E.T., A.G.S.; Formal analysis: A.D.D., N.S., R.R.M.; Funding acquisition: F.D.P.; Investigation: A.D.D., E.H.B, A.E.T, A.G.S, S.E.B., F.D.P.; Methodology: all authors; Supervision: F.D.P.; Writing – original draft: A.D.D, N.S., R.R.M; Writing – review and editing: all authors.

Corresponding author

Correspondence to An N. Dang Do MD, PhD.

Ethics declarations

Competing interests

The authors declare no Competing interests.

Ethics Declaration

We evaluated study participants and collected biospecimens as part of natural history studies approved by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Institutional Review Board (CLN3 [NCT03307304]; creatine transporter deficiency [CTD; NCT02931682]; Smith–Lemli–Opitz syndrome [SLOS; NCT00001721]; Niemann–Pick disease, type C [NCT00344331]). The main inclusion criteria for CLN3 disease study participants is having pathogenic variants in CLN3, with no restriction on disease phenotype. Parents or guardians and participants older than 7 years of age provided consent and assent, respectively. We provided de-identified participant-level data. The study adhered to the principles set out in the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dang Do, A.N., Sinaii, N., Masvekar, R.R. et al. Neurofilament light chain levels correlate with clinical measures in CLN3 disease. Genet Med (2020).

Download citation


Quick links