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Purpose: Dioxygenases are oxidoreductase enzymes with
roles in metabolic pathways necessary for aerobic life. 4-
hydroxyphenylpyruvate dioxygenase-like protein (HPDL), encoded
by HPDL, is an orphan paralogue of 4-hydroxyphenylpyruvate
dioxygenase (HPD), an iron-dependent dioxygenase involved in
tyrosine catabolism. The function and association of HPDL with
human diseases remain unknown.

Methods: We applied exome sequencing in a cohort of over
10,000 individuals with neurodevelopmental diseases. Effects of
HPDL loss were investigated in vitro and in vivo, and through
mass spectrometry analysis. Evolutionary analysis was performed
to investigate the potential functional separation of HPDL
from HPD.

Results: We identified biallelic variants in HPDL in eight families
displaying recessive inheritance. Knockout mice closely phenocopied
humans and showed evidence of apoptosis in multiple cellular

lineages within the cerebral cortex. HPDL is a single-exonic gene
that likely arose from a retrotransposition event at the base of the
tetrapod lineage, and unlike HPD, HPDL is mitochondria-
localized. Metabolic profiling of HPDL mutant cells and mice
showed no evidence of altered tyrosine metabolites, but rather
notable accumulations in other metabolic pathways.

Conclusion: The mitochondrial localization, along with its
disrupted metabolic profile, suggests HPDL loss in humans links
to a unique neurometabolic mitochondrial infantile neurodegen-
erative condition.
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INTRODUCTION
Disorders involving neurometabolism can lead to both
structural and functional disturbances of the nervous system
through multiple mechanisms that include abnormal

accumulation of toxic substrates, depletion of key energy or
metabolic intermediates, or cell death.1 Although pediatric-
onset brain diseases are often associated with genetic
abnormalities, the link between metabolic impairments and
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brain disease has been associated with relatively common
disorders of the nervous system.2 Especially in highly
consanguineous populations, congenital malformations of
the nervous system and neurometabolic disorders are often
linked.3 Genes involved in inborn errors of metabolism often
encode enzymes that catalyze specific biochemical reactions
or required cofactors.4 Absent or abnormal functioning of
such proteins leads to an accumulation of upstream substrates
or deficiency of downstream products, with detrimental
disease-causing effects.
Dioxygenases are oxidoreductase enzymes that utilize

dioxygen (i.e., O2), most often complexed with iron, in
oxidation reactions involved in metabolic pathways or as
oxygen sensors.5 To date, 15 dioxygenases have been linked to
diseases that are mostly autosomal recessive including
encephalopathy, alkaptonuria (MIM 203500), and intellectual
disability.6–8 Dioxygenases can oxidize either small molecules,
as in tryptophan dioxygenase,9 or residues on macromole-
cules, as in EGLN1, a HIF proline dioxygenase acting as an
oxygen sensor.10

4-hydroxyphenylpyruvate dioxygenase (HPD, MIM
609695) is a nonheme Fe(II)-dependent dioxygenase that
catalyzes the second of four steps in L-tyrosine catabolism
in nearly all aerobic cells: the conversion of 4-
hydroxyphenylpyruvate into homogentisate.11 Biallelic loss
associates with recessive tyrosinemia type III (MIM
276710), the least frequent form of three genetic tyrosine-
mias.12 Clinical features are milder than those of other
genetic forms, and can include seizures, intellectual
disability, and intermittent ataxia.13,14 Serum tyrosine level
is variably elevated by 5- to 20-fold (148–1769 µmol/L,
reference 29–86 μmol/L).14–17

In addition to biallelic variants, a particular gain-of-
function HPD variant (p.Ala33Thr) associates with the
dominant disease hawkinsinuria (MIM 140350),15 as mutant
HPD can convert the normal substrate into a reactive epoxide
intermediate but cannot rearrange the intermediate to
homogentisate. As a result, the reactive epoxide is detoxified
to either hawkinsin or hydroxycyclohexyl acetate by glu-
tathione transferase and epoxide hydrolase, respectively.
Hawkinsinuria manifests clinically with metabolic acidosis
in early childhood, but most patients have normal long-term
outcome.
HPDL encodes 4-hydroxyphenylpyruvate dioxygenase-like

protein (HPDL), the only mammalian paralogue of HPD, and
shares 44% sequence similarity. The origin and function of
HPDL is not known, and the gene has not been linked to
human disease previously. Here we describe that HPDL
biallelic loss leads to a unique neurometabolic, infantile
neurodegenerative condition.

MATERIALS AND METHODS
Patient recruitment
The institutional review board (IRB) at the University of
California–San Diego (UCSD) approved this study. All study
participants signed informed consent documents, and the

study was performed in accordance with the US Health
Insurance Portability and Accountability Act of 1996
(HIPAA) Privacy Rules. The procedures followed for recruit-
ment and data collection were in accordance with the ethical
standards of the responsible committee on human experi-
mentation at the respective participating institute, and proper
informed consent was obtained.

DNA sequencing
Samples of the probands were subjected to exome sequencing.
Sanger sequencing of polymerase chain reaction (PCR)
products was performed for validation and segregation.
Further details are in the Supplementary data.

Cell culture
HEK293T cells (ATCC) were transfected with expression
vectors using Lipofectamine 2000 according to manufacturer’s
protocol (100 ng of DNA and 0.5 µl of Lipofectamine 2000 per
well) and immunostained 48 hours after transfection. Meth-
ods used for cloning mammalian expression vectors, transfec-
tion, and immunostaining are described in Supplementary
Methods.
Methods used to generate HPDL knockout (KO) CACO-2

cell line are described in Supplementary Methods. Immunos-
taining and imaging of wild-type and KO CACO-2 cells
details are described in Supplementary Methods.

Animal experiments
Animal use followed National Institutes of Health (NIH)
guidelines and was approved by the Institutional Animal Care
and Use Committee (IACUC) at UCSD. The frameshift
variant in Hpdl (NM_146256.3:c.59_65del) was introduced to
C57BL/6 mouse using CRISPR/Cas9 (single-guide RNA
[sgRNA] sequence: CUU CCA GCC CCU GGC GGU GA)
according to standard protocols at the UCSD Transgenic
Mouse Core. Mice were genotyped by PCR followed by
Sanger sequencing (Hpdl_KO_F/R primers; Table S1), and
those with correct genotypes were backcrossed for at least five
generations prior to experimental crosses of heterozygous
animals. Timed pregnant animals were obtained by plug
checks, where the day of the observed vaginal plug was
determined to be E0.5. All mice were group-housed under a
12-hour light/dark cycle with access to chow and water.
Breeding was performed until 30 homozygous pups were born
to analyze survival, growth, histology, and immunofluores-
cence staining. The investigators were not blind to the
analysis, since phenotypes of KO animals were very apparent.
Methods used for histological analysis, immunofluorescence
staining, and imaging are described in Supplementary
Methods.

Direct infusion–based metabolomics
Collection of cell lysates and mouse brain for metabolomics
experiments are described in Supplementary Methods.
A nonquantitative direct infusion high-resolution mass

spectrometry metabolomics method was used as previously
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described with minor adaptations for cell and tissue extracts.18

In brief, 70 µl of cell lysate in methanol was diluted with 60 µl
0.3% formic acid (Emsure, Darmstadt, Germany) and filtered
using a methanol preconditioned 96-well filter plate (Acro
prep, 0.2 um GHP, NTRL, 1-ml well; Pall Corporation, Ann
Arbor, MI, USA) and a vacuum manifold. The sample filtrate
was collected in a 96-well plate (Advion, Ithaca, NY, USA).
Samples were analyzed using a TriVersa NanoMate system

(Advion, Ithaca, NY, USA) controlled by Chipsoft software
(version 8.3.3, Advion). Data acquisition was performed using
Xcalibur software (version 3.0, Thermo Scientific, Waltham,
MA, USA). A peak calling pipeline, developed in R
programming language, annotated the raw mass spectrometry
data according to the Human Metabolome Database
(HMDB).

Phylogenetic tree reconstruction
Amino acid sequences were aligned using PROMALs3d.19

Three alignments were computed: (1) all sequences, (2) HPD
sequences, and (3) HPDL sequences. We used a maximum
likelihood method using RAxML20 on XSEDE via CIPRES to
obtain the gene tree topology using the JTT model and 1000
bootstrap replicates. The gene tree was visualized using iTol,21

and the final rooted topology was obtained by rerooting the
tree with a midpoint root.

Estimates of evolutionary rates
Branch lengths were obtained directly from the phylogenetic
trees. To calculate dN/dS ratios over the tree and subtrees
(HPD and HPDL), we used CODEML in the PAML package
(version 4.8).22 To test multiple rates on the tree on
CODEML, we used the model = 2 parameter to estimate an
HPD, HPDL, HPD tetrapod, and an HPDL tetrapod rate.
Pairwise dN estimates were used using the runmode=−2
parameter. To perform the CODEML analysis, the CDS
alignment was performed using TranslatorX.23 The dist.
alignment function was called in seqinr to compute the
pairwise distance matrix using the amino acid identity and
similarity.24

RESULTS
Identification of an infantile-onset neurodegenerative
condition in eight families with biallelic variants in HPDL
We identified eight independent consanguineous families
carrying HPDL biallelic variants leading to a range of
neurological phenotypes, which included spastic tetraplegia,
microcephaly, brain atrophy, epilepsy, and severe intellectual
and motor disability (Fig. 1a and Table S2). After obtaining
informed consent from all participating individuals in
accordance with the ethical standards set by the UCSD IRB,
we identified a total of eight distinct variants in HPDL in the
eight families by exome sequencing. We recruited family 1
with three affected siblings showing limb spasticity and mild
motor and intellectual disability. Although parental consan-
guinity suggested the presence of a homozygous variant as the
cause, no homozygous variants in any gene passed filter

criteria. Instead, we identified compound heterozygous p.
Gly50Asp; p.Tyr118* variants in HPDL, which was the only
candidate identified by exome sequencing and segregated in
the family. Family 2 was recruited with documented parental
consanguinity with one affected girl showing a nearly
identical clinical pattern as family 1. We identified a
homozygous p.Gly50Asp variant in the affected individual
as the most likely cause of disease, one of the same variants
identified in family 1 (Table S3).
Through collaboration with colleagues, we identified four

additional families (3, 4, 5, and 8) with homozygous missense
variants and two additional families (6 and 7) with
homozygous truncating variants in HPDL independently
identified as likely most pathogenic based upon inheritance
pattern, computational prediction, population allele fre-
quency, and segregation (Tables S1 and S2). These variants
included homozygous p.Ala78Thr (family 3), p.Gly126Ser
(family 4), p.Leu164Pro (family 5), p.Gly319Argfs*15 (family
6), p.Gln32* (family 7), and p.Gly301Val (family 8). Thus, we
identified a total of eight families comprising 17 individuals
with biallelic HPDL damaging variants with variable pheno-
types. Because HPDL is encoded by a single exon, and thus
not subject to alternative splicing, the presence of homo-
zygous early truncating variants suggests HPDL loss of
function as the mechanism of this infantile-onset neurode-
generative disease.
Affected children were born full-term without complica-

tions during pregnancy or delivery (Table S2). Where data
were available, birth weight and head circumference were not
remarkable. However, most affected individuals showed a
trend toward smaller head circumference by 5 years of age; 7
of 14 affected individuals, where data were available, met
criteria for microcephaly, defined as a head circumference <3
SD below mean (Table S2). Six of 14 affected individuals also
displayed nonspecific facial dysmorphisms. Most individuals
presented with minimal to absent psychomotor development,
including gross motor skills, language, and social skills. Most
displayed spontaneous epileptic seizures starting by 1 year.
Seizures were typically myoclonic, focal, or tonic and occurred
daily to weekly. Neurological findings included hypertonia,
hyperreflexia, spastic gait, and positive Babinski sign—
features that became more pronounced over time, suggesting
a progressive course. Many individuals were unable to walk
and displayed absent language skills. In six severely affected
individuals, brain magnetic resonance images (MRIs) were
available for review, demonstrating cortical atrophy, white
matter hyperintensity, corpus callosum thinning, reduced size
of the cerebellum, ventriculomegaly, and increased extra-axial
fluid (Fig. 1b), suggesting loss of brain parenchyma. Brain
atrophy and the progressive course were consistent with
neurodegeneration.
HPDL encodes 371 amino acids containing a mitochondrial

targeting sequence (MTS), two vicinal oxygen chelate (VOC)
domains, and three iron-binding sites. The locations of all the
variants occurred within the two VOC domains (Fig. 1c),
thus predicted to impact enzymatic function. Of note,
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the phenotypes between homozygous truncating variants
(p.Gln32* and p.Gly319Argfs*15), destroying at least one
iron-binding site, and three of the missense variants
(p.Ala78Thr, p.Gly126Ser, and p.Leu164Pro), were indistin-
guishable, suggesting that the missense variants cause loss of
function of HPDL. The p.Gly50Asp variant was found only in
families 1 and 2, and was associated with milder phenotypes

compared with the more severely affected individuals in other
families with brain atrophy and epilepsy, suggesting that this
variant has a milder impact on HPDL function. The variants
were unique in our data set of >5000 exomes from individuals
with neurodevelopmental phenotypes, were predicted to
be disease-causing, and were not represented (p.Ala78Thr,
p.Leu164Pro, p.Gly301Val, and p.Gly319Argfs*) or very rare
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Fig. 1 Variants in HPDL in eight independent consanguineous families lead to microcephaly and brain atrophy. (a) Pedigrees of families
1–8 showing consanguineous marriages (double line) with a total of 17 affected children. All unfilled members are without neurological disease, epilepsy, or
neurodegeneration. Dashed line: deceased. (b) Panels show magnetic resonance imaging (MRI) scans for six affected individuals from five different families.
Shown are sagittal and axial images demonstrating enlarged ventricles, thin corpus callosum, and severe cortical and cerebellar atrophy. (c) Schematic of the
HPDL protein structure depicting a predicted mitochondrial targeting sequence (MTS), two vicinal oxygen chelate (VOC) domains from amino acids 7–135
and 160–328 (shown in dark gray) and three iron (Fe) binding sites (dashed lines). Solid black lines indicate the locations of the variants. (d) Amino acid
alignments for all identified missense variants across different vertebrate species. Amino acids highlighted in gray indicate conserved residues. A.m. Alligator
mississippiensis, B.t. Bos taurus, D.r. Danio rerio, G.g. Gallus gallus, H.s. Homo sapiens, M.m. Mus musculus, O.c. Oryctolagus cuniculus, X.l. Xenopus laevis.
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(p.Gln32* [allele frequency; AF= 8.46e-6], p.Gly50Asp
[AF= 1.02e-5], p.Tyr118* [AF= 3.19e-5], and p.Gly126Ser
[AF= 8.67e-6]), in the gnomAD database.25 No instances
of biallelic damaging variants in HPDL among over
100,000 sequenced individuals occur in gnomAD (Fisher’s
exact test P < 0.00001). Additionally, all missense variants are
highly conserved among vertebrates (Fig. 1d). All variants
were confirmed by Sanger sequencing and segregated
according to a recessive mode of inheritance, with hetero-
zygotes showing no apparent clinical features (Fig. S1).

HPD and HPDL have differing tissue-wide expression and
subcellular localization
To functionally distinguish between HPDL and the para-
logous HPD, we sought differences in tissue expression and
subcellular localization patterns. The GTEx database
indicates that HPD is almost exclusively expressed in the
liver and kidney, whereas HPDL is widely expressed in most
organs (Fig. S2).26 Importantly, the expression level of
HPDL is much higher than HPD, specifically in the brain
(Fig. S3).26 Publicly available human and mouse brain
single-cell RNA-seq data suggests that HPDL transcripts
are encountered ~5× more commonly than HPD in the

brain, with brain astrocytes as the major source of HPDL
transcripts.27–29

Protein databases suggest HPD localizes to the cytosol while
HPDL localizes to mitochondria.30 We used Mitofates, an
online MTS prediction tool, to assess for an N-terminal
mitochondrial presequence or cleavable localization signal.31

While HPD had no predicted MTS, HPDL contained three
different recognition motifs for TOMM20, a mitochondrial
import receptor subunit responsible for the recognition and
translocation of cytosolically synthesized mitochondrial pre-
proteins. In addition, there was a region of maximum
positively charged amphiphilicity, another essential feature
for mitochondrial presequence function (Fig. 2a).32 To
confirm this experimentally, we utilized CACO-2 cells, a
human colon adenocarcinoma cell line expressing levels of
HPDL higher than most other cell lines.33 To validate the
specificity of the anti-HPDL antibody, we generated HPDL
KO CACO-2 cells using CRISPR/Cas9, and confirmed correct
biallelic targeting (Fig. S4A, B).
Immunofluorescence in WT cells confirmed the colocaliza-

tion of TOMM20 and HPDL within mitochondria (Fig. 2b),
while staining in the KO cells confirmed absent HPDL signal
(Fig. 2c). HPD showed no colocalization with TOMM20, but

HPD
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Fig. 2 HPD and HPDL display different subcellular localization patterns. (a) Schematic of HPD and HPDL N-terminal amino acid sequences high-
lighting the presence or absence of a predicted mitochondrial targeting sequence (MTS) as predicted by Mitofates. HPD has no predicted MTS, while HPDL
has three different TOMM20 recognition motifs (yellow) and a region of max positively charged amphiphilicity (green). (b) Immunofluorescent staining of
HPDL wild-type (WT) CACO-2 cells with DAPI (blue), HPDL (red), and TOMM20 (green). Scale bars: 10 μm (upper panels) and 2 µm (lower panels). (c)
Immunofluorescent staining of HPDL knockout (KO) CACO-2 cells with DAPI (blue), HPDL (red), and TOMM20 (green). Scale bars: 10 μm (upper panels) and
2 µm (lower panels). (d) Immunofluorescent staining of HPDL WT CACO-2 cells with DAPI (blue), HPD (red), and TOMM20 (green). Scale bars: 10 μm (upper
panels) and 2 µm (lower panels). (e) Immunostaining for TOMM20 (cyan) and DAPI (blue) of HEK293T cells transfected with both HPDL-Myc (red) and HPD-
EGFP (green) or HPD-Myc (red) and HPDL-EGFP (green) to determine the subcellular localization of HPD and HPDL. White arrows: cells with mitochondrial
localization of HPDL. Scale bar: 10 μm.
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instead was localized diffusely to the cytoplasm (Fig. 2d). To
assess localization of tagged versions of the proteins, we
cotransfected HEK293T cells with C-terminally Myc-tagged
HPDL and C-terminally EGFP-tagged HPD and costained
with anti-TOMM20. We used C-terminally tagged vectors to
ensure that any N-terminal MTS would not be disturbed.
Again, TOMM20 overlapped in localization with HPDL, but
not HPD. We also flipped the vectors and repeated the
experiment (C-terminally Myc-tagged HPD and C-terminally
EGFP-tagged HPDL) to ensure that the tag did not affect
localization, which provided further confirmation (Fig. 2e).
We utilized a Seahorse assay to compare the oxygen
consumption rate in these cells, which illustrated slightly
lower oxygen consumption rate in the HPDL KO cells
compared with WT (Fig. S5). Together, these results
demonstrate that HPDL, but not HPD, localizes to mitochon-
dria, suggesting that these enzymes act in different locations
on either the same or on different substrates. The slightly
reduced oxygen consumption rate in the KO cells further
suggests that the absence of HPDL may have an effect on
mitochondrial metabolic function.

Hpdl KO mice display epilepsy, early lethality, smaller brain
sizes, and cellular apoptosis in the brain
To investigate the physiological role of HPDL, we created
a KO mouse model with a homozygous frameshift
deletion of Hpdl generated using CRISPR/Cas9 (Hpdl KO,
Fig. S6). KOs were born healthy and at Mendelian
ratios (WT:heterozygote:homozygote = 30:68:26, test for
Hardy–Weinberg equilibrium P= 0.368). Although KOs were
indistinguishable at birth, by postnatal day 5 (P5), KOs
exhibit lethargy and spontaneous movements suggesting of
epileptic seizures (Supplemental video S1). Almost all KOs
died by P10, and none survived to P15 (Fig. 3a). Although
body weights and brain size were similar at birth, by P9–10
KO mice weighed approximately half that of littermates
(Fig. 3b, c). Immunostaining of P9 brain tissue sections for
DAPI and Cleaved Caspase 3 (CC3) demonstrated significant
cellular apoptosis (CC3+ cells) in the KO brains compared
with WT pups (23 vs. <1 CC3+ cell per 500-µm column),
which correlated with smaller brain size (Fig. 3c–e). To
determine the cellular identity of CC3+ cortical cells, we
performed coimmunostaining with CTIP2 (upper layer
cortical neurons), OLIG2 (oligodendrocytes), and GFAP
(astrocytes). CTIP2/CC3 staining revealed the most colocali-
zation compared with OLIG2/CC3 and GFAP/CC3 (5.9% vs.
1.9% and 3.8%, respectively, Fig. 3f, g). Taken together, these
data suggest cellular apoptosis in the brain occurs in the
absence of HPDL function.

Metabolomic analysis reveals disrupted metabolic
signature but normal tyrosine catabolism
Deficiencies of specific enzymes of the tyrosine catabolism
pathway are known to give rise to a number of severe
metabolic disorders in humans. In the oxidative degradation
of tyrosine by vertebrates, the first conversion step is to

4-hydroxyphenylpyruvate in a reaction catalyzed by tyrosine
transaminase (Fig. S7A).34 HPD then catalyzes the oxidation
of 4-hydroxyphenylpyruvate to homogentisate.12 Defects in
these two steps in tyrosine catabolism lead to tyrosinemia type
II and type III, respectively. Normally, homogentisate is
further catabolized by the next enzyme in the pathway,
homogentisate 1,2-dioxygenase.8 In alkaptonuria, however,
the enzyme is deficient, leading to this rare hereditary
metabolic disorder. In tyrosinemia type I, fumarylacetoacetate
hydrolase is mutated, causing the subsequent buildup of
byproducts.35 Because both HPD and HPDL have highly
similar amino acid homology, we speculated that HPD and
HPDL may have similar substrates. To test this, we performed
mass spectrometry analysis on HPDL WT and KO CACO-2
cell extracts and conditioned cell culture media. The analysis
revealed several significantly downregulated and upregulated
metabolites in both the cell extracts and culture media of KO
cells compared with WT; however, we did not detect an
abnormal accumulation of any metabolites involved in
tyrosine catabolism (Fig. S7B, C, Table S4). We then
performed a similar analysis in both Hpdl WT and KO
mouse brain extracts and serum at P5, which again showed no
abnormal accumulation of tyrosine catabolites (Fig. S7D, E,
Table S4). Taken together, these data suggest that HPDL likely
acts on a different substrate than HPD, and perhaps on a
different cellular pathway than tyrosine catabolism.

Independent HPD duplication events gave rise to HPDL in
vertebrates
HPD, conserved in all eukaryotes, is encoded on human
chromosome 12, with its major isoform consisting of 14
coding exons (Fig. 4a). One alternative splice isoform is
described; however: the major isoform encodes a protein 393
amino acids long. HPDL, on the other hand, is a single-exon
gene located on chromosome 1, with no alternative splice
isoforms reported, encoding 371 amino acids, apparent in
Xenopus tropicalis (frog) but not in lower species like Danio
rerio (zebrafish) (Fig. 4b). There are no other HPD paralogues
in mammals, suggesting that HPDL arose as a result of a
retrotransposition event at the base of the tetrapod lineage
(Fig. 4c). However, there is an HPDL paralogue in other lower
deuterostomes, including Ciona intestinalis (sea vase) and
zebrafish, but this HPDL contains introns. Thus, other models
are possible by which HPDL arose from HPD during
evolution.
Several lines of evidence suggest that mammalian HPDL

arose as a separate gene duplication event from the event that
yielded HPDL in lower deuterostomes. First, only mammalian
HPDL contains a predicted MTS. Second, mammalian HPDL
shows evidence of stronger positive selective pressure than
fish hpdl, as evidenced by faster accumulation of nonsynon-
ymous to synonymous base changes (Figs. 4d and S8A).
Third, mammalian HPDL is in a region of conserved synteny
in frog but not in zebrafish (Fig. S8B). Finally, and most
convincingly, it is more likely that a retrotransposition event
yielded an intronless gene than removal of introns from an
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Fig. 3 Hpdl knockout (KO) mice display early lethality, smaller brain sizes, and cellular apoptosis. (a) Kaplan–Meier curve displaying the survival
probability of Hpdl heterozygous mice (n= 10, blue) versus Hpdl KO mice (n= 6, red). (b) Graph depicting body weight measurements of Hpdl heterozygous
mice versus Hpdl KO mice at postnatal days 0, 2, 5, and 9. P values were obtained by an independent t-test. (c) Whole-brain images of wild-type (WT) versus Hpdl
KO mice at P0 and P10. Scale bar: 1mm (d) Coronal sections of P9 WT and KO mouse brain were stained for DAPI (blue) and Cleaved Caspase 3 (CC3, green).
The P9 KO shows strong CC3+ immunoreactivity. Note the absence of CC3 immunoreactivity in the P9 WT. Scale bar: 50 µm (e) Quantification of CC3+ cells in
Hpdl WT vs KO mouse brain per 500-μm column. Statistical analysis (two-way analysis of variance [ANOVA]) was performed between the categories. N= 3
independent experiments with two sections per mouse quantified (****P < 0.0001). (f) Coronal sections of P9 KO mouse brain were stained for DAPI (blue) and
CC3 (green) in combination with either CTIP2 (red), OLIG2 (red), or GFAP (red). White arrows depict colocalization of the cell identity markers with CC3. Scale
bar: 50 µm. (g) Quantification of the number of CTIP2+, OLIG2+, or GFAP+ cells which were also CC3+. Analysis shows CTIP2+ cells to be most affected,
followed by GFAP+ cells, followed by OLIG2+ cells. N= 2 independent experiments. Two sections per mouse were used for quantification.
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intron-containing gene. Human HPDL is more similar to
zebrafish hpdl than to human HPD (40% vs. 25% amino acid
sequence identity). The data suggest that lower deuterostome
HPDL was lost contemporaneously with its retrotransposition
to intronless HPDL, which subsequently acquired an
MTS and amino acid changes that provided a new essential
function.

DISCUSSION
Here, we implicate HPDL in a recessive infantile-onset
neurodegenerative disease, characterized by intellectual
and motor disability, epilepsy, spastic tetraplegia, and brain
atrophy. Radiographic phenotypes include severe cortical and
cerebellar atrophy, thinning of corpus callosum, and ven-
triculomegaly. There are likely a range of developmental brain
phenotypes resulting from loss of HPDL, although our
subjects are likely to be at the most severe end of the
spectrum given the nature of the alleles. HPDL is not the first
mitochondrial dioxygenase to be implicated in a neurometa-
bolic disorder. ETHE1, another mitochondrial dioxygenase, is
linked to ethylmalonic encephalopathy, an inherited disorder
defined by elevated excretion of ethylmalonic acid, leading
to developmental delay, seizures, and hypertonia.36 Future
studies will be required to elucidate the full range of
phenotypes, genotype–phenotype correlations, and mechan-
isms of pathogenicity.
We demonstrate that HPD and HPDL not only have

different tissue-wide expression patterns, but also show
different subcellular localizations. Localization of HPDL to
mitochondria, together with the disrupted metabolomes in
HPDL KO cells and mice, implicates this disease not only
as a mitochondrial neurodegenerative condition, but also as
a likely neurometabolic condition. In a direct comparison
between Hpdl WT and KO mice, we highlight the
pathophysiological importance of the HPDL enzyme for
neurodevelopment and survival. Interestingly, the fact that
the mice are born healthy and begin regressing soon after
birth suggests that the mice lacking Hpdl may depend on an
environmental or some other factor provided by their
mother to stay well. Further, although astrocytes have
been shown to express HPDL at the highest levels in the
brain,27–29 in HPDL KO brain we found more neurons than
glia with evidence of apoptosis, suggesting that neurons are
ultimately more sensitive to HPDL loss.
There are several possible reasons why we were unable to

identify a specific substrate for HPDL despite comprehensive
metabolic profiling. First, the metabolite may be unidentifi-
able by the current approach, where we focused on small
molecules that have been preannotated in public databases.
Second, the amount of the potential substrate may have been
too small to detect due to large sample volume. Therefore,
future work should aim toward more targeted approaches
(i.e., analyzing specific brain regions rather than the whole
brain, or analyzing mitochondrial-specific extracts rather than
whole-cell extracts). Finally, it is still possible that HPDL is
not an enzyme, since we did not confirm its enzymatic

activity. However, given its close sequence similarity to the
enzyme HPD, presence of iron-binding motifs, disease caused
by biallelic null variants, and metabolic dysregulation seen in
the cell and mouse models, this hypothesis is less likely.
This finding was further supported by our evolutionary

analysis, suggesting that HPDL and HPD are functionally
different. We have shown that the HPDL found in humans
likely emerged through a series of HPD gene duplication
events, the last of which probably involved a retrotransposi-
tion event at the transition from deuterostomes to tetrapods.
This suggests that at some point in time, HPDL existed as
a multiexonic gene before losing its introns and gaining
an MTS.
Taken together, we describe a novel, early-onset neurode-

generative disorder caused by variants in HPDL, and also
illustrate the importance of this protein for neurodevelopment
and survival. Through evolutionary modeling and analysis, we
illustrate the route by which human HPDL emerged as a
paralogue of HPD, with proposed novel biochemical func-
tions. Although further work is needed to identify the specific
function of mitochondrial HPDL, we believe our work is a
significant cornerstone to elucidate the downstream mechan-
isms of HPDL, and to potentially lead to a treatment for this
disease.
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