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Purpose: Exome sequencing often identifies pathogenic genetic
variants in patients with undiagnosed diseases. Nevertheless,
frequent findings of variants of uncertain significance necessitate
additional efforts to establish causality before reaching a conclusive
diagnosis. To provide comprehensive genomic testing to patients
with undiagnosed disease, we established an Individualized
Medicine Clinic, which offered clinical exome testing and included
a Translational Omics Program (TOP) that provided variant
curation, research activities, or research exome sequencing.

Methods: From 2012 to 2018, 1101 unselected patients with
undiagnosed diseases received exome testing. Outcomes were
reviewed to assess impact of the TOP and patient characteristics
on diagnostic rates through descriptive and multivariate analyses.

Results: The overall diagnostic yield was 24.9% (274 of 1101
patients), with 174 (15.8% of 1101) diagnosed on the basis of
clinical exome sequencing alone. Four hundred twenty-three

patients with nondiagnostic or without access to clinical exome
sequencing were evaluated by the TOP, with 100 (9% of 1101)
patients receiving a diagnosis, accounting for 36.5% of the
diagnostic yield. The identification of a genetic diagnosis was
influenced by the age at time of testing and the disease phenotype of
the patient.

Conclusion: Integration of translational research activities into
clinical practice of a tertiary medical center can significantly
increase the diagnostic yield of patients with undiagnosed disease.
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INTRODUCTION
The term “diagnostic odyssey” was coined to describe the
protracted series of clinical consultations and testing that
patients with undiagnosed disorders often undergo in search
of a genetic diagnosis. The clinical adoption of exome
sequencing, driven by increased efficiency and accuracy of
data analysis and interpretation, reduced cost, and improved
insurance coverage, has increased the diagnostic yield of these
patients.1

In earlier reports of unselected patient populations (by age
and disease phenotype) the diagnostic yield of exome
sequencing has been reported to be 25–30%.2,3 However,
these studies were centered mainly on pediatric patients, were
of short duration (2 years), or reported the exome sequencing
experiences of diagnostic laboratories on rare Mendelian
diseases.2,3 Despite the transformative impact on diagnosing
undiagnosed disease, a majority of patients with suspected
rare genetic disease receiving clinical exome sequencing
remain undiagnosed. This is often due to identification of
either variants of uncertain significance (VUS) lacking
enough evidence to be classified as pathogenic, or variants
in candidate disease genes that do not yet have a proven
disease association (genes of uncertain significance [GUS]).

Several programs have been established to address diag-
nostic barriers including access to testing and resolution of
uncertain findings. Major efforts include the Undiagnosed
Diseases Network,4 the National Institutes of Health Undiag-
nosed Diseases Program,5 and the global Undiagnosed
Diseases Network International.6 Studies by these programs
and others highlight the benefits of exome sequencing as well
as the utility of periodic reanalysis of genetic data,7 and the
use of model organisms.8

In 2012, Mayo Clinic launched an Individualized Medicine
Clinic (IMC) to integrate genomic sequencing into clinical
practice9 with a primary focus on identifying the genetic
mechanisms of disease for patients on a diagnostic
odyssey.10 Two essential components of the IMC are the
Genomic Odyssey Board (GOB) and the Translational
Omics Program (TOP). The GOB consists of clinicians,
scientists, laboratorians, ethicists, and bioinformaticians who
meet weekly to interpret patient data along with genomics
findings and recommend clinical or research follow-up
through multidisciplinary review and discussion. The TOP
consists of bioinformaticians, scientists, and laboratorians
who provide individualized and integrated translational
research to resolve uncertain genetic findings or identify
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genetic variation elusive to standard testing strategies. In this
large study of 1101 unselected patients on a diagnostic
odyssey from a tertiary medical center spanning over 6 years,
we describe the impact of integrated translational research
on clinical exome sequencing in improving the diagnostic
rate of these patients.

MATERIALS AND METHODS
Ethics statement
The Mayo Clinic Institutional Review Board granted a waiver
of consent for all the available clinical data of the electronic
health records of the patients included in the study. All
individuals participating in the described research activities
provided written informed consent to a study approved by the
Mayo Clinic Institutional Review Board.

Patients
The reported cohort is comprised of 1101 unselected
patients evaluated at the IMC of Mayo Clinic between
its inception on 30 September 2012 to 31 December 2018,
for whom clinical or research exome sequencing was
completed. None of the patients had a clinical genetic
diagnosis despite prior genetic testing, including single-
gene, targeted gene panel, chromosomal microarray testing,
or mitochondrial DNA sequencing. This comprehensive
study includes a subset of 51 patients previously reported.10

All patients were seen by Mayo Clinic’s Department of
Clinical Genomics, at all three enterprise sites (Rochester,
MN; Jacksonville, FL; and Scottsdale, AZ). Following
clinician review and recommendation, all patients referred
to the Department of Clinical Genomics determined to be
candidates for exome sequencing and for whom the relevant
results were returned were included in this study without
phenotypic selection and offered consent for testing and/or
research.

Exome sequencing
One thousand forty-one patients received clinical exome
sequencing at CLIA-certified, College of American Pathol-
ogy (CAP)-accredited laboratories. Sixty patients underwent
only research exome sequencing from the Mayo Clinic
Medical Genome Facility in Rochester, Minnesota, which
was subsequently analyzed by TOP (outlined in Supplemen-
tary appendix). Reportable findings derived from the
research exome sequencing were confirmed using targeted
clinical genetic testing.

Patient phenotyping
Phenotypic information of each patient was manually
extracted from the electronic medical record and recorded
by the TOP team using structured Human Phenotype
Ontology (HPO) terms combined with textual description
of the reason for referral. This information was categorized
by two physicians by phenotype/disease into seven main
phenotype categories and 23 subcategories. Phenotype
stratification criteria are outlined in Table S1.

Translational research impact
Retrospective analysis of patients with a genetic diagnosis was
performed to determine the impact of the TOP. Patients were
referred to the TOP when clinical exome sequencing was not
revealing a diagnosis, returned VUS or GUS of interest, or the
disease phenotype of the proband was questioned in relation
to the reported variant. The curation and research findings of
the TOP were evaluated by the GOB for a final decision on
whether or not a genetic diagnosis was reached. The TOP
research activities included variant curation, carrying out or
facilitating functional studies, leading or participating in
cohort studies, in silico protein modeling, RNA-sequencing,
reanalysis of raw clinical sequencing data, or research exome
sequencing.

RESULTS
One thousand one hundred one unselected patients were
referred to the IMC for suspected genetic disease eluding
diagnosis through any other testing modality during the study
period and underwent exome sequencing. As illustrated in
Fig. 1, all individuals were evaluated by a medical geneticist
and offered enrollment in the TOP.

Cohort description
This cohort was assembled without selection for disease
phenotype, age, or sex and consists of both pediatric and adult
patients presenting with variable symptoms/signs or condi-
tions across multiple clinical areas, many with diverse and
complex phenotypes. The cohort is 51.2% female and 49.6%
pediatric. Age at the time of the exome sequencing report
ranged from 0 to 85 years, with a median age of 18 years
(Fig. S1). The distribution of disease phenotypes is illustrated
in Fig. 2. Of the seven primary disease categories, neurological
disorders (including complex neurological, movement dis-
orders, autism spectrum disorder [ASD] and developmental
delay, seizures, and neuromuscular phenotype) was the largest
(46.3% of patients). The multisystem disorders group was the
second largest disease category, representing only 18.5% of
patients. The five remaining categories each accounted for no
more than 10% of the entire cohort.

Sequencing results
Exome testing was completed through a clinical laboratory for
94.5% (1041 of 1101) of patients and was diagnostic, without
the need for additional research study, for 15.8% (174 of
1101). Patients with negative or uncertain clinical exome
sequencing findings were referred to the TOP after initial
exome results review by a medical geneticist for variant
curation and/or other individualized research efforts to
attempt a genetic diagnosis. Sixty patients (5.4%) underwent
research exome sequencing, in the absence of a clinical exome
sequencing, after enrollment in the research study. These
patients were analyzed by the TOP along with clinical
laboratory confirmation of the diagnostic genetic findings.
Patients unable to pursue clinical exome testing due to denied
insurance coverage or high out-of-pocket costs were offered
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research exome sequencing through a need-based program at
Mayo Clinic. Of the 60 patients undergoing research exome
sequencing, 24 (40.0%) received a genetic diagnosis. For 7 of
these patients, the research exome sequencing findings
identified VUS, variants in a GUS, or only a single variant
in a gene associated with a recessive condition but additional
TOP research efforts were able to resolve the diagnosis.
Results from this evaluation of TOP were discussed at the
GOB for expert multidisciplinary review and decision.

TOP research
Of the 867 patients who received nondiagnostic clinical
exome sequencing testing, 363 (41.9%) received research
assessment from the TOP. Of the 60 patients who received

research exome testing, 18 received additional research
support, and for 7 of these, a diagnosis was made. In total,
423 patients received individualized TOP research evaluation.
This effort, to date, has resulted in resolving genetic diagnoses
for 100 patients undiagnosed based on the clinical effort alone
(23.6% of TOP referrals) contributing 36.5% of the total 274
patients receiving a diagnosis in this cohort.
Figure 3a summarizes those research activities pursued in

the 274 patients receiving a genetic diagnosis and the
proportion where this activity positively contributed to the
diagnosis. The most common research activity pursued was
detailed variant curation in which literature, variant-based
data, and data from publicly available databases (gnomAD,
Human Gene Mutation Database, ClinVar, etc.) were
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Fig. 1 Workflow of patients of at the Individualized Medicine Clinic. Patients were seen by a medical geneticist and genetic counselor from the
Department of Clinical Genomics, where clinical exome sequencing was ordered and consent to the research program was offered. Following receipt of
clinical results, research services when appropriate were pursued to identify or clarify a genetic finding. A multidisciplinary review board, the Genomic
Odyssey Board, was convened to discuss the clinical and research findings for a case, leading to a final genetic diagnosis decision and disclosure of results to
the patient. For patients who did not have a clinical exome sequencing completed a research exome was offered. ES exome sequencing, Solved genetic
diagnosis was established for the patient, TOP Translational Omics Program.
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summarized in the context of the patient’s disease phenotype
and discussed at the GOB. This was the only research
activity performed for 189 patients with nondiagnostic
clinical exome sequencing, of whom 26 were deemed solved
after TOP evaluation and GOB review. Of these 26
individuals, literature evidence was identified supporting
that the patient’s phenotype can be explained by the genetic
findings for 14 individuals. Often these instances involve
nonclassic phenotypic presentations or newly emerging or
extremely rare disorders. For eight individuals, variant or
gene-level data such as functional studies or newly published
studies reporting the same or similar variation were
supportive of pathogenicity of the alteration(s) identified.
Six individuals had variants in more than one gene reported
that could have contributed to the disease presentation and
additional review determined these were not likely con-
tributory. Three individuals had clinical confirmatory tests
suggested by literature, two had professional communication
with external clinicians or disease experts on an emerging
disorder that confirmed pathogenicity, and for one, an
evaluation of a potential splice-impacting missense variant
was provided supporting that the impact of the variant is
consistent with the known disease mechanism.
Individualized translational research beyond only variant

curation was pursued for 192 patients referred to the TOP
(174 patients from clinical exome sequencing and 18 patients
from research exome sequencing). RNA-sequencing was
leveraged in 25 cases and 14 were subsequently solved, with
RNA-sequencing being integral to the diagnosis in 10 cases
(38.4%), which is similar to the reported diagnostic rates of
RNA-sequencing in the literature.11 For seven individuals,
the impact of potential splice variants was resolved;12,13 for two,

gene fusions were detected;14–16 and for one, outlier expression
analysis determined a significantly reduced expression level and
monoallelic expression.
The TOP also used in silico, in vitro, and in vivo

functional models to clarify the nature of VUS17,18 and to
provide evidence for new disease–gene associations.13 Our
ability to pursue functional studies was limited primarily by
the current understanding the candidate gene’s function, the
availability of appropriate samples, and the expertise to carry
out the relevant experiments. Of those individuals who
achieved a diagnosis, 11 individuals had functional studies
conducted using patient samples (for 5, some the assays were
done through internal or external collaborations); 8 had cell-
based studies10,19,20 and 4 had studies using other sample
types from patients such as blood or serum.10,21–23 Eleven
patients had heterologous cell-based studies10,18,24–27 includ-
ing electrophysiology, reporter, and cellular localization
studies and others, of which six were accomplished through
collaborative efforts. For six individuals, animal models
where used28–30 to better understand the gene–disease
relationships or the underlying disease mechanism and
included the use of Drosophila, zebrafish, and mouse studies;
two of the zebrafish studies were conducted by the TOP and
the remaining were in collaboration. For three patients
without both parental samples available, variant phase was
determined to be trans using RNA for two patients or DNA
for one using polymerase chain reaction (PCR)–based
approaches. Additionally, for two individuals targeted
PCR-based RNA evaluation determined splice variant
impact, and for one individual, recombinant protein studies
were pursued to determine protein folding abnormalities
induced by the genetic variant.17 In silico protein modeling
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Fig. 2 Individualized Medicine Clinic cohort disease phenotype spectrum. The disease phenotype(s) of all patients was reviewed and assigned to one
of seven high-level categories, and in some instances a more specific subcategory. Neurological disease was most representative in the study cohort
(46.3%), with multisystem disorders second (18.5%). The phenotypic makeup of many individuals was relatively unique in the cohort, and given the low
numbers were assigned to the “Others” major category, and then provided a more descriptive subcategory assignment. ASD autism spectrum disorder, Dys
immune dysregulation, Ecto ectodermal dysplasia, GI gastrointestinal, IBD inflammatory bowel disease, L liver-related disorders, Mc miscellaneous, NHL
nonsyndromic hearing loss, RF recurrent fevers.
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studies were also pursued for 15 individuals who achieved a
diagnosis.10,18,23,31–35

Finally, support of multi-institutional cohort studies is an
important aspect of the TOP research studies, which resulted
in several diagnoses.27,30,36,37 Of these 192 patients receiving
additional evaluation and analysis, 53 were subsequently
solved by the TOP research efforts. As shown in Fig. 3b, the
majority of the TOP effort was spent investigating VUS, but
these efforts also spanned GUS, unreported variants, as well as
likely pathogenic, or, in cases of questionable phenotypic fit
with the disease, pathogenic variants. In each of these solved
cases, it was the integration of clinical exome testing along
with the TOP research findings that enabled a genetic
diagnosis to be identified.

Diagnostic yield
In total, 24.9% (274 of 1101) of patients included in this study
received genetic diagnoses: 174 through clinical exome
sequencing alone and 100 through individualized research
by the TOP. Among these 274 patients, 284 genetic diagnoses
were reported. One patient was diagnosed with three
independent monogenic disorders,38 and eight patients were
diagnosed with two independent monogenic disorders.
Inheritance patterns of the diagnosed conditions included
60.6% (172 of 284) dominant disorders, 30.6% (87 of 284)
recessive disorders, and 8.8% (25 of 284) X-linked disorders.
We report on 14 emerging gene–disease associations. The
complete list of reported disease-causing variants and
phenotypic classification is provided in Table S2.
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Confounding factors
Data review of the cohort identified several factors that may
influence the ability to identify a genetic diagnosis, including
category of disease, age at time of testing, and family members
included in testing. Trio exome sequencing was performed for
55.6% of the probands, 18.2% received singleton exome
sequencing, and 15.8% received singleton exome sequencing
with additional family members used for segregation analysis.
The remainder had other combinations of proband and
family members tested. The diagnostic rate by disease
category displays a range from 10% to 39%, as illustrated in
Fig. 4a. Pediatric patients had a diagnostic rate of 31.7%, while
adult patients had a diagnostic rate of 18.2%. To account for
confounding effects between factors, logistic regression was
used to evaluate the effect of testing laboratory, age, family
members included in testing (pedigree), and disease category
simultaneously. Age at the time of the exome testing was not
different between group of solved versus group of unsolved
status (i.e., whether or not a genetic diagnosis was determined
[Fig. S2]). Age was statistically significant (P < 0.01) even after
controlling for clinical lab, pedigree, and disease categories.
Likewise, the overall effect of disease category was statistically
significant (Wald P= 0.016) when controlling for age,
pedigree, and clinical laboratory. The overall effect of
clinical laboratory was significant (Wald P < 0.01) when
controlling for age, pedigree, and disease category. Finally,
pedigree status was insignificant (Wald P= 0.15) when
controlling for age, disease category, and clinical laboratory,
although as discussed in the statistical Supplementary
appendix, this null result could be due to multicollinearity
with age (Fig. S3). Figure 4b illustrates the effect of disease
category and age on diagnostic rate.

DISCUSSION
We report herein our approach for and diagnostic yield of
1101 patients on a diagnostic odyssey seen at a tertiary
medical center. We have implemented a tactic that integrates
effectively clinical exome sequencing results with translational
research to improve the genetic diagnosis for these patients.
Our overall diagnostic yield was 24.9%, and importantly for
36.5% of the patients the activities of translational research
were instrumental in reaching a conclusive genetic diagnosis.
Establishing a genetic diagnosis was influenced by the age at
the time of genetic testing and the disease phenotype of the
patient.
The characteristics of the patient population in our cohort

have changed over the years, likely affecting the diagnostic
rate. In our initial 2016 publication of 51 patients on
a diagnostic odyssey, the cohort was 59% pediatric and 63%
displayed neurological symptoms with a diagnostic rate of
29%.10 In the current larger cohort, 49.6% of patients are
pediatric and 46.3% are having neurological presentation with
a diagnostic rate of 24.9%. This study and others demonstrate
that diagnostic utility of exome sequencing is impacted
significantly by disease presentation as well as by age at
testing.39,40 Early-onset epilepsy and other neurodevelop-
mental disorders have higher diagnostic rates (up to 49%),41,42

whereas as adult-onset disorders (17.5%)39 and conditions
such as inflammatory bowel disease (IBD) (3.4%)43 have
lower diagnostic yields.
Our current diagnostic yield of 24.9% is comparable with

other studies.2,3 This is despite the fact that our study
included a majority of adult patients (50.4%) in contrast to
previous studies, which were overwhelmingly comprised of
pediatric patients.2,3 Of note, the diagnostic yield of our
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pediatric patients, as a subset, is 31.7%. We also realize that
our processes, referrals, and expertise have evolved since the
implementation of the IMC in 2012. During the first six
months of operation of the IMC, the GOB evaluated all the
referrals of patients for appropriateness of exome testing
and likely diagnostic yield thereof. Subsequently, this step
was lifted and the clinicians no longer need GOB approval
to proceed with exome testing. Further, Mayo Clinic is a
tertiary medical center and therefore over the years the
complexity and difficulty of the patients referred, both
externally or internally, to the IMC has increased. The
evolution of our cohort to encompass an older patient
population and a broader as well as more challenging
phenotypic spectrum of disease coupled with of increased
utilization of exome sequencing in clinical practice could
have reduced the overall diagnostic yield over time. Despite
these challenges, our diagnostic rate remains stable largely
due to the successful activities of the TOP. Integration of the
combined expertise and resources of omic data scientists,
bioinformaticians, and clinicians to address these diagnostic
challenges significantly improves the outcomes obtained
from clinical exome sequencing.
In our cohort, there is a clear effect of age after controlling

for disease categories, with lower diagnostic rates as the age of
the patient at the time of exome testing increases. A clear
stepwise influence of disease category on diagnostic yield was
also observed. The inverse correlation of diagnostic yield and
age at the time of testing could reflect that early-onset
disorders may be more likely to be Mendelian, the genetic
etiologies may be better understood, or it could be
confounded by greater access to trio sequencing in pediatric
versus adult patients facilitating de novo variant discovery.
Trio versus singleton testing has been previously shown to
impact diagnostic rates.44 However, in our study trio versus
singleton versus singleton plus targeted segregation was not
statistically significant when controlling for age, disease
category, and clinical laboratory. It is possible that age has a
dominant effect on its own, but it could be due to
multicollinearity of age and testing pedigree, whereby
causality cannot be established. From these data we do not
conclude that trio sequencing will have the same yield as
sequencing a singleton, but it is a factor that is also related to
the effect of age and is challenging to assess with this
retrospective study design. These results, however, may
suggest that different pretest counseling strategies should be
considered for patients at different ages to ensure appropriate
expectations are set.
This study reports and supports the benefits of an

integrated translational research program along with the
use of clinical exome sequencing in patient care (Fig. 5). As
we know, challenges in exome sequencing interpretation
include that (1) the patient’s clinical picture is not a perfect
representation of the published phenotypic spectrum for a
reported genetic finding, (2) VUS or variants in GUS are
reported without enough evidence available to definitively
determine pathogenicity, and (3) no relevant variation was

identified and reported. Adequately addressing these chal-
lenges often requires data beyond what is available from a
clinical exome sequencing report. Many of these activities of
the TOP are “dry lab” efforts that bring forward knowledge
to facilitate patient care without the need for “wet lab”
activities. These endeavors include data rereview (i.e., patient
and variant gene–level data), academic and industry
collaborations through contact with published authors,
outside laboratories, and tools such as GeneMatcher,45 or
in silico protein modeling. In addition, several patients could
benefit from wet lab studies including functional character-
ization of VUS and in-depth description of GUS to prove the
gene–disease phenotype relationship, or novel technologies
to identify variation not found with exome sequencing. The
latter approaches are often more time-consuming and
resource-intensive efforts making them less amenable to
broad implementation. However, the advantage of incorpor-
ating these translational research activities, under the
umbrella of the TOP, into a clinical practice is the unique
opportunity to speed the application of novel findings into
improved patient care. Unlike the National Institutes of
Health’s (NIH’s) Undiagnosed Disease Network, this
approach was implemented such that the translational
research is seamlessly embedded into the clinical practice
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Genomic Odyssey Board

Disclosure of Results to Referring
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Fig. 5 Research integration of clinical exome sequencing activities.
Following the report of the clinical exome sequencing findings and
consent of the patient the TOP activities are integrated to provide further
analysis of the genomic data. These actions include a variety of efforts
ranging from variant curation to functional studies. Subsequently, the
new scientific findings of the TOP are presented and discussed at the
Genomic Odyssey Board (GOB) prior to the latter providing the final
recommendation and subsequently the results are disclosed to the
referring physician and the patient.
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to complement clinical exome testing. This allows the
continuity of patient care to be maintained as the results
of the clinical sequencing report are enriched by the
translational research efforts and subsequently these data
are taken directly back to the clinician and patient for better
delivery of care.
The TOP was able to provide a definitive diagnosis for

23.6% (100 of 423) of patients studied where clinical
exome sequencing was uninformative or not performed.
For the remaining 323 individuals studied by the TOP,
many continue to have ongoing research conducted on
their behalf, but nearly half (49.3%) of undiagnosed
patients within this cohort have as yet been studied to a
limited degree. Of interest, 37% of patients (408 of 1101)
were not referred to the TOP for further study (Fig. 1). This
could be for several reasons including lack of patient
interest for participating in research, lost to clinical follow-
up, or new clinical information leading to a nongenetic
diagnosis.
For 96 patients, the TOP has obtained -omics data

including entire raw data of clinical exome, genome, RNA-,
or methyl-sequencing technologies, but patient-specific
analyses have not yet been completed. With these and
similar data from the 423 studied patients and
those continuing to be seen in the IMC, we continue to
improve our analytical pipelines by implementing novel
bioinformatics methods from our own design,15 published
methods, or commercial products. Additionally, the use
of metabolomics and proteomics offer interesting technol-
ogies to further characterize patient conditions and
improve diagnostic capabilities. Automated data reanalysis
could provide alerts for the availability of new informative
data suggesting the reclassification of an identified variant.
The implementation of processes like these will be key
to fully benefit those patients currently without a genetic
diagnosis.
In conclusion, using an integrated approach of clinical

exome sequencing along with the scientific contribution of the
TOP, 24.9% (274 of 1101) of patients on diagnostic odyssey
seen at our tertiary medical center received a genetic
diagnosis. The scientific knowledge generated by the TOP
increased the diagnostic yield of sole clinical exome sequen-
cing findings by 36.5%. Identification of a genetic diagnosis
was influenced by the age at time of testing and the disease
phenotype of the patient. This study highlights the value that
a translational research program could bring to the clinical
care of patients on a diagnostic odyssey. As the field of
genomic medicine advances, integrating innovative research
activities with standard clinical practice will continue to
positively impact genetic diagnoses and therapeutic decision
making for these patients.
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