The cost trajectory of the diagnostic care pathway for children with suspected genetic disorders

Abstract

Purpose

This study describes the cost trajectory of the standard diagnostic care pathway for children with suspected genetic disorders in British Columbia, Canada.

Methods

Average annual per-patient costs were estimated using medical records review and a caregiver survey for a cohort of 498 children referred to BC Children’s and Women’s Hospitals (C&W) with unexplained intellectual disability (the TIDE-BC study) and families enrolled in the CAUSES study, which offered diagnostic genome-wide sequencing (GWS; exome and genome sequencing) to 500 families of children with suspected genetic disorders.

Results

Direct costs peaked in the first year of patients’ diagnostic odyssey, with an average of C$2257 per patient (95% confidence interval [CI] C$2074, C$2441) for diagnostic testing and C$631 (95% CI C$543, C$727) for specialist consultations at C&W. In subsequent years, direct costs accrued at a constant rate, with an estimated annual per-patient cost of C$511 (95% CI C$473, C$551) for diagnostic testing and C$334 (95% CI C$295, C$369) for consultations at C&W. Travel costs and caregiver productivity loss associated with attending diagnosis-related physician appointments averaged C$1907/family/year.

Conclusions

The continuing long-term accrual of costs by undiagnosed patients suggests that economic evaluations of diagnostic GWS services should use longer time horizons than have typically been used.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Smith HS, Swint JM, Lalani SR, et al. Clinical application of genome and exome sequencing as a diagnostic tool for pediatric patients: a scoping review of the literature. Genet Med. 2019;21:3–16.

  2. 2.

    Clark MM, Stark Z, Farnaes L, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genomic Med. 2018;3:16.

  3. 3.

    Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet. 2018;19:253–268.

  4. 4.

    Wright CF, Fitzgerald TW, Jones WD, et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet. 2015;385:1305–1314.

  5. 5.

    Dragojlovic N, Elliott AM, Adam S, et al. The cost and diagnostic yield of exome sequencing for children with suspected genetic disorders: a benchmarking study. Genet Med. 2018;20:1013–1021.

  6. 6.

    Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med. 2018;20:1122–1130.

  7. 7.

    Monroe GR, Frederix GW, Salveberg SMC, et al. Effectiveness of whole-exome sequencing and costs of the traditional diagnostic trajectory in children with intellectual disability. Genet Med. 2016;18:949–956.

  8. 8.

    van Nimwegen KJM, Schieving JH, Willemsen MAAP, et al. The diagnostic pathway in complex pediatric neurology: a cost analysis. Eur J Pediatr Neurol. 2015;19:233–239.

  9. 9.

    Shashi V, McConkie-Rosell A, Rosell B, et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med. 2014;16:176–182.

  10. 10.

    Soden S, Saunders CJ, Willig LK, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med. 2014;6:1–14.

  11. 11.

    Stark Z, Schofield D, Alam K, et al. Prospective comparison of the cost-effectiveness of clinical whole-exome sequencing with that of usual care overwhelmingly supports early use and reimbursement. Genet Med. 2017;19:867–874.

  12. 12.

    Tan TY, Dillon OJ, Stark Z, et al. Diagnostic impact and cost-effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions. JAMA Pediatr. 2017;171:855–862.

  13. 13.

    Vissers LELM, van Nimwegen KJM, Schieving JH, et al. A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet Med. 2017;19:1055–1063.

  14. 14.

    Stark Z, Schofield D, Martyn M, et al. Does genomic sequencing early in the diagnostic trajectory make a difference? A follow-up study of clinical outcomes and cost-effectivenes. Genet Med. 2019;21:173–180.

  15. 15.

    van Karnebeek CDM, Shevell M, Zschocke J, et al. The metabolic evaluation of the child with an intellectual developmental disorder: Diagnostic algorithm for identification of treatable causes and new digital resource. Mol Genet Metab. 2014;111:428–438.

  16. 16.

    Sayson B, Popurs MAM, Lafek M, et al. Retrospective analysis supports algorithm as efficient diagnostic approach to treatable intellectual developmental disabilities. Mol Genet Metab. 2015;115:1–9.

  17. 17.

    Tarailo-Graovac M, Shyr C, Ross CJ, et al. Exome sequencing and the management of neurometabolic disorders. N Engl J Med. 2016;374:2246–2255.

  18. 18.

    Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381.

  19. 19.

    Jacobs P, Budden A, Lee KM. Guidance Document for the Costing of Health Care Resources in the Canadian Setting, Second Edition. Canadian Agency for Drugs and Technologies in Health (CADTH), Ottawa, Ontario, Canada. 2016.

  20. 20.

    Elliott AM, du Souich C, Adam S, et al. The Genomic Consultation Service: a clinical service designed to improve patient selection for genome-wide sequencing in British Columbia. Mol Genet Genomic Med. 2018 May 30; https://doi.org/10.1002/mgg3.410. Epub ahead of print].

  21. 21.

    Dragojlovic N, Kim E, Elliott A, CAUSES Study, Friedman JM, Lynd LD. Evaluating the use of parental reports to estimate healthcare resource utilization in children with suspected genetic disorders. J Eval Clin Pract. 2018;24:416–422.

  22. 22.

    Genereaux D, Bansback N, Birch P. Development and pilot testing of a tool to calculate parental and societal costs of raising a child with intellectual disability. J Intellect Dev Disabil. 2016;41:11–20.

  23. 23.

    Genereaux D, van Karnebeek CDM, Birch PH. Costs of caring for children with an intellectual developmental disorder. Disabil Health J. 2015;8:646–651.

  24. 24.

    Schofield D, Rynehart L, Shresthra R, et al. Long-term economic impacts of exome sequencing for suspected monogenic disorders: diagnosis, management, and reproductive outcomes. Genet Med. 2019 May 21; https://doi.org/10.1038/s41436-019-0534-x. [Epub ahead of print].

  25. 25.

    Vrijenhoek T, Middleburg EM, Monroe GR, et al. Whole-exome sequencing in intellectual disability; cost before and after a diagnosis. Eur J Hum Genet. 2018. [Epub 29 June 2018].

  26. 26.

    Matias M, Wusik K, Neilson D, Zhang X, Valencia CA, and Collins K. Comparison of medical management and genetic counselling options pre- and post-whole exam sequencing for patients with positive and negative results. J Genet Couns. 2019;28:182–193.

Download references

Acknowledgements

This study was supported by grants from the BC Children’s Hospital Foundation (1st Collaborative Area of Innovation to TIDE-BC), the Rare Diseases Foundation (C.D.M.v.K.), Rare Disease Foundation Microgrant (P.B. and D.G.), the Canadian Institutes of Health Research (CIHR) grant 301221 (to C.D.M.v.K), and the CIHR New Emerging Team for Rare Diseases grant (to L.D.L., funding reference number 119193), as well as by the CAUSES Clinic study (J.M.F.). The CAUSES Clinic is made possible by a C$3 million donation from Mining for Miracles through BC Children’s Hospital Foundation and is supported by Genome British Columbia, the Provincial Health Services Authority, BC Children’s and Women’s Hospitals, the Provincial Medical Genetics Program, BC Children’s Hospital Pathology and Laboratory Medicine, and the University of British Columbia. C.D.M.v.K. is recipient of the Michael Smith Foundation for Health Research Scholar Award and a Stichting Metakids salary stipend.

Author information

Correspondence to Larry D. Lynd PhD.

Ethics declarations

Disclosure

The authors declare no conflicts of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dragojlovic, N., van Karnebeek, C.D.M., Ghani, A. et al. The cost trajectory of the diagnostic care pathway for children with suspected genetic disorders. Genet Med (2019) doi:10.1038/s41436-019-0635-6

Download citation

Keywords

  • diagnostic pathway
  • diagnostic costs
  • cost trajectory
  • genetic disorders
  • genome-wide sequencing

Further reading