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Purpose: We aimed to gain insight into frequencies of genetic
variants in genes implicated in neurodevelopmental disorder with
epilepsy (NDD+E) by investigating large cohorts of patients in a
diagnostic setting.

Methods: We analyzed variants in NDD+E using epilepsy gene
panel sequencing performed between 2013 and 2017 by two large
diagnostic companies. We compared variant frequencies in 6994
panels with another 8588 recently published panels as well as
exome-wide de novo variants in 1942 individuals with NDD+E and
10,937 controls.

Results: Genes with highest frequencies of ultrarare variants in
NDD+E comprised SCN1A, KCNQ2, SCN2A, CDKL5, SCN8A, and
STXBP1, concordant with the two other epilepsy cohorts we
investigated. In only 46% of the analyzed 262 dominant and X-
linked panel genes ultrarare variants in patients were reported.

Among genes with contradictory evidence of association with
epilepsy, CACNB4, CLCN2, EFHC1, GABRD, MAGI2, and SRPX2
showed equal frequencies in cases and controls.

Conclusion: We show that improvement of panel design
increased diagnostic yield over time, but panels still display
genes with low or no diagnostic yield. With our data, we hope to
improve current diagnostic NDD+E panel design and provide a
resource of ultrarare variants in individuals with NDD+E to the
community.
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INTRODUCTION
In recent years, genetic research has gained novel biological
insights into the etiology of neurological disorders, particu-
larly in epilepsy.1,2 Neurodevelopmental disorders with
epilepsy (NDD+E) are a rare group of disorders frequently
caused by de novo events in protein-coding genes.3,4 Precise
genetic diagnosis influences genetic counseling but may also
guide treatment decisions by enabling medication or treat-
ment tailored to the patient’s underlying genetic defect.2,4

Examples include treatment with sodium channel blockers
in SCN2A- and SCN8A-related NDD+E,5,6 ezogabine in
KCNQ2-related NDD+E,7 or a ketogenic diet in SLC2A1-
related GLUT1 deficiency.8 Up to 28% of de novo variants

(DNVs) being found in NDD+E-related genes are associated
with such targeted treatment approaches.4 However, assess-
ments of how often NDD+E-associated genes are mutated are
currently insufficient due to lack of large-scale genetic
analyses in NDD+E.
Targeted sequencing of specific disease-related gene panels

has been part of the diagnostic workup of highly prevalent
heterogeneous disorders such as breast cancer,9 cardiomyo-
pathy,10 and epilepsy.11–13 Multiple genes are sequenced in
parallel enabling lower sequencing cost, higher coverage, and
near-absence of secondary findings compared with exome
sequencing.14 However, high heterogeneity of epilepsy gene
panel content has been observed.4,15 This is likely due to
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the dramatically growing number of genes associated with
epilepsy and diverse integration in the established panels,
often without robust statistical evidence.4,16 To increase yield
in diagnostic sequencing panels, it is essential to consider
genes with proven disease association as well as a reasonable
frequency of pathogenic variants among affected individuals.
Here, we report likely damaging variants in 645 epilepsy

panel genes sequenced at two molecular diagnostic compa-
nies, CeGaT (Germany) and Courtagen (USA). In total, 6994
patients with NDD+E of suspected monogenic cause under-
went diagnostic sequencing at the respective companies, the
majority as first-tier diagnostic test. We compare this large
cohort of panels in NDD+E patients with another study of
similar design (n= 8565) (ref. 17), 10,937 controls, as well as
with a cohort of exome-wide DNV in NDD+E4 (n= 1942)
investigating variant frequencies in confirmed and putative
NDD+E genes in NDD+E panels (Table 1).

MATERIALS AND METHODS
General information
Informed consent for genetic testing was obtained from each
subject or their legal guardian prior to any investigation. This
study is covered by institutional review board (IRB) approvals
of the ethics committee of the University of Leipzig, Germany
(224/16-ek, 402/16-ek).

Gene panel sequencing data
We analyzed gene panel sequencing data of 6994 indivi-
duals diagnosed with NDD+E or related disorders of
suspected monogenic origin. The data was generated
during routine diagnostic sequencing by two different
commercial companies, Courtagen (US, n= 3817 cases)
and CeGaT (Germany, n= 3177 cases), with similar overall
approach and design.11 Information on cognitive outcome
was available in about 59% of cases, revealing fractions of
individuals with intellectual disability (ID) of 96% (2176/
2266, Courtagen) and 97.8% (1833/1875, CeGaT). In the
majority of cases, epilepsy was early-onset (before three
years of age). Analysis was performed between 2013 and
2017, during which time up to ten different but vastly
overlapping NDD+E panel designs were used by each
company. Panels contained a median of 471 and 498
confirmed or suspected epilepsy genes at each respective
company and a median 4870 individuals were sequenced

per gene (Fig. 3, Supplementary Fig. S1, Supplementary
Table S1). We decided to analyze the 645 genes (see
Supplementary Table S2) that were sequenced in at least
2000 individuals. As the first systematic guideline
for diagnostic variant interpretation was not published until
2015,18 we decided to focus on functional (null variants as
well as missense variants predicted to be deleterious by in
silico tools; see “Materials and methods”) ultrarare variants
without pathogenicity labels that are not present in the
general population.19 In this setting, functional variants in
genes not ordered by the respective clinician were not
consistently reported, while we cannot access which genes
were ordered by clinicians. Consequently, we identify few
genes with significantly lower variant frequencies in cases
than controls (Supplementary Fig. S3), suggesting under-
reporting of variants in these genes.

Data processing
A more detailed description of Courtagen's analysis pipeline
has been published.20 A brief overview of analysis steps
is described as follows. Courtagen and CeGaT employed
custom-designed Agilent Haloplex and SureSelect enrich-
ment kits, to enrich patients’ genomic DNA for target
regions of epilepsy (candidate) genes. This was followed by
paired-end sequencing (250 or 200 bp, respectively) on
Illumina platforms (miSeq and HiSeq). Adapter sequences
were then trimmed, and the sequencing reads were aligned
to the human reference genome hg19 (GRCh37) with bwa-
mem (bio-bwa.sourceforge.net). Reads that mapped equally
well to more than one genomic position were discarded.
Quality checks were performed ensuring adequate distribu-
tions of various quality control metrics such as insert size
distribution, mismatch rates, GC bias, etc. Subsequent
variant calling was done with different pipelines. Variants
were filtered for population frequencies <1% (ExAC, EVS,
1000 Genomes) and platform-specific sequencing artifacts.
Follow-up Sanger sequencing was then performed on most
variants available to us.
In case of available parental samples, the de novo status of

individual variants was tested by Sanger sequencing. For one
of the companies, segregation testing was partially documen-
ted. Of 1173 ultrarare damaging variants, 162 (14%) were
verified as de novo, 36 (3%) segregated with disease, and for
975 (83%) segregation was unknown.

Table 1 Cohort description

Cohort Phenotype PMID n Type of variants Number of genes

analyzed

CeGaT NDD+E Unpublished 3177 Ultrarare, DNV 645

Courtagen NDD+E Unpublished 3817 Ultrarare, DNV 645

Lindy et al.17 (GeneDx) NDD+E 29655203 8565 Likely pathogenic (ACMG) 70

Heyne et al.4 NDD+E 29942082 1942 DNV 18,228

Exomes from different cohorts; see

“Materials and methods”

Controls See “Materials

and methods”

10,937 Ultrarare 645

ACMG variant interpretation guidelines by the American College of Medical Genetics and Genomics, DNV de novo variants, NDD+E neurodevelopmental disorders with
epilepsy, PMID PubMed ID.
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Reannotation and filtering
All variants reported to patients as well as variants in controls
were reannotated with the following pipeline. Variants were
annotated with Ensembl’s Variant Effect Predictor21 (VEP)
version 82 using database 83 of GRCh37 as reference genome.
Per variant the transcript with the most severe impact, as
predicted by VEP, was selected for further analyses. The
decreasing order of variant impacts was HIGH, MODERATE,
MODIFIER, LOW. Only protein-altering variants (missense
or null [premature stop codon, essential splice site, frame-
shift]) were included in further analyses. Variants that were
present in a subset of ExAC (v0.3), an aggregation of exome
sequences from adult individuals without severe childhood-
onset diseases and without psychiatric diseases (n= 45,376)
(ref. 19), were excluded, as these have been shown to convey
no detectable risk to disease on a group level.22 To increase
power for variants that were not tested for segregation, we
filtered missense variants predicted to be damaging by
PolyPhen23 (v2.2.2) or Sift24 (v5.2.2). In total, 42% of
individuals had zero, 34% had one, 15% had two, and 8%
had three or more ultrarare variants (either damaging
missense or null variant). We labeled ultrarare variants for
which we had no information on segregation as putative
de novo variants when they had previously been reported
as confirmed DNVs in individuals with NDD+E4 and/or
ClinVar25 (date August 2017).

Population controls
We used controls as a population reference of ultrarare
variant frequencies per gene. The population control data set
was assembled at the Broad Institute from multiple exome
sequencing projects. It included data from the National Heart,
Lung, and Blood Institute (NHLBI) Exome Sequencing
Project (for details, see http://evs.gs.washington.edu/EVS/),
T2D-Genes study (http://www.type2diabetesgenetics.org/
projects/t2dGenes), ATVB cohort (dbGAP accession
phs000814.v1.p1), and Ottawa Heart study (dbGAP accession
phs000806.v1.p1). All control samples were jointly processed
through one alignment and variant calling pipeline. Samples
of European ancestry were identified using principal compo-
nent analysis. All first-degree relatives and duplicated samples
were removed from downstream analysis with pairwise
identical by descent analysis in PLINK.26 From this data, a
subset of genes present in diagnostic epilepsy panels was then
used as control data in this study, excluding samples with a
genotype call rate <95% totaling 10,937 individuals with mean
age of 65 with no evidence of psychiatric/neurodegenerative
disorder. We subjected genotypes for quality checks, keeping
only genotypes with >30× coverage and genotype quality
(GQ, estimated in GATK pipeline27) >30. On average, the
number of sites with nonreference genotypes in controls that
were excluded due to coverage <30× for this analysis was
1.03% (see Supplementary Figure S2). In one company, this
number is on average 0.2% (personal communication). Due
to the targeted approach, we expect this to be similarly low in
the other company. Diagnostic panels may be at an advantage

to identifying variants compared with exomes because they
have higher average coverage and were subjected to initially
lower GQ cutoffs. On the other hand, variants have been
validated by Sanger sequencing in some of the controls, but all
of the cases and variants in certain genes were systematically
underreported in panels (see Supplementary Fig. S3). Con-
trols are of non-Finnish European origin while cases are
mostly of non-Finnish European origin, with few exceptions
(personal communication). While controls and cases were
not matched for more specific population structure we expect
this to have no significant influence in singleton rates as
these are relatively consistent in different (particularly non-
Finnish European) populations in the 1000 Genomes Project
(https://www.nature.com/articles/nature15393/figures/1) and
we also show that many singletons in cases are likely of de
novo origin.

Statistical analyses
We assessed individual gene tolerance to null or missense
variants in the general population by using the probability
of loss-of-function intolerance (pLI) score, missense z-score
(z-score of observed vs. expected missense variants),19 or shet
score (selective effects for heterozygous protein null var-
iants).28 We defined a gene as constrained with the cutoffs
>0.9 for pLI, >3.09 for missense z-scores, and >0.05 for shet
based on recommendations of the score developers. We
compared pLI and shet scores of variants using Wilcoxon
rank tests because the data appeared not normally distributed
upon inspection. As disease gene reference, we used a curated
list of disease genes compiled by clinicians as part of the
Deciphering Developmental Disorders (DDD) study (http://
www.ebi.ac.uk/gene2phenotype/downloads/DDG2P.csv.gz,
version 11/7/2018). We subset the list to genes associated
with any descending Human Phenotype Ontology (HPO)
terms29 of epilepsy (HP:0001250) or intellectual disability
(HP:0001250) or brain/cognition and only included domi-
nant/X-linked disease genes labeled as “confirmed” or
“probable”. We also annotated missense badness, PolyPhen-
2, and constraint (MPC) scores, a pathogenicity score that
leverages regional depletion of missense variants in the
general population as well as amino acid deleteriousness
(K. Samocha et al., bioRxiv, 2017) to compare ultrarare
variants and DNV.

RESULTS
Genes with ultrarare variants in NDD+E include DEE
but also NDD genes
We assessed frequencies of likely protein-altering (missense
or null) ultrarare variants in 6994 individuals with NDD+E
(Fig. 1). While we did not assess variant pathogenicity with
all American College of Medical Genetics and Genomics
(ACMG) criteria,18 this class of variants should be enriched
for likely pathogenic variants. We analyzed 645 genes that
were sequenced in at least 2000 individuals with NDD+E,
with a median of 4870 individuals sequenced per gene.
Of these, 215 genes were annotated as acting in an autosomal
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dominant, 47 in an X-linked, 329 in an autosomal recessive,
and 54 in an unknown inheritance mode. It has been shown
repeatedly22,30 that genes contributing to severe childhood-
onset diseases with high penetrance are depleted for missense/
null variants in the general population, measured by pLI/
missense z-score.19 Genes classified as constrained by a
significant pLI/missense z-score likely contribute to NDD+E
in a dominant/X-linked mode. Of 262 dominant/X-linked
genes, 85 genes were constrained and carried at least two
ultrarare variants in our data set. Forty-one of these 85 genes
were previously described as developmental and/or epileptic
encephalopathy (DEE/EE) and NDD+E genes,4,31,32 while
other frequently mutated genes were associated with other
well-known genetic syndromes (e.g., BRAF, KMT2D, TCF4)
or structural brain abnormalities (e.g., ARX, CASK, FLNA,
TUBB4A). We compared per-gene ultrarare variant frequen-
cies to 10,937 controls assessing the general population
background rate (Supplementary Figure S3). Ultrarare variant
frequencies (missense and null) of the top genes were
SCN1A (2.7%), KCNQ2 (1.2%), SCN2A (1.0%), CDKL5
(0.8%), SCN8A (0.8%), STXBP1 (0.7%), and CACNA1A
(0.7%). Reassuringly, ranks of top genes were in concordance
with a recently published study of similar design (gene panel
sequencing in 8565 epilepsy patients;17 see Fig. 2).

Comparing variant frequencies per gene in 6994 panels
and 1942 trio exomes
We compared ultrarare variant frequencies in our panel data
set to DNV frequencies in a large recent exome-wide trio
study of 1942 individuals with NDD+E.4 Restricting our data
set to genes sequenced in 6000 to 6994 individuals, we found

correlation between the data sets for both missense and null
variants (missense variants: p value= 3 × 10−9, rho= 0.63;
null variants: p value= 4 × 10−6, rho= 0.53, method: Spear-
man correlation, see Fig. 1). This suggests that a large fraction
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Fig. 2 Pathogenic variants in an independent panel cohort. Ultrarare
variants in panels (damaging missense+ null) versus pathogenic variants in
a panel cohort of 8585 individuals including damaging missense+ null+
copy-number variant (CNV) (CNVs constitute about 9% of pathogenic
variants).17 Adapted to the format of Lindy et al.,17 the fraction of patho-
genic variants in each gene is given as the proportion of variants in all
positive cases. Only genes included in Lindy et al.17 are shown. Correlation
of data shown: p value= 4 × 10−7, rho= 0.79, method: Spearman corre-
lation. LP/P likely pathogenic/pathogenic.
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Fig. 1 Ultrarare variants in panels compared with de novo variants (DNVs) in exomes. a Damaging missense variants; b null variants. Genes that
were sequenced in ≥6000 panels are labeled black; others are in red. The dotted line represents equal frequency of de novo variants in exomes and ultrarare
variants in panels. Only variants in confirmed disease genes are shown (see “Materials and methods”). DNV frequency in SCN1A should be depleted as
it is only occasionally prescreened prior to panel, but is usually prescreened prior to exome sequencing. Frequencies of DNVs in exomes and
ultrarare variants in panels are correlated when considering highly covered panel genes (black dots). Missense variants: p value= 3 × 10−9, rho= 0.63;
null variants: p value= 4 × 10−6, rho= 0.53, method: Spearman correlation.
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of ultrarare variants in our data set arose de novo even if only
a fraction of them were tested for segregation. However, there
was no or negative correlation (missense variants: p value=
0.05, rho=−0.17; null variants: p value= 0.7, rho=−0.04,
method: Spearman correlation) between panels and exome
sequencing when considering all genes, as many genes were
not included in the diagnostic gene panels. Assuming gene
panel sequencing identifies 100% of the DNVs found in trio
exome sequencing for a given gene, we investigated how
many likely protein-altering DNVs in curated disease genes
(see “Materials and methods”) would have been found in
1942 individuals with NDD with epilepsy as part of the
exome-wide study when using panels instead of exomes.
We found 444 DNVs in the exome sequencing data in
those genes, while panels would have identified on average

245 DNVs. The proportion of identified DNVs in panels
significantly increased over time, however, as panels were
continuously updated according to the literature (Fig. 3).
In this approach we only consider damaging missense and
null DNVs and do not evaluate pathogenicity of individual
variants. Therefore, and as the set of disease genes is more
strictly defined, true diagnostic yields are likely higher
(usually up to 40% for clinical exome sequencing33,34 and
up to 26% in most recent panel diagnostics).

The majority of genes contained no or fewer ultrarare
variants in epilepsy cases than in controls
Comparing variants in cases and controls, we noticed that 255
of 645 panel genes (39.5%) did not display any ultrarare
variants in >2000 NDD+E cases (Fig. 1, Supplementary
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Figure S3, Supplementary Table S2). Further 247 genes
(38.3%) had lower frequencies of ultrarare variants in cases
compared with population controls. The majority of these in
total 502 rarely mutated genes were of autosomal recessive
inheritance (60%, 300/502), for which we would not expect
higher variant frequencies in cases. However, 30% (149/502
genes) were of autosomal dominant/X-linked inheritance
(Supplementary Table S2). For the remaining 10%, inheri-
tance was unclear. A limitation of this study is that we cannot
guarantee that variants in genes not ordered by clinicians
were consistently reported and therefore we cannot exclude
that some missed variants were in true disease genes.
However, the 149 not or rarely mutated dominant/X-linked
genes had lower constraint scores (pLI: 0.93 [median],
missense z-score: 2.2 ± 2.6 [mean, SD], shet score: 0.08
[median]) on a group level than the 119 dominant/X-linked
genes with higher ultrarare variant frequencies (pLI: 0.99
[median], missense z-score: 3.5 ± 2.1 [mean, SD], shet score:
0.16 [median]) in cases than in controls (see “Materials and
methods”; respective p values pLI score: 5 × 10−4, missense z-
score: 2 × 10−5, shet score: 1 × 10−4). Additionally, they were
not significantly different in estimated mutation rate35 (two-
sided t test, p values for missense mutation rate 0.76,
null mutation rate 0.86). This suggests that a lower mutation
rate is not the reason for low frequencies of ultrarare variants
in most of these genes among NDD+E cases; instead it
is more likely that most of these genes are not true
NDD+E genes.

Confirmed and putative de novo variants
Among 6994 epilepsy cases, we revealed 333 DNVs that were
not in ExAC as well as either damaging missense or null
DNVs. Ninety-five percent (317/333) of DNVs were in 54
constrained genes, 32 genes displayed at least two DNVs
(Supplementary Table S1, Fig. 1, Supplementary Figure S4),
and 4.7% (331/6994) of cases had a total number of 333
damaging DNVs. As segregation testing was not performed
systematically in the overall cohort, this number is certainly
an underestimate (see “Materials and methods”). It has been
documented for many disease genes, including genes
associated with NDD+E,36 that disease-causing missense
variants cluster in particular functionally relevant protein
domains. We annotated MPC scores, a pathogenicity score
that considers if missense variants in the general population
are depleted in particular regions of a gene (K. Samocha et al.,
bioRxiv, 2017). Higher MPC scores indicate increased
deleteriousness of missense variants. We found a median
MPC score of 2.3 for 333 DNVs and 0.76 for 11,233 ultrarare
variants for which disease segregation was unknown (Wil-
coxon rank sum test, p value 1 × 10−76). Also within
constrained genes, we found a median MPC of 2.13 in DNVs
and 1.03 for variants with unknown segregation status
(Wilcoxon rank sum test, p value 2 × 10−45). These results
confirm the increased likelihood of pathogenicity of DNVs in
comparison with ultrarare variants with unknown disease
segregation.

DISCUSSION
Gene panel analysis is widely used in genetic diagnostics of
NDD+E. However, panel designs vary substantially across
companies4,15 and over time. Here, we report a large cohort of
individuals with NDD+E (6994 cases) that underwent gene
panel sequencing in a diagnostic setting.
Frequencies of ultrarare variants in our cohort were

compared with two other large NDD+E cohorts: (1) DNVs
in 1942 trio exomes4 and (2) likely pathogenic variants in
8565 gene panels.17 Of the top 20 disease genes with the
highest numbers of DNVs in exomes, 16 were also present in
our panel data. ARID1B, ASXL3, EEF1A2, and SLC6A1 were
the genes missing in panels. Considering the top 35 disease
genes in exomes (at least 4 DNVs in exomes), the following
genes were missing in panels: KCNH1, PURA, COL4A3BP,
KIF1A, ANKRD11, DDX3X, MED13L, and PPP2R5D. We
suggest those genes could be added in subsequent panel
designs. Of the top 20 exome genes, only 8 were present in
Lindy et al.17 These results illustrate the high genetic
heterogeneity of NDD+E. The most frequently mutated
genes in exomes as well as panels were SCN1A, SCN2A, and
KCNQ2. Following at about half their frequency were CDKL5,
SCN8A, STXBP1, SYNGAP1, TSC2, and CACNA1A. These
genes are consistently present at high diagnostic yield in
NDD+E.11,13,33 Of note, GABRG2, TSC2, and PRRT2 had
high frequencies of ultrarare variants in our panel study and
in Lindy et al.17 but barely displayed DNVs in exomes
(GABRG2 and TSC2: 1 DNV, PRRT: 0 DNV) suggesting that
many of the variants in TSC2, GABRG2, and PRRT2 may be
inherited rather than de novo.
While many disease genes affected in trio exomes were not

included in panel designs, we show that gene panel content
consistently improves over time. Many frequently mutated
genes are associated with “classic” developmental and/or
epileptic encephalopathies, whereas others are associated with
more unspecific diagnoses of NDD. A too narrow target on
“classic epilepsy genes” therefore neglects that NDDs are
accompanied by epilepsy in approximately 20% of cases and
therefore any NDD gene is principally potentially also
associated with NDD+E.4,30 Aptly, we recently showed that
24 diagnostic providers of panel sequencing also lacked a
substantial fraction of NDD+E-associated genes in their
panel designs.4 In the early days of next-generation sequen-
cing (NGS), small panel sequencing allowed the introduction
of this new technology into clinical diagnostics. Today, panels
still offer a cost-effective method to diagnose causal
pathogenic variants in the most commonly affected genes as
in some countries current reimbursement frameworks do not
adequately cover the additional costs of exome sequencing.
Yet exome sequencing covers far more of the genetic
heterogeneity of NDD+E, and a recent US study found that
panels are not necessarily more cost-effective than exome
sequencing in the United States.37 The number of NDD+E
disease genes is continuously increasing, which has only
become possible by wide adoption of in particular trio exome/
genome sequencing approaches. Detection rates with panel
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diagnostics are necessarily limited by medical knowledge at
the time of panel design. On the other hand, higher coverage
in panels than in exomes is superior in detecting low-grade
mosaicism in a patient.
The majority of dominant/X-linked panel genes (502 of

645) either did not display any ultrarare variants in >2000
epilepsy cases or had even lower frequencies of ultrarare
variants in cases than controls. This could be due to a low
mutation rate of these genes or a phenotype rarely ascertained
in our cohort. However, given the fact that these genes had
no significantly different mutation rate but significantly
lower constraint scores compared with all other dominant
or X-linked genes in this study, it is likely that many of
them are not disease-associated. This observation is paralleled
by a study of similar design on 7855 individuals with
childhood-onset cardiomyopathy, where several genes fre-
quently sequenced in clinical routine could also not be
convincingly associated with disease.10 In our study, panel
design originated in 2010, when multiple candidate genes for
rare diseases were nominated without sufficient statistical
evidence and could not be confirmed in a clinical setting.38

This was also described specifically for epilepsy genetics.4,16

Of 645 panel genes in our study, 329 genes were associated
with recessive inheritance. However, variants in recessive genes
segregating with disease were only observed in approximately
1.7% (27/1633 cases) within a documented subfraction of
this study. This is in concordance with rates of 1.3% (ref. 12)
(n= 775 cases) and 1.1% (ref. 17) (n= 8565 cases) in two recent
NDD+E studies using gene panels and 3.6% (n= 7448 cases) in
an exome-wide study on developmental disorders with and
without epilepsy from nonconsanguineous families.39 Thus,
panel designs usually display an imbalanced distribution of
recessive genes (very few percent of diagnoses but approxi-
mately half of panel genes) versus dominant genes (vast
majority of diagnoses but only half of panel genes).
Limitations of our study include inconsistent variant

reporting in cases and that the different cohorts we compared
were neither technically nor ancestry matched. However, we
do not expect these technical limitations to alter the key
conclusions of this study (see “Materials and methods”).
We also evaluated the frequencies of ultrarare variants

in five genes with contradictory evidence of gene–disease
relationship, which thus had been classified as “disputed” by
the formal criteria of the ClinGen Consortium16 (CACNA1H,
CACNB4, EFHC1, MAGI2, SRPX2) as well as two genes with
contradictory susceptibility to epilepsy (CLCN2, GABRD).
CACNB4, EFHC1, MAGI2, SRPX2, CLCN2, and GABRD
showed identical frequencies of ultrarare variants in cases
compared with controls (Supplementary Figure S5). Thus, our
findings support the evidence that CACNB4, EFHC1, MAGI2,
SRPX2, CLCN2, and GABRD may not be associated with
epilepsy. Coverage of CACNA1H was too poor in controls
from ExAC to allow a valid comparison of variant frequencies
between cases and controls.
In summary, our data provide evidence to further improve

the design of NDD+E panels by (1) including genes with

highest burden of ultrarare variants, (2) adjusting the ratio
of autosomal dominant and X-linked genes with high
diagnostic yield versus autosomal recessive genes with low
diagnostic yield, and (3) excluding genes with poor evidence
for true disease association or very few ultrarare variants
in epilepsy cases.
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