Subjects

Abstract

Purpose

The diagnostic rate for Mendelian diseases by exome sequencing (ES) is typically 20–40%. The low rate is partly because ES misses deep-intronic or synonymous variants leading to aberrant splicing. In this study, we aimed to apply RNA sequencing (RNA-seq) to efficiently detect the aberrant splicings and their related variants.

Methods

Aberrant splicing in biopsied muscles from six nemaline myopathy (NM) cases unresolved by ES were analyzed with RNA-seq. Variants related to detected aberrant splicing events were analyzed with Sanger sequencing. Detected variants were screened in NM patients unresolved by ES.

Results

We identified a novel deep-intronic NEB pathogenic variant, c.1569+339A>G in one case, and another novel synonymous NEB pathogenic variant, c.24684G>C (p.Ser8228Ser) in three cases. The c.24684G>C variant was observed to be the most frequent among all NEB pathogenic variants in normal Japanese populations with a frequency of 1 in 178 (20 alleles in 3552 individuals), but was previously unrecognized. Expanded screening of the variant identified it in a further four previously unsolved nemaline myopathy cases.

Conclusion

These results indicated that RNA-seq may be able to solve a large proportion of previously undiagnosed muscle diseases.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Trujillano D, Bertoli-Avella AM, Kumar Kandaswamy K, et al. Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet. 2017;25:176–182.

  2. 2.

    Monies D, Abouelhoda M, AlSayed M, et al. The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum Genet. 2017;136:921–939.

  3. 3.

    Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum Genet. 2014;59:5–15.

  4. 4.

    Srivastava S, Cohen JS, Vernon H, et al. Clinical whole exome sequencing in child neurology practice. Ann Neurol. 2014;76:473–483.

  5. 5.

    Miyatake S, Matsumoto N. Genetics: clinical exome sequencing in neurology practice. Nat Rev Neurol. 2014;10:676–678.

  6. 6.

    Biesecker LG, Green RC. Diagnostic clinical genome and exome sequencing. N Engl J Med. 2014;370:2418–2425.

  7. 7.

    Naruto T, Okamoto N, Masuda K, et al. Deep intronic GPR143 mutation in a Japanese family with ocular albinism. Sci Rep. 2015;5:11334.

  8. 8.

    Nozu K, Iijima K, Nozu Y, et al. A deep intronic mutation in the SLC12A3 gene leads to Gitelman syndrome. Pediatr Res. 2009;66:590–593.

  9. 9.

    Dehainault C, Michaux D, Pages-Berhouet S, et al. A deep intronic mutation in the RB1 gene leads to intronic sequence exonisation. Eur J Hum Genet. 2007;15:473–477.

  10. 10.

    Kremer LS, Bader DM, Mertes C, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017;8:15824.

  11. 11.

    Cummings BB, Marshall JL, Tukiainen T, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017;9. Pii eaal5209, https://doi.org/10.1126/scitranslmed.aal5209. Accessed 21 November 2018.

  12. 12.

    Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

  13. 13.

    Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010;7:1009–1015.

  14. 14.

    Ihaka R and Gentleman R. R: a language for data analysis and graphics. J. Comp. Graph. Stat. 1996;5:299–314.

  15. 15.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

  16. 16.

    Pervouchine DD, Knowles DG, Guigo R. Intron-centric estimation of alternative splicing from RNA-seq data. Bioinformatics. 2013;29:273–274.

  17. 17.

    Li YI, Knowles DA, Humphrey J, et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat Genet. 2018;50:151–158.

  18. 18.

    Fujita A, Isidor B, Piloquet H, et al. De novo MEIS2 mutation causes syndromic developmental delay with persistent gastro-esophageal reflux. J Hum Genet. 2016;61:835–838.

  19. 19.

    Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51:919–928.

  20. 20.

    Higuchi I, Shiraishi T, Hashiguchi T, et al. Frameshift mutation in the collagen VI gene causes Ullrich’s disease. Ann Neurol. 2001;50:261–265.

  21. 21.

    Pelin K, Hilpela P, Donner K, et al. Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci U S A. 1999;96:2305–2310.

  22. 22.

    Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291.

  23. 23.

    Higasa K, Miyake N, Yoshimura J, et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. J Hum Genet. 2016;61:547–553.

  24. 24.

    Nagasaki M, Yasuda J, Katsuoka F, et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nat Commun. 2015;6:8018.

  25. 25.

    Tsunoda K, Yamashita T, Motokura E, et al. A patient with slowly progressive adult-onset nemaline myopathy and novel compound heterozygous mutations in the nebulin gene. J Neurol Sci. 2017;373:254–257.

  26. 26.

    Nishikawa A, Mitsuhashi S, Miyata N, Nishino I. Targeted massively parallel sequencing and histological assessment of skeletal muscles for the molecular diagnosis of inherited muscle disorders. J Med Genet. 2017;54:104–110.

  27. 27.

    Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31:3568–3571.

  28. 28.

    Reese MG, Eeckman FH, Kulp D, Haussler D. Improved splice site detection in Genie. J Comput Biol. 1997;4:311–323.

  29. 29.

    Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996;24:3439–3452.

  30. 30.

    Lehtokari VL, Kiiski K, Sandaradura SA, et al. Mutation update: the spectra of nebulin variants and associated myopathies. Hum Mutat. 2014;35:1418–1426.

  31. 31.

    Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–192.

Download references

Acknowledgements

See supplementary information.

Author contributions:

K.H.: literature review, data collection, and drafting the manuscript; E.K., Y.T., S.Mit., K.I., A.N.A., A.F., E.I., Y.U., N.T., Y.A., Y.M., M.O., M.N., T.M., N.Mi., H.S., and A.I.: data collection and manuscript revision; S.Miy., A.T., I.N., and N.M.: supervision of all aspects, including study design, data interpretation, and manuscript preparation.

Author information

Affiliations

  1. Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan

    • Kohei Hamanaka MD, PhD
    • , Satoko Miyatake MD, PhD
    • , Eriko Koshimizu PhD
    • , Satomi Mitsuhashi MD, PhD
    • , Kazuhiro Iwama MD
    • , Ahmed N. Alkanaq MD
    • , Atsushi Fujita PhD
    • , Eri Imagawa PhD
    • , Yuri Uchiyama MD, PhD
    • , Takeshi Mizuguchi MD, PhD
    • , Atsushi Takata MD, PhD
    • , Noriko Miyake MD, PhD
    •  & Naomichi Matsumoto MD, PhD
  2. Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan

    • Satoko Miyatake MD, PhD
  3. Clinical Research Institute, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan

    • Yoshinori Tsurusaki PhD
  4. Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan

    • Nozomu Tawara MD
    • , Yukio Ando MD, PhD
    •  & Yohei Misumi MD, PhD
  5. Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan

    • Mariko Okubo MD
    •  & Ichizo Nishino MD, PhD
  6. Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan

    • Mitsuko Nakashima MD, PhD
    •  & Hirotomo Saitsu MD, PhD
  7. Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan

    • Aritoshi Iida PhD
    •  & Ichizo Nishino MD, PhD
  8. Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan

    • Ichizo Nishino MD, PhD

Authors

  1. Search for Kohei Hamanaka MD, PhD in:

  2. Search for Satoko Miyatake MD, PhD in:

  3. Search for Eriko Koshimizu PhD in:

  4. Search for Yoshinori Tsurusaki PhD in:

  5. Search for Satomi Mitsuhashi MD, PhD in:

  6. Search for Kazuhiro Iwama MD in:

  7. Search for Ahmed N. Alkanaq MD in:

  8. Search for Atsushi Fujita PhD in:

  9. Search for Eri Imagawa PhD in:

  10. Search for Yuri Uchiyama MD, PhD in:

  11. Search for Nozomu Tawara MD in:

  12. Search for Yukio Ando MD, PhD in:

  13. Search for Yohei Misumi MD, PhD in:

  14. Search for Mariko Okubo MD in:

  15. Search for Mitsuko Nakashima MD, PhD in:

  16. Search for Takeshi Mizuguchi MD, PhD in:

  17. Search for Atsushi Takata MD, PhD in:

  18. Search for Noriko Miyake MD, PhD in:

  19. Search for Hirotomo Saitsu MD, PhD in:

  20. Search for Aritoshi Iida PhD in:

  21. Search for Ichizo Nishino MD, PhD in:

  22. Search for Naomichi Matsumoto MD, PhD in:

Disclosure

The authors declare no conflicts of interest.

Corresponding author

Correspondence to Naomichi Matsumoto MD, PhD.

Electronic supplementary material

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41436-018-0360-6