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Purpose: Precision health initiatives and reduced sequencing costs
are driving large-scale human genome analyses. Genetic variant
curation is a bottleneck in clinical applications. The burden of
variant curation can be high for newly discovered variants because
they are less likely to have undergone previous clinical annotation;
the rate of discovery of genetic variants in large clinical populations
has not been empirically determined.

Methods: We determined the rate of accrual of unique sequence
variants in 90,000 exome sequences. Separate analyses were done
for 17,267 autosomal genes and a subset of 74 actionable genes; the
effect of relatedness in the cohort was also determined.

Results: Variant discovery showed a nonlinear growth pattern.
The rate of unique variant accrual decreased as the database size
increased; by 90,000 exomes 97% of all projected coding and

splicing variants had been observed. Variants in 74 actionable genes
showed a similar pattern. Family relatedness slightly reduced the
rate of discovery of unique variants.

Conclusion: The heaviest burden of interpretation for genetic
variants occurs early and diminishes as the database size increases.
Our data provide a framework for scaling pathogenic genetic
variant discovery and curation, a critical element of patient care in
the era of precision health.
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INTRODUCTION
Any large-scale project that seeks to deliver genomic findings
to participants faces bottlenecks associated with variant
curation for each newly encountered variant in a gene of
interest, where variant curation and interpretation can be rate
limiting steps. As described by the FDA draft guidance,
variant curation involves generating and maintaining an
updated database of variants, and variant interpretation
entails assigning a pathogenicity status to a genetic variant
with respect to the disease phenotype.1 Both tasks are
interdependent. A false positive assignment of a variant could
lead to unneeded and costly screening or procedures, and a
false negative assignment could preclude the patient from
timely preventive therapy. This impacts not only clinical care
but also the economically strained health-care system as a
whole. Clinical as well as research labs are increasingly
focusing on the time-consuming task of reviewing available
data and literature to provide evidence-based classification of
variants. The American College of Medical Genetics and
Genomics (ACMG), the Association for Molecular Pathology
(AMP), and the College of American Pathologists (CAP)
jointly published guidelines to classify and name variants
using evidence-based criteria.2,3 Despite routine application of

these guidelines in clinical and research settings, discordance
in classification remains.4,5 Tools to streamline variant
classification have been developed.6,7 The FDA recently
announced its intention to provide guidelines on and perhaps
standardize how variants are generated, curated, and inter-
preted, underscoring these issues as an emerging public health
concern.1

The Geisinger Health System (GHS) Genomic Screening
and Counseling Initiative (formerly the GenomeFIRST
project) aims to identify individuals with clinically actionable
genetic variants in 76 genes (Geisinger 76, or G76) that are
linked to 27 medical conditions, and to return these results to
the participants and their medical providers.8,9 The starting
point for this project is a large database of exome sequences
from Geisinger patients who consented to participate in the
MyCode Community Health Initiative.10

In light of the challenges of clinical variant classification, we
hypothesized that the time and effort needed to curate and
interpret variants is greatest at the beginning of such a project,
and that this effort will be reduced as the cohort size increases.
This hypothesis assumes that the rate of discovery of novel
variants will decline as the exome sequence database for a
population grows. We sought to empirically test this
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hypothesis in a set of 90,000 exome sequences of participants
in the Geisinger MyCode project, by determining rates of
unique variant discovery in 74 autosomal genes of the G76
clinically actionable gene set. We provide an example of the
clinical utility of this concept by examining the rate of growth
of BRCA1 and BRCA2 variants, where the frequency of new
variants requiring pathogenicity assignment is calculated.

MATERIALS AND METHODS
Cohort description
The data for this study came from the DiscovEHR collabora-
tion between Geisinger and the Regeneron Genetics Center.
As part of this collaboration, DNA samples from Geisinger
patients were used for exome sequencing. The data analyzed
consisted of exome variants from the first 90,000 adult
participants. The cohort characteristics have been described
previously.9,10 This study was reviewed and does not involve
“human subjects” as defined in 45CFR46.102(f); and there-
fore, is not subject to oversight by the Geisinger Institutional
Review Board. The use of genetics data from the MyCode
Community Initiatives was approved by the Geisinger
Institutional Review Board.

Exome sequencing
Exome sequencing for the DiscovEHR collaboration has been
previously described in detail.9,11 Briefly, DNA samples were
exome-sequenced using NimbleGen probe target-capture
(SeqCap VCRome, 61,019 exomes) and xGen capture
(Integrated DNA Technologies, 31,393 exomes), followed by
sequencing on an Illumina v4 HiSeq 2500 to a coverage depth
of greater than 20× in 90% of target regions. Genomic variant
call format (gVCF) files created by VCRome capture or xGen
capture were joint-called separately in groups of 200
individual gVCFs to a prepared pseudosample containing all
single-nucleotide variant (SNV) and indel sites to create
pVCF files. Two hundred individual pVCFs from VCRome or
xGen were combined prior to combining the final union of
the VCRome pVCF and xGen pVCF to create a union pVCF.
The union pVCF sequence reads were aligned to GRChr38.
Variant quality controls included filtering variants for quality
by depth (QD) > 5.0 and DP > 10 (indels) or QD > 3 and DP
> 10 (missense). Project-level quality controls of the combined
data set included genotype and sample call rates >98% and
Hardy–Weinberg equilibrium p > 1e-06 (PLINKv1.9) (ref. 12).
Of the resulting 92,297 samples, 90,000 were randomly
selected for this study. For BRCA1 and BRCA2 variants,
samples with alternate allelic balance >15% (missense) or
>20% (indels) and at least five or more alternate reads were
selected.

Variant Annotation
Sequence variants were annotated to coding DNA and
functional proteins using the National Center for Biotechnol-
ogy Information (NCBI) RefSeq Gene definitions, selecting
for the transcript with the longest coding sequence among the

transcripts with a Locus Reference Genome (LRG) annota-
tion, and excluding transcripts without annotated start and
stop codons (SNP & Variation Suite, Golden Helix, Bozeman,
MT).2,13 We define coding variants as nonsynonymous
(missense, insertions, deletions) and synonymous variants;
splicing variants as “canonical” splicing variants that are
defined by the GT and AG intronic nucleotides 2 base-pairs
on the intronic side of a splice junction; putative loss-of-
function variants (pLOFs) as canonical splice donor and
splice acceptor variants, initiation and stop loss variants, stop-
gained variants, and variants causing a shift in the reading
frame (frameshift); and missense variants as SNVs with one
or more base change that alters amino acid sequence,
including in-frame deletions, and in-frame insertions.
To simplify variant annotation, we examined 17,267

autosomal genes in chromosomal regions of monogenic loci
and excluded genes that overlap in polygenic loci.14 For
actionable genes, we selected the 74 autosomal genes of the
G76 actionable gene list (Supplemental Table S1). The G76
clinically actionable genes include 56 genes for 25 medical
conditions recommended by the ACMG for return of
secondary findings by the criteria that deleterious variants
in these genes would result in highly penetrant disease
phenotypes that could be improved through medical inter-
ventions.8 The Geisinger project team reviewed evidence
available after the original 56-gene list was developed and
added additional genes for the same medical conditions, as
well as ACVRL1 and ENG for hereditary hemorrhagic
telangiectasia and OCT for ornithine transcarbamylase
deficiency.9

Variants were mapped to ClinVar annotation track (SNP &
Variation Suite, last updated in August 2017) and selected for
those with germline minor allele origin. Pathogenicity of
variants were defined as pathogenic or likely pathogenic
variants with review status of two or more stars, denoting
multiple submitters with the consensus classification.

Simulation for asymptote of variant accumulation
We modeled the number of unique variants observed in the
database with the R “car” package and the function nls
for nonlinear least square fit typically used to model
population growth to estimate the asymptote. The asymptote
is predicted to indicate the number of variants at which no
new unique variants will be observed. To extrapolate the
numbers of variants in cohort sizes beyond 60,000 or 90,000
exomes, we regressed the number of variants associated with
incremental increases of 10,000 exomes, ranging from 100,000
to 360,000 for all samples, and 70,000 to 290,000 for unrelated
samples.

Graphs
All data were plotted using GraphPad Prism (La Jolla, CA),
except for the variant simulation graphs, which was generated
in R using ggplot2 package.15 Statistical analyses were
performed using GraphPad Prism.
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RESULTS
Coding and splicing variants in 90,000 exomes
We examined variants in 74 clinically actionable autosomal
genes selected for return of pathogenic findings. Variants were
identified in 90,000 exome sequences available currently from
the DiscovEHR collaboration study.9 We focused on variants
in protein coding regions and canonical splice site variants
because these are most likely to have functional consequences
and be classified as likely pathogenic or pathogenic. The
genes, transcripts used for the analysis, and associated clinical
conditions are listed in Table S1. Of the 31,194 unique coding
regions and splice site variants identified in these 74 genes,
62% were single-nucleotide missense variants, 33% were
synonymous variants, and 4.7% were pLOF variants. The
majority of coding and splicing variants are low frequency:
97% had minor allele frequencies (MAF) < 1%, and 94% had a
MAF < 0.1% (Figure S1). Based on this finding, we used all
coding and splicing variants without MAF cut-offs in
subsequent analyses.

The number of new variants observed decreases as the
sample size increases
The 90,000 exome sequences were divided randomly into nine
groups of 10,000, and the number of coding region and splice
site variants observed in the 74 genes was determined as a
function of database size. As shown in Fig. 1a (blue open
squares), the incremental increase in the number of unique
variants decreased with increasing database size and
approached a plateau. With each increase of 10,000 exomes,
there were successive decrements in the number of new
variants observed (see Table S2). Approximately 35% (10,833)

of the variants in 90,000 exomes were observed in the first
10,000 exomes, but only 757 (2.4%) of the total variants were
observed first in the increment from 80,000 to 90,000 exomes
(Table S2). A nonlinear model was used to extrapolate the
results to larger database sizes (Fig. 1a, blue line). This
predicted an asymptote of 32,009 ± 946 (SEM) unique
variants in a database of 250,000 exomes (r2 0.996). Beyond
200,000 exomes, the rate of accrual of new coding or splicing
variants was predicted to be low and approached zero
(Table S2). This analysis suggests that at the current
DiscovEHR database size of 90,000 exome sequences,
approximately 95% of unique coding and splicing variants
in the population have been observed.
As the MyCode cohort consists of a majority of individuals

with at least one first- or second-degree relative as determined
by genome-wide identity by descent (IBD) estimates,11 we
sought to determine the effects of familial relatedness on the
rate of accrual of coding and splicing variants in the 74 genes.
Removal of all but 1 individual in the related groups resulted
in ~62,200 individuals with no familial relationship up to
third degree (PI-HAT > 0.1875), of which 60,000 were
randomly selected for analysis. Figure 1a (red closed symbols)
shows that the number of unique coding and splicing variants
per 10,000-exome increment was slightly higher when only
unrelated individuals were included. Simulation predicted the
same number of total variants, with an asymptote of 31,137 ±
1143 (SEM) unique variants in a database of 210,000 exomes
(r2 0.998, Fig. 1a red line), with 93% of projected variants
observed in the first 60,000 exomes (Table S3).
To determine if these observations were unique to genes

associated with monogenic disorders, we carried out a similar
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Fig. 1 Accrual of coding and splicing variants in unrelated and related individuals from the DiscovEHR study in 74 actionable genes and all
genes. Samples from all 90,000 individuals or from 60,000 unrelated individuals were divided into 10,000 exome increments and accrual of variants per
10,000 exomes is shown. Curves were fit to a nonlinear model to estimate the asymptote. a Accrual of variants in 74 genes are shown for all individuals
(blue open squares and blue dashed line) and for unrelated individuals (red filled circles and red dashed line). b Accrual in 17,267 genes are shown for all
individuals (blue open squares and blue solid line) and for unrelated individuals (red filled circles and red solid line).
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analysis for the set of 17,267 nonoverlapping autosomal genes
(see Materials and Methods). Figure 1b shows the variant
accrual rates for all 90,000 individuals (blue) and for 60,000
unrelated individuals (red). While the numbers of variants
were higher, the shapes of the curves (when expressed as
percent of predicted asymptotes) are indistinguishable from
those determined for the 74 actionable genes (Figure S2,
Table 1, Tables S4, S5), indicating similar patterns of variant
accrual.
We also analyzed the trajectory of discovery of variants in

functional subclasses (missense, synonymous, and pLOF) in
the 74 actionable genes. As shown in Figure S3 the increase in
total number of variants in each functional subclass increased
nonlinearly as the size database increased, with a progressive
decrease in the number of new variants per incremental
increase in database size. The rate of discovery of pLOF
variants was slightly lower than synonymous or missense
variants. Twenty-eight percent of pLOF variants observed in
the 90,000 exome database were observed in the first 10,000
exomes, compared with 38% and 34% for synonymous and
missense variants.

Singletons become a decreasing proportion of variants
We also determined the number of singletons (variants
observed in only one individual in the data set) in the 74
actionable genes and their proportion of total variants as the
number of exome sequences increases. Up to a sample size of
30,000 exomes singletons comprised ≥50% of coding and
splicing variants (Fig. 2a). This decreased to 38% as the
sample size increased to 90,000 exomes: as the database grew
in size some variants that were singletons were identified in
additional carriers and the number of newly discovered
singletons decreased (Fig. 2b). The rate of discovery of
singletons was higher if related individuals were excluded
(Fig. 2b). The decrease in the rate of discovery of new
singletons was observed for all functional classes of variants
(Fig. 2c). Putative LOF variants were more likely than other
variant types to remain as singletons (Fig. 2d). Singletons
accounted for 49% of pLOF variants at a database size of
90,000 exomes.

The number of new variants classified in ClinVar decreased
as the size of the cohort increased
We also analyzed variants that had been assessed in ClinVar
as pathogenic/likely pathogenic (P/LP), benign/likely benign
(B/LB), or variants of unknown significance (VUS). Of 31,194
coding region and splice site variants in the 74 actionable
genes in 90,000 exomes, 10,440 (33%) had been classified in
ClinVar, with varying degrees of evidence support; 1162
variants (3.7%) reached at least 2-star review status, which
represents variants classified similarly by multiple submitters.
Of these 1162 variants, 51% were classified as B/LB, 8% were
P/LP, and 41% were VUS (Table S6). Not surprisingly, the
majority of P/LP variants were pLOFs, the majority of B/LB
were synonymous variants, and the majority of VUS were
missense variants.

We determined the number of missense, pLOF, and
synonymous variants in each assertion group as the database
size increased. Figure 3 shows that the majority of missense
and synonymous variants classified as B/LB were observed in
even a relatively small sample size; at 10,000 exomes,
approximately 80% of B/LB variants present in 90,000 exomes
were observed. This is mainly due to the fact that variants of
this type have a higher frequency within the population.
Similarly, approximately half of all VUS variants were
observed in the first 10,000 exomes. In contrast, variants
classified as P/LP continued to accrue, albeit at a progressively
slower rate, as the database size grew; at 10,000 exomes,
approximately 20% of the variants present in 90,000 exomes
were observed; at 30,000 exomes, more than half were
observed.

Accrual of variants in BRCA1 and BRCA2
We applied a similar strategy to estimate the expected burden
of variant curation for variants in the hereditary cancer genes
BRCA1 and BRCA2. We determined the numbers of variant
carriers, new variants, singletons, and ClinVar 2-star variants
in sequential batches of 50,000 and 40,000 exomes (Table 2).
As expected, fewer new variants and fewer singletons were
observed in the second group of exomes. To estimate the
number of variants that would require curation, we removed
variants previously characterized in ClinVar with 2-star or
greater level of assertion and variants observed in a single
carrier. This resulted in 556 variants requiring curation in the
first 50,000 exomes and 65 in the second 40,000 exomes,
consistent with a reduced burden of variant classification as
the database grows.

DISCUSSION
The purpose of this study was to provide empirical data on
the rate of discovery of unique variants within a single health
system cohort as a function of the size of the database of
available exome sequences. There were two primary motiva-
tions for generating this data. As described previously,9 this
exome sequence database, which can be linked to longitudinal
electronic health record data, provides a powerful resource for
genomic discovery. Information of the type presented here
provides a framework for determining the number of exome
sequences needed for such research. In addition, and as has
been described,16 we have developed a program to return
“clinically actionable” variant findings to patients and their
medical providers as a means to provide information on
significant genetic risks for potentially life-threatening condi-
tions. A major bottleneck for such a program is curation of
novel variants as they are observed. Our hypothesis was that
the rate of new variant accrual would decline as the size of the
sequence database increased; if this could be demonstrated, it
would suggest that the time and effort required for clinical
interpretation of variants would decrease as the database
expands. The data presented support this hypothesis: Our
results show that accumulation of coding region and splice
site variants follows a growth model in which the rate of
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accumulation of previously unobserved variants decreases as
the cohort size increases. Approximately one-third of variants
were discovered in the first 10,000 exomes, and approximately
95% of variants are discovered in the first 90,000 exomes.
While this might be intuitively obvious, to our knowledge
these are the first empirical data to describe the asymptotic
behavior of variant accumulation. These findings suggest that
the heaviest burden of clinical variant interpretation lies at the
beginning, i.e., that much of this effort is “front-loaded,”
mainly due to repetition of variants, progressively reducing
the number of new variants to curate and interpret.
We observed that the accumulation of variants in a subset

of clinically actionable genes was similar to that of the entire
exome (Fig. 1). Although these genes are linked to autosomal
dominant genetic disorders, most of these conditions occur in
later stages of life and so may not be subject to strong
purifying selection. In addition, it has been shown that
individuals who harbor pathogenic variants for SCN5A and
KCNH2 presented with similar risks for arrhythmia and other
cardiac disease conditions as those who lack the variants,17,18

underscoring the importance of penetrance of actionable
genes.
It should be noted that the specific rates of variant discovery

reported here are applicable to the DiscovEHR cohort from
which the exome sequence data was generated. Individuals in
the DiscovEHR cohort are all patients of Geisinger, a large
integrated health system, who live in north central and
northeastern Pennsylvania and consented to participate in the
MyCode Community Health Initiative. The DiscovEHR
cohort, therefore, represents an unselected clinical population
that reflects the demographic characteristics of the region. As
this population is predominantly (98%) of White European
descent with approximately 56% of the participants related to
at least one other participant in the cohort by first- or second-
degree relationships,11 the number of unique variants in this
database and the frequencies of specific alleles could be
different from other cohorts with different racial, ethnic, or
familial relationship backgrounds. It will be important to
compare these results with other populations. Our findings
did show that family relatedness in the population affected the
rate of unique variant accrual (Fig. 1, Table 1). This suggests
that less related populations may require a smaller cohort to

reach an asymptote. Importantly, for other health systems
that are considering large-scale clinical sequencing projects,
the results presented here provide a framework for scaling the
processes of variant discovery and variant curation.
Missense SNVs are typically the hardest to classify because

their functional consequences are difficult to predict.
Bioinformatic tools that predict “deleteriousness” based on
sequence conservation, biochemical considerations, etc. can
help, but these alone are usually not sufficient for high-
confidence assertions of pathogenicity. This complicates the
task of variant classification, because missense variants are the
most common type of variant observed in exome sequencing
studies. These factors combine to make missense variants the
majority of VUS. Our findings highlight the need for
comprehensive functional testing of VUS in clinically
actionable genes because assessing their pathogenicity using
traditional clinical and pedigree-based studies will be difficult,
especially for low-frequency variants. Approaches similar to
those recently reported by Findlay and colleagues will become
instrumental to functional characterization of such rare
variants.19 The encouraging news from our analysis is that
the rate of discovery of new missense variants declines as the
size of the database increases.
The rate of discovery of unique LOF variants was slightly

lower than synonymous or missense variants, and pLOF
variants were more likely to remain as singletons as the
database size increased, probably reflecting greater negative
selection for this class of variants. One of the advantages of
exome sequencing of a large population is the ability to
uncover pLOFs and other extremely rare variants, including
those associated with rare monogenic disorders. In addition to
identifying variants in BRCA1 and BRCA2, used as examples
here, we have used this exome sequence database to identify
variants associated with DICER1 syndrome and maturity onset
diabetes of the young, rare autosomal dominant disorders (U.
Mirshahi et al., unpublished data) and cystic fibrosis, a rare
recessive disorder (Sugunaraj et al., unpublished data).
Singletons are often interpreted as VUS because they are

more likely to be private variants with little or no previous
experimental or clinical data for curation. This underscores
the need to share discoveries with others in the genomics
community, such as curation consortia, to build a database for

Table 1 Summary statistics of variant accumulation analyses

# Exomes Asymptote (SD) # Exomes to reach

asymptote

% Asymptote at

current databasea
Slope (SD) r2

All genes, all individuals 90,000 4,587,310 (126,700) 360,000 97 22.4 (2) 0.997

All genes, unrelated individuals 60,000 4,437,535 (158,500) 290,000 93 16.9 (2) 0.998

74 genes, all individuals 90,000 32,010 (946) 260,000 95 22.4 (2) 0.996

74 genes, unrelated individuals 60,000 31,137 (1143) 210,000 93 16.9 (2) 0.998
Accrual of coding and splicing variants in 17,267 genes (all genes) or in 74 actionable genes in all individuals and in unrelated individuals were fitted to a nonlinear
least square fit model with simulation to obtain the trajectory of variant growth to asymptote (See Fig. 1). The summary statistics of the curve fitting are detailed
below. At the current DiscovEHR database size, 93–97% of projected variants have been observed (see Supplemental Tables S2–S5).
SD, standard deviation.
a% Asymptote at current database: % of variants attained at the current # exomes in the DiscovEHR cohort from Supplemental Tables S2–S5.
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these rare variants. Large databases from comprehensive
health systems where genetic information is linked to
longitudinal electronic health record (EHR) data (with
laboratory and imaging data, diagnoses, medication data,
procedure codes, etc.) will assist in determining the
pathogenicity of these rare variants. Because the MyCode
cohort consists of individuals seeking health care through a
large integrated system, more than half of the participants
with exome sequence data have one or more first-degree
relatives who have also been sequenced through this program.
It is possible to calculate degrees of relatedness and infer
pedigrees from the exome sequence data.11 We are exploring
the use of this information for in silico familial studies that
could shed light on the clinical consequences of specific
variants, including singletons. Furthermore, an important
element of the MyCode Community Health Initiative is the
possibility to contact participants to invite them to engage in
follow-up studies to provide additional health information,
collect family history data, or invite family members to
participate in genetic screening.
The technical specification for the exome sequence data

used for this study (minimum of 20× coverage for >90% of
the target regions) is lower than the read depths for some
clinical gene panels. This is a potential limitation for

population-based screening efforts where the goal is to
generate exome sequence data on a large number of
individuals. However, when the quality filters described in
the Methods section are applied, the false positive rate for
SNVs and indels is very low. It should be noted that any
variant result that is returned to a participant is confirmed by
orthogonal confirmation. We believe that rigorous quality
controls for sequencing, alignment, and variant calling must
be applied prior to clinical implementation.20 It should be
noted that in this study we focused on SNV and indel
variants. The ability to accurately call copy-number variants
and other structural variants from exome sequence data is less
reliable, and their prevalence and causal roles in disease
phenotypes are less well understood because most are
discovered through patient disease cohorts.21,22 The number
of these variants and the trajectory of their accrual are
important questions that remain to be answered, but this will
require improvements in the technologies used to identify
copy-number and other structural variants from exome
sequence data.
While our results suggest that the burden of variant

interpretation will be reduced as sequence databases expand,
they do not mitigate the need to keep improving and
standardizing methods used to curate variants and assess their
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pathogenicity. While some progress in this area has been
made, a lack of consistency and standardization in these areas
has been well documented and must be addressed.
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Fig. 3 Accrual of variants classified by ClinVar as a function of database size. DiscovEHR variants previously classified as pathogenic/likely pathogenic,
variants of unknown significance, benign/likely benign with consensus review status of multiple submitters in ClinVar were separated by functional class.
The number of synonymous variants (green), missense (blue), and pLOFs (red) per 10,000 exome increments are plotted for (a) pathogenic/likely pathogenic,
(b) variants of unknown significance, and (c) benign/likely benign variants. Curves are drawn by connecting scatter points on the plots. B benign, LB likely
benign, LP likely pathogenic, P pathogenic, pLOF putative loss of function, VUS variant of unknown significance.

Table 2 The burden of new variant curation for BRCA1 and BRAC2 is reduced as the database grows

Data sets

(exomes)

Variantsa Carriers New

variantsb
New

singletons

Variants in ClinVarc with >1

carriers

Variants requiring

curation

First 50,000 1263 10,564 1263 618 89 556

Last 40,000 1167 7883 473 397 11 65

Total 90,00 1736 15,742
The data were divided into two sets of 50,000 and 40,000 exomes, and the numbers of carriers and coding and splicing variants in BRCA1 and BRCA2 were deter-
mined. The number of new variants requiring curation was determined after removing variants previously classified by multiple submitters.
aThe number of unique variants in the two data sets includes variants found in both.
bIncludes singletons.
cBy multiple submitters with consensus (≥2 stars).
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