© American College of Medical Genetics and Genomics

Genetics

ARTICLE inMedicine
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Purpose: To improve the accuracy of matching rare genetic
diseases based on patient’s phenotypes.

Methods: We introduce new methods to prioritize diagnosis
of genetic diseases based on integrated semantic similarity (method
1) and ontological overlap (method 2) between the phenotypes
expressed by a patient and phenotypes annotated to known diseases.

Results: We evaluated the performance of our methods by two sets
of simulated data and one set of patient’s data derived from electronic
health records. We demonstrated that the two methods achieved
significantly improved performance compared with previous methods
in correctly prioritizing candidate diseases in all of the three sets. Our
methods are freely available as a web application (https://gddp.
research.cchmc.org/) to aid diagnosis of genetic diseases.

INTRODUCTION

Although genotype-based clinical diagnosis for genetic
diseases has recently gained success with the advances of
clinical-exome sequencing technology and corresponding
analytical methods, diagnosis remains a substantial challenge
for many genetic diseases.' Considerable effort has been made
to develop computer-aided clinical diagnostic systems based
on phenotypic information from the patients.”™* Recently
certain of these methods have been shown to facilitate
differential diagnosis® and prioritization of candidate disease-
associated genes.”® Despite varying details, the underlying
computational approaches supporting phenotype-based clin-
ical diagnostics are largely similar, typically involving two
main components: (1) a disease knowledgebase annotated by
standard vocabularies or ontologies used to describe the
phenotypic traits of different diseases, and (2) a computa-
tional or statistical method that predicts diagnosis by
searching the knowledgebase for diseases that best match
the phenotypes manifested in the patient.

The Human Phenotype Ontology (HPO)” is a hierarchically
structured term set to describe phenotypic traits in human
diseases. With different levels of specificity, HPO is especially
effective in annotating phenotypes for genetic disorders.

Conclusion: Our methods can capture the diagnostic
information embedded in the phenotype ontology, consider
all phenotypes exhibited by a patient, and are more robust than
the existing methods when phenotypes are incorrectly or
imprecisely specified. These methods can assist the diagnosis of
rare genetic diseases and help the interpretation of the results
of DNA tests.
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Many public disease knowledgebases, such as MedGen® and
Orphanet,” have adopted HPO as the standard vocabulary to
annotate phenotypes for diseases.

Computational methods utilizing HPO for clinical differ-
ential diagnostics can be generally grouped into two types:
semantic similarity-based methods, such as Phenomizer” and
Disease Phenotypes,'’ which evaluate and rank phenotypic
similarity between queries and hereditary diseases annotated
by HPO. Alternatively, nonsemantic similarity-based meth-
ods, such as Bayesian ontology query algorithm (BOQA),"
integrate ontological analysis with methods to compensate
for noise, imprecision in query terms, and consideration
of attribute frequencies using a Bayesian network model.
Central challenges underlying these approaches include
how to maximize utilization of the diagnostic information
embedded in the phenotype ontology, consider all phenotypes
exhibited by a patient, and maintain robustness when
phenotypes are incorrectly or imprecisely specified.

Here, we utilize HPO’ as the standard phenotype
vocabulary, and MedGen® as the disease phenotype knowl-
edgebase. We develop two computational methods to evaluate
and rank the similarity between a set of query HPO terms and
HPO terms annotated to a disease. The first method, based on
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semantic similarity, integrates semantic similarities from
multiple HPO terms in a query to prioritize diseases. The
second method prioritizes diseases by evaluating the sig-
nificance of the overlap between the HPO terms in the
query with the HPO terms in all diseases in the disease
knowledgebase. Using simulated patients as well as patient
phenotypic data derived from electronic health records, we
show that these two methods are superior in ranking
candidate diseases compared with current computational
approaches. We have implemented our methods as a user-
friendly web-based application that is available for general
use at https://gddp.research.cchmc.org/.

MATERIALS AND METHODS

Overview of the methods

Our methods take a patient’s phenotypes coded by HPO
terms (query terms, Q = {q;,i € {1, ... ,m}}) as input and
prioritize disease diagnosis based on HPO ontological
similarity between the query terms and phenotype terms
annotated to diseases. Multiple phenotypes may be annotated
to a disease (Dy), denoted as Dy = {dj,j e{q,... ,nk}}. For
the current study, we utilized the phenotype annotations of
7036 OMIM diseases (D) extracted from the National Center
for Biotechnology Information (NCBI)’s MedGen resource®
on 23 January 2017.

Two methods were developed and tested in this study. In
method 1, ontological similarity between the query terms (Q)
and phenotypes annotated to a disease (Dy) are calculated by
integrating semantic similarities between HPO terms. In
method 2, the similarity between the query terms (Q) and
phenotypes annotated to a disease (Dy) is measured by the
overlapping of HPO terms. The following sections explain the
methods in detail.

Method 1: integrated semantic similarity

This method evaluates similarity between query terms Q and
phenotypes annotated to a disease Dj using semantic
similarities. This procedure involves (1) evaluating similarities
between all pairs of phenotype terms, i.e., (,d;), and (2)
calculating a similarity score to summarize the similarities
between all the query terms (Q) and the HPO terms
annotated to a target disease (D).

Semantic similarity between a query HPO term and a
disease

Method 1a. Our first method evaluates semantic similarity
between two HPO terms based on Resnik’s method:'*

sima(tl, tz) = IC(MICA(tl, tz)),

MICA(t,t,) is the most informative common ancestor of two
HPO terms (t; and t,) on the ontology. IC(t) = —(p(t)) is the
information content of a phenotype term (f) in the MedGen
database defined in the same way as in Resnik’s method,
which is the negative log frequency of the term.

Method 1b. The alternative method is based on the first
method, but reduces the similarity between two terms to zero
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where IC(#) = —log(p(t))
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if the two terms are not on the same lineage in HPO ontology,
to emphasize the difference between distinct lineages. Two
terms are on the same lineage if one term is an ancestor of the
other term. A similar method was used in GeneMANIA" to
create negative gene list based on Gene Ontology functional
annotations. Formally, we define the similarity as:

SiI’l’lb(i’l7 t2) =
{ IC(MICA(ty, tp)),if t; and t, are on the same lineage

0, otherwise

For both methods 1a and 1b, the “best match” between each
query HPO term (g;) and the HPO terms annotated to an
OMIM disease in MedGen (d; € D) is selected to represent
the “similarity score” between a query term ¢, and the disease
(Dp):

Sik = gg))i (Sim(%‘, dj))

Integration of semantic similarities of multiple query HPO
terms

We used a Fisher’s method-based procedure, similar to the
framework used in ToppGene,'* to summarize the semantic
similarities between a set of query terms (Q) and a disease
(Dy). First, the semantic similarity score between a query
HPO term and a disease (s;i) is converted to a nominal p
value according to its rank within all diseases (D, N = 7036):

N — rank(sy) + 1
N

This p value can be interpreted as when comparing a query
term g; against all diseases (D), the proportion of diseases
with a higher semantic similarity score than the one observed
between the query term (q;) and the disease (Dy). The p value
measures how specific an HPO term (g;) is to a disease (Dy)
when compared with all other diseases. The p values between
multiple query HPO terms (Q) and a disease (Dy) are then
combined using Fisher’s method as the overall similarity score
between the query terms and a disease.

Sk =—-2 In(pi)

Sik>y

Pik =

As query terms that are observed for multiple genetic diseases
containing decreasing diagnostic information content for a
disease (when the semantic similarity [s;] is low), only those
pix whose corresponding s; is greater than or equal to a
certain semantic similarity cutoff (y) are combined together.

Method 2: weighted overlapping

In this method, the phenotypes of a patient (query terms, Q)
and HPO terms annotated to diseases (Dy) are first “up-
induced” based on HPO tree structure so that if an HPO term
is annotated to a patient/disease, all of its ancestors are also
annotated to the patient/disease. To compare the query terms
(Q) with the terms annotated to a disease (Dy), we can
construct a weighted 2 x 2 contingency table (Table 1) that
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Table 1 Weighted 2 x 2 contingency table between query
and a disease

D D
Q a= Y, IC(1) b= > IC(t)
te(QND) te (Qmﬁ)
Q c= Y IC(t) d= > 1C(1)
te(Qnp) t(QnD)

The values in this Table are the counts of HPO terms weighted by their informa-
tion content (IC). a: the count of terms in Q and D (true positive); b: the count of
terms in Q but not in D (false positive); c: the count of terms in D but not in
Q (false negative); and d: the count of terms not in Q and not in D (true negative)

contains the weighted counts of HPO terms shared or not
shared between the query terms and the terms annotated to a
disease. A Fisher’s exact test similar to that employed by Alexa
and colleagues' is then applied to this 2 x 2 contingency table
and the p value from the test can be used to rank the
concordance/discordance between the query terms and the
phenotypes of a disease.

Implementation

All analysis was implemented using the R platform."®
Ontology-related manipulation and similarity measure was
implemented based on Bioconductor packages dnet'” and
ontologyIndex.'® Fisher’s method to integrate multiple
p values is available in R package metap.'” The NOBLE
coder” program was used for HPO Concept Recognition and
integrated with R script by rJava.®’ An interactive web
application that implemented our methods was developed
using shiny.””

For comparison purposes, we also implemented the best-
match average combination method (BM.ave) as used in
Phenomizer® and the Bayesian ontology query algorithm
(BOQA)'" using R, according to the description by Bauer and
colleagues,'" which does not consider the phenotype fre-
quency information for each disease.

Evaluation

We used simulated cases as well as real patient data to
evaluate the performance of our methods. We also compared
the performance of our methods with the current methods,
BM.ave (Phenomizer) and BOQA.

Generation of simulated cases

Diseases and associated HPO annotations from Orphanet’
were used to create simulated patients. Simulated patients
were created based on the Orphanet data downloaded on 3
February 2017, which contains 2536 diseases. For each
disease represented in Orphanet, associated phenotypes
and the prevalence of each phenotype is provided by a
frequency term (i.e., excluded, very rare, occasional,
frequent, very frequent, and obligate). We converted these
terms into numeric probability values (Supplemental
Table 1).
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A multistep procedure was applied to generate simulated
patients with controlled noise level. In the first step, for each
of these 1775 Orphanet diseases that can be mapped to at least
one OMIM ID, 5 patients were created with HPO terms
according to their occurrence probabilities provided by
Orphanet. In the second step, HPO terms (“false negative”)
were randomly removed from each patient at a fixed
probability B. In the third step, we randomly inserted HPO
terms (“false positive”) to each patient according to their
relative frequencies in Orphanet diseases. The expected
number of HPO terms to be added for each patient was a
constant a. In the last step, if more than 6 HPO terms were
present in a patient, a random subset of 6 HPO terms was
selected. Patients with only one phenotype were ignored. This
procedure is similar to those used in Phenomizer® and
BOQA'! to create simulated cases with noise.

Extraction of patient phenotypic data from electronic
health records

De-identified patient data was obtained from the i2b2
database (Informatics for Integrating Biology and the Bedside,
https://i2b2.cchmc.org/) at the Cincinnati Children’s Hospital
Medical Center (CCHMC). Patients whose records were
assigned one or more ICD-10 codes representing an OMIM
disease in their diagnosis (based on the International
Statistical Classification of Diseases and Related Health
Problems (ICD-10) codes for OMIM diseases downloaded
from Orphanet) were extracted from the database. Phenotype
descriptions were originally coded either as ICD-10 codes or
free text, and were converted to HPO terms by the NOBLE
coder.”

Performance evaluation

For each simulated or real patient, the corresponding set of
HPO terms was used as the query input for the computa-
tional models. The diagnosis was considered correct if the
actual disease was ranked in the top 1, 2, 3, or up to 10
among all diseases, depending on different levels of
specificity. To summarize the performance, we plotted
receiver operating characteristic (ROC) curves. Specifically,
sensitivity was defined as the proportion of “true diagnosis”
that is ranked above a particular threshold (e.g., top 10), and
specificity as the percentage of diseases ranked below the
threshold. The area under the ROC curve (AUC) was
calculated. This “full” ROC curve, however, is not very
informative for the high specificity range, which is of
particular interest in evaluating diagnostic performance.”’
For example, to make the prediction useful for clinical
applications, we are more interested in the top 10 predicted
diagnosis among the possible 7036 diseases in the reference
database, which corresponds to a specificity close to 99.86%.
Therefore, we also plotted the “partial” ROC with cutoff
ranking up to 10, which corresponds to the specificity range
[0.9986, 1]. The partial area under the ROC curve (pAUC)**
of the same range was calculated to evaluate the perfor-
mance of different methods.
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Table 2 Results of different methods for simulated sets 1 and 2
Simulated set 1 Simulated set 2
Rank cutoff Method 1a Method 1b  Method 2 BOQA BM.ave  Method 1Ta Method 1b  Method 2 BOQA BM.ave
1 38.7% 38.9% 45.8% 39.4% 2.6% 31.9% 32.6% 38.0% 31.2% 2.2%
3 51.9% 52.5% 58.0% 51.0% 8.3% 46.0% 47.0% 49.7% 42.2% 6.1%
10 65.6% 65.7% 69.4% 62.6% 26.2% 59.4% 59.8% 62.4% 54.3% 20.9%
pAUC 7.10e-4 7.16e-4 7.79%-4 6.93e-4 1.74e-4  6.32e-4 6.42e-4 6.82e-4 5.81e-4 1.35e-4

The numbers in this table represent the correct diagnosis rates with different ranks as cutoffs. For example, for simulated set 1, at rank 10, the correct diagnosis rate for
method 2 is 69.4% for the 8798 simulated patients. For both methods 1a and 1b, the results are based on semantic similarity cutoff 1.0
BOQA Bayesian ontology query algorithm, pAUC partial area under the ROC curve, BM.ave best-match average combination method

RESULTS
Performance based on simulated patients
Simulated patients

Using Orphanet, we simulated 5 patients for each of the 1775
diseases represented in the database. Two sets of patients with
different noise levels were created (see Methods for details).
The first set was created with a probability of 0.1 for removing
any HPO term and on average inserting 2 random HPO terms
into each patient record (i.e, a =2, p =0.1). The second set
was created with a higher noise level (i.e,, a =3, $ = 0.2). The
predicted diagnosis was considered correct if the actual
disease of the patient was ranked within or equal to the cutoff
(from top 1 to 10 in our evaluation).

The effect of semantic similarity cutoff y on method 1

Our methods la and 1b only consider query terms that have
semantic similarity score with a disease larger than a cutoff (y)
(see Methods for details). Therefore, we first studied the
impact of different cutoff y on the performance. In both
simulated sets, the best correct diagnosis rates were obtained
when y = 1.0 (Supplemental Table 2). The correct diagnosis
rates and pAUC scores were lower in simulated set 2 as
expected, because this set contains higher noise. To test the
robustness of similarity cutoff y=1.0, we included a third
simulation set with higher noise (a« =4 and p =0.3) and the
result (Supplemental Table 2) suggested that the same y = 1.0
gave the best performance.

Comparing performance between methods 1a and 1b
Next, we tested method 1b, which disregards the semantic
similarity between two HPO terms to zero if they do not arise
from the same lineage. As can be seen from Table 2, method
1b performed slightly better in both sets of simulated patients.
For simplicity, this table only shows the results for y = 1.0.

Comparing performance between methods 1b and 2 with
existing methods

The correct diagnosis rates and the pAUC scores for the two
simulated sets are summarized in Table 2. The corresponding
partial ROC curves are displayed in Fig. 1a,b. The full ROC
curves and their AUC are plotted in Supplemental Fig. 1.
Although our method 1b and method 2 are quite different,
their performance were comparable in both simulated data
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sets, and both methods resulted in improved performance
compared with the existing methods BM.ave and BOQA. In
the less noisy simulation set 1, method 2 had an improved
diagnostic rate of 45.8 vs. 39.4% for BOQA and 2.6% for BM.
ave at order rank 1, and 69.4 vs. 62.6% (BOQA) and 55.3%
(BM.ave) at rank <10 (Table 2). The p values of the
improvement at rank 10 were very significant (<1.0 x 10'%)
by McNemar test (Supplemental Table 3). Similar improve-
ments in performance were observed for the noisier
simulation set 2. As simulated set 2 represents a set of patient
phenotypes with higher noise, this suggested our methods are
more robust for noisy queries.

Evaluation using phenotypic data from electronic health
records

To evaluate performance using real patient data, we selected
10 ICD-10 codes representing 10 OMIM diseases to query our
institutional electronic health records. A list of the 10 OMIM
diseases is shown in Table 3. The number of patients for each
disease ranged from 4 for toxic epidermal necrolysis to 232 for
double outlet right ventricle yielding 462 patients in total. The
numbers of HPO terms for each patient ranged from 1 to 65,
with a median value of 12. This data set was extracted directly
from the clinical records research data warehouse without
manual inspection or curation.

We then applied the four computational methods (method
1b with y=1.0, method 2, BOQA, and BM.ave) on all 462
patients. The correct diagnosis rates at rank 10 for different
methods are summarized in Table 3, and the corresponding
partial ROC curves are displayed in Fig. 1c. The full ROC
curves and their AUC are plotted in Supplemental Fig. 1.
Overall, method 1 outperformed method 2 (32.5 vs. 28.1%).
Both methods 1 and 2 outperformed either BOQA (19.7%) or
BM.ave (4.1%). The performance improvement at rank 10
was very significant (<1.0 x 10719 (Supplemental Table 3).
For all four methods, the correct diagnosis rates were much
lower than for the simulated data sets, suggesting much
higher noise levels in the electronic health records. This
complexity could be caused by multiple comorbidities present
in the patients, adverse events from treatment, or inaccurate
mapping from ICD-10 codes to HPO terms. Therefore we
evaluated the effect of number of phenotypes in the patient on
the performance of different methods (Supplemental Fig. 2).
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Fig. 1 The partial receiver operating characteristic (ROC) curves of all methods for simulated patients and patient data from electronic health
records. a, b, and c correspond to the partial ROC curves for simulated patient set 1, simulated patient set 2, and real patient data derived from electronic
health records respectively. The x-axis of the plot is the rank cutoff for correct diagnosis ranging from 1 to 10. The y-axis of the plot is the proportion of

patients with correct diagnosis at the rank cutoff

Based on the result, the performance of methods 1 and 2
remained stable for patients with many phenotypes, while the
performance of BM.ave and BOQA peaked for patients with 5
to 15 phenotypes and deteriorated fast when the number of
phenotypes increased.

Implementation

We implemented both of our methods (methods 1 and 2) in a
web-based application called GDDP (Genetic Disease Diag-
nosis based on Phenotypes), freely available at https://gddp.
research.cchmc.org. This application takes a set of HPO terms
or free text describing a patient’s clinical phenotypes as input,
and ranks disease diagnosis using either method 1 or 2. The
output of the application is a list of diseases, sorted by the
similarity between patient’s phenotypes and phenotypes
annotated to diseases (Fig. 2a). The application also generates
interactive plots to demonstrate the detailed similarity map
between the query HPO terms and the HPO terms annotated
to a candidate disorder (Fig. 2b). Such plots can provide
valuable information to guide the further differential
diagnosis. In the example in Fig. 2, the diagnosis was
supported by the partial matching (light blue line) between
“cerebellar atropy” (query term) and “cerebellar cortical
atrophy” and perfect matching (red lines) of several other
HPO terms. More specific clinical examination for symptoms
like “cerebellar cortical atrophy,” “limb ataxia,” etc. will
further confirm or revoke the diagnosis.

DISCUSSION
Diagnosis of human disease is challenging because patients
often manifest many phenotypic symptoms of varying
specificity, and the cooccurrence of these symptoms may
not always be recognizable in known syndromes. There has
been considerable effort to develop more accurate and

GENETICS in MEDICINE | Volume 21 | Number 2 | February 2019

comprehensive methods for predicting disease diagnosis from
patient phenotypes. As an example, Monarch Initiative*
leverages large-scale integration of multiple phenotype data
sources across many model organisms to collectively achieve
better inference. In this study, we limit ourselves to disease
and HPO annotations from the MedGen database and focus
on computational methods to prioritize disease diagnosis.
Using simulated and patient-based phenotypic data, we
demonstrate that our methods outperform two current
methods, the best matching average (BM.ave, the algorithm
used by Phenomizer) and the Bayesian ontology query
algorithm (BOQA).

Using simulated data, both of our methods achieved a
correct diagnosis rate of 60% (at rank 10) and were more
accurate than either the BM.ave or BOQA algorithms. To
assess performance for clinical cases, diagnoses and associated
phenotypes derived from electronic health records for 10
OMIM diseases were used. For these real cases, the correct
diagnosis rates of all methods dropped substantially, likely
due to increased levels of noise. Nevertheless, both of our
methods (~30% correct at rank 10) performed substantially
higher than the two current methods, each of which
performed at rates below 20%.

Our method 1 employs a framework to integrate semantic
similarities of multiple HPO terms to prioritize disease
diagnosis. By converting similarity scores to a p value based
on ranking among all diseases, our approach has three
advantages over the current averaging method: (1) it
provides a more straightforward way to interpret a
similarity score as “specificity” of a phenotype pertaining
to a disorder, (2) it enables combination of “specificity” for
multiple query terms based on Fisher’s method, and (3) by
converting the original similarity scores into rank-based p
values, the method is more robust to extreme values. In
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Table 3 Results of different methods for patients from electronic health records

ICD10 DX_DESCRIPTION MIM ID # patient Method 1b (%) Method 2 (%) BOQA (%) BM.ave (%)
L51.2 Toxic epidermal necrolysis 608579 4 50.0 50.0 100.0 0.0
Q20.6 Left atrial isomerism 208530 8 25.0 87.5 25.0 0.0
E76.1 Hunter disease 309900 14 35.7 42.9 35.7 0.0
G12.0 Werdnig—Hoffmann disease 253300 36 16.7 22.2 22.2 0.0
G90.1 Dysautonomia, familial 223900 11 9.1 27.3 18.2 0.0
Q79.4 Eagle-Barrett syndrome 100100 38 57.9 68.4 63.2 0.0
182.0 Budd-Chiari syndrome 600880 31 22.6 12.9 12.9 3.2
D59.3 Hemolytic—uremic syndrome 235400 49 12.2 12.2 20.4 0.0
Q76.0 Spina bifida occulta 600145 39 23.1 28.2 282 2.6
Q20.1 Double outlet right ventricle 217095 232 38.8 24.6 9.1 7.3
Overall 32.5 28.1 19.7 4.1

The numbers in this table represent the correct diagnosis rates at rank 10. For method 1b, the results are based on semantic similarity cutoff 1.0
BOQA Bayesian ontology query algorithm, BM.ave best-match average combination method

addition to Resnik’s method'” (method 1a), we propose an
alternative approach to evaluated semantic similarity
between HPO terms. This method (method 1b) disregards
similarity between two terms if they are not on the same
lineage to account for reduced relatedness between different
phenotypic lineages. Within the parameters of our evalua-
tion, our results indicate that this semantic similarity
measure is superior to the conventional Resnik method
for predicting diagnosis. We also show that excluding terms
of low information content (i.e., using certain semantic
similarity cutoff, y) improves diagnostic accuracy.

Our method 2 utilizes a weighted Fisher’s exact test to
evaluate the concordance/discordance between the query
terms and the phenotypes annotated to a disease. This
method captures the similarity between a query and a disease
by overlapping “up-induced” HPO terms weighted by their
information content. In contrast to our method 1 and other
semantic similarity-based methods, this approach also con-
siders information of “dissimilarity” in diagnosis.

Our methods are more robust than BM.ave and BOQA
when the number of query phenotypes is large (Supplemental
Fig. 2). Our method 1 is similar to BM.ave, but instead of
using a symmetric similarity scheme (equation 2 of ref. *), our
method 1 only considers similarities based on query to disease
matches (equation 1 of ref. *). The inclusion of disease to
query matches will generate substantial noise when the
number of query phenotypes is large. We also applied a
similarity cutoff y to reduce noise due to noninformative
matches of disease nonspecific phenotypes. On the other
hand, BOQA requires a predefined constant false positive rate
(a) and false negative rate (f) grid uniform prior. When the
number of phenotypes is large, it is likely this prior is
inappropriate and the performance decreases. Our method 2
evaluates the concordance as well as the discordance between
the query terms and the phenotypes annotated to a disease,
and therefore is robust to the disease nonspecific phenotypes
because the noise introduced by the concordant matches of
nonspecific phenotypes can be canceled out by the discordant
matches of the nonspecific phenotypes.
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Although both of our methods were effective in our
evaluation, they have certain limitations. Each model relies
on statistical tests that assume independence among features
(i.e., query terms), which is an assumption that is not strictly
true for phenotypes. Therefore the significance measures
estimated by the methods are not quantitatively accurate. To
improve significance estimation, a strategy similar to
BOQA,"" which incorporates frequency of phenotypes (for
better modeling of incomplete penetrance of phenotypes) in
the diagnostic model, can be used. However, this would
require quantitatively accurate annotation of disease pheno-
types (i.e., disease prevalence, variable expressivity of the
same pathogenic variant), which is still sparse in most disease
knowledgebases.

Our proposed methods (and other similar ones) are trying
to match a patient’s phenotypes to a reference knowledgebase
that annotates the phenotypes of different diseases. The
accuracy of these methods is therefore primarily dependent
upon the quality of patient phenotyping as well as the
accuracy and comprehensiveness of phenotypic annotations
of disorders in the reference databases (e.g., MedGen and
Orphanet). The phenotyping of the patient should be accurate
(using the right terms) and precise (using specific terms with
high information content whenever possible). The compre-
hensiveness of both patient phenotyping and the complete
coverage of phenotypic abnormalities in the reference
databases is also important as these tools usually integrate
diagnostic information from all phenotypic features. Recent
efforts to also include lab tests and cellular phenotype terms
in HPO should substantially increase the power of these
tools in clinical diagnosis. In addition, as patients often have
incomplete penetrance and variable expressivity of different
phenotypes, it is also important to include this information in
the diagnosis (as described in the “Frequency” and “Clinical
modifier” branches of HPO). For patients with family history
information or genetic data of candidate pathogenic variants,
the consideration of “Mode of Inheritance” will also help.

Computational analysis of phenotype data remains challen-
ging because patient disease phenotypes are usually
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OMIM OMIM_name Score Plot Gene
1 248800 MARINESCO-SJOGREN SYNDROME 102.7 View SIL1
2 607426 COENZYME Q10 DEFICIENCY 63.77 View CcOoQ2
3 615356 MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 2S 54.94 View TRAPPC11
4 604168 CONGENITAL CATARACTS, FACIAL DYSMORPHISM, AND NEUROPATHY 54.54 View CTDP1
b
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Fig. 2 Screen shots of the diagnostic reports generated by GDDP (computational Genetic Disease Diagnosis based on Phenotypes). a A list of
candidate diagnoses ranked by similarity between a patient’s phenotypes and phenotypes annotated to diseases. b Matching between the query Human
Phenotype Ontology (HPO) terms (right side) and the HPO terms annotated to a candidate disorder (left side). The HPO terms annotated to a candidate
disorder are sorted by their information content (also shown by the diameter of the dots). Perfect matches between a query and an HPO term annotated to
the candidate disorder are highlighted in red. Partial matches are shown in blue. The numbers on the matching lines are the “similarity scores” as defined in

the Methods section

incomplete and noisy. While HPO provides a structured
vocabulary to relate all phenotypic terms, it does not explicitly
link these terms to the genetic cause of disorders. In this
study, we introduced new computational methods and
demonstrated that these methods generally outperformed
prior approaches. These initial findings await a more
systematic exploration of how and why our methods relate
to current approaches.

It’s foreseeable that further improvements may be achiev-
able by integrating multiple complementary information, such
as mode of inheritance, genetic variants detected through
diagnostic testing,”*® or associated phenotypic annotations
derived from animal models.”” While our results show
promising improvement as decision aids, much additional
experimentation is necessary to achieve prioritization algo-
rithms that are sufficiently accurate to be considered as a first-
line reasoning approach in a diagnostic setting.
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