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Purpose: Availability of clinical genomic sequencing (CGS) has
generated questions about the value of genome and exome
sequencing as a diagnostic tool. Analysis of reported CGS
application can inform uptake and direct further research. This
scoping literature review aims to synthesize evidence on the clinical
and economic impact of CGS.

Methods: PubMed, Embase, and Cochrane were searched for
peer-reviewed articles published between 2009 and 2017 on
diagnostic CGS for infant and pediatric patients. Articles were
classified according to sample size and whether economic
evaluation was a primary research objective. Data on patient
characteristics, clinical setting, and outcomes were extracted and
narratively synthesized.

Results: Of 171 included articles, 131 were case reports, 40 were
aggregate analyses, and 4 had a primary economic evaluation aim.

Diagnostic yield was the only consistently reported outcome.
Median diagnostic yield in aggregate analyses was 33.2% but varied
by broad clinical categories and test type.

Conclusion: Reported CGS use has rapidly increased and spans
diverse clinical settings and patient phenotypes. Economic evalua-
tions support the cost-saving potential of diagnostic CGS. Multi-
disciplinary implementation research, including more robust
outcome measurement and economic evaluation, is needed to
demonstrate clinical utility and cost-effectiveness of CGS.
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INTRODUCTION
Genome-scale next-generation sequencing (NGS) is increas-
ingly applied in clinical settings as a diagnostic tool, indicative
of the arrival of an era of medicine with the capacity to
provide patient care guided by genetic makeup.1 Clinical
genomic sequencing (CGS), which includes genome sequen-
cing (GS) and exome sequencing (ES), is unique in the realm
of diagnostic tests for two primary reasons. First, results of a
single test can both establish a molecular diagnosis and
inform tailored medical management (i.e., precision medi-
cine) where applicable. Second, the clinical utility of CGS
increases with additional application. Uptake influences
diagnostic effectiveness because as more patients are
sequenced, detected variants are published in case reports
and deposited into public databases, which increases the
number of known disease genes and in turn impacts future
diagnostic performance of the test.
The interplay of these two qualities is important as genetic

research is translated into genomic medicine. Since ES became
commercially available as a clinical test in 2011, uptake has

been sufficient to generate real world evidence on the ability
of CGS to provide a molecular diagnosis and impact patient
care. Implementation research is suited to explore the
context-dependent and dynamic nature of such evidence.2

In an analytical framework of technology translation,
synthesis and analysis of reported findings from initial use
in the clinic can inform evidence-based practice guidelines
and future clinical application.3 Both case reports and larger-
scale studies of institutional implementation are informative
at the current stage of evaluation. Case reports demonstrate
the breadth of clinical areas in which CGS has been
successfully applied. Studies of larger numbers of patients
provide aggregate data on diagnostic yield for different forms
of the test (e.g., trio versus proband-only, rapid versus
nonrapid), and patient subgroups according to phenotype or
clinical setting.
Diagnostic potential of CGS has been seen as particularly

powerful for infant and pediatric patients because determina-
tion of molecular etiology early in life may enable more timely
and specific intervention with a better chance of improving
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outcomes.4, 5 Infants who are challenging to diagnose by other
modalities because of incomplete, atypical, or blended
phenotypes stand to benefit from the multiplex nature of
CGS because it does not rely on clinical suspicion of the
particular gene implicated. Avoidance of sequential single-
gene or gene panel testing can save time, which is valuable
because time to diagnosis can impact the availability or
effectiveness of clinical intervention.6

Establishment of clinical utility of CGS is a primary concern
for clinical implementation and the interdependent develop-
ment of health-care payer policy. Careful evaluations of CGS
utilization can inform optimal integration of genome-wide
sequencing into diagnostic testing algorithms—where and
how to best incorporate CGS into the diagnostic workup for
which patients. This involves determining how CGS fits into
the landscape of diagnostic decision-making that includes
choices between forms of genetic investigation, including
targeted genetic tests such as single-gene and gene panel tests,
complementary tests such as microarrays and copy-number
analysis, and CGS,7 which may be performed in addition to or
in place of other nongenetic investigations. Although
sequencing has typically been recommended for patients with
nonspecific clinical features that may be associated with
numerous underlying causes (even those that are not yet well
established),7, 8 it may be possible to more precisely define
types of patients who are the best candidates. Development of
such guidelines requires assessment of patients’ clinical
characteristics and effects of CGS on medical management
to determine the types of patients most likely to benefit from
CGS and its appropriate position in the sequence of
diagnostics.
Value assessment is an important component consistent

with precision medicine’s goal of choosing the right diagnostic
test for the right patient at the right time, especially as costly
new diagnostics become available.9, 10 Effectiveness data
generated through clinical application studies are required for
translational research and are an essential input in economic
evaluations to determine the value of the test.3, 11 While
numerous methodological challenges exist for economic
evaluations of genomic sequencing tests,12 measurement of
patient health outcomes is perhaps the largest. Difficulty of
outcome measurement is not unique to CGS. It exists across
all genetic medicine applications, including targeted and
disease-specific genetic tests, and contributes to the lack of
robust economic evidence on these applications.13 While
diagnostic yield is an important outcome, it is only an
intermediate measure. More complete assessment of clinical
utility would include measures of patients’ ultimate health
outcome following clinical care provided in light of CGS
results.14, 15 Determination of CGS’s value for any specific
clinically defined group of patients is further complicated by
statistical uncertainty about outcomes (including diagnostic
yield) due to small sample sizes, which can obstruct economic
model development.16

An understanding of how CGS has been applied in practice,
its effects on physician decision-making and clinical care, and

how outcomes have been reported is a necessary precursor to
full economic evaluation. Technical and cost aspects of NGS
compared with the gold standard dideoxy method have been
explored.17 In contrast, evidence on patient outcomes
following CGS application has not yet been systematically
summarized, which this review seeks to address.
The aim of this scoping review is to provide an overview of

published peer-reviewed articles on the application of CGS for
diagnostic purposes in infant and pediatric patients. The
research questions are (1) what does the literature say about
how diagnostic genome-scale sequencing has been applied in
clinical settings for infant and pediatric patients; (2) how have
results of these applications been reported; and (3) what was
the clinical or economic impact? From studies that report
aggregate-level analyses, information on institutional features,
patient population, reported outcome categories, and impact
on those outcomes is summarized. From case reports, disease
areas and the genetic spectrum in which diagnostic CGS has
been applied are synthesized. For studies that aim to estimate
the economic impact of CGS, key findings are outlined and
the quality of economic evidence reporting is assessed. This
review provides an overview of the landscape of CGS since
2009, when proof-of-concept for diagnostic ES was shown.18,
19

MATERIALS AND METHODS
Methods
Scoping reviews are intended to provide an overview of the
nature of literature on a topic via structured searches and
identify gaps in knowledge. Fewer restrictions for inclusion
are placed on patient population, intervention, outcome, and
study design than in systematic reviews. This review was
conducted according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines,20 adapted for use in a scoping review as appropriate.
CGS is defined to include GS and ES. Sequencing may have
been performed for the proband (i.e., patient) only or
alongside parents or other family members (duo or trio), in
a nonrapid or a rapid manner with reduced turnaround time.
Sequencing was considered clinical rather than research for
the purpose of this review if the report’s stated goal was to
make a diagnosis or otherwise impact medical management of
the patient(s). In contrast, if the objective was gene discovery
or disease mechanism elucidation, the sequencing was
considered research.
A search strategy was designed with the assistance of a

librarian from the Texas Medical Center library. PubMed,
Embase, and Cochrane Library were searched. The PubMed
search included the following Medical Subject Headings
(MeSH) terms: Genome; Exome; Sequence Analysis, DNA;
Adolescent; Child; Infant; Diagnostic Techniques and
Procedures; Clinical Decision-Making; Diagnosis, Differential.
Items identified through database searches were imported
into the web application Rayyan (Doha, Qatar) for title and
abstract screening.21 Full search strategies are available online
as Supplementary Materials and Methods. Two independent
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reviewers (HSS and SC) screened the title and abstract of each
record, and conflicts were resolved through consensus.
Citations selected for full-text review were imported into
EndNote (Clarivate Analytics, Boston, MA), and full-text
articles were obtained. A full-text review form was completed
for each article to determine whether inclusion/exclusion
criteria were met. One author (HSS) reviewed each full-text
article, and a second reviewer (SC) reviewed a randomly
selected 10% of the full-text articles.
Articles that met the following predetermined criteria were

included: (1) peer-reviewed original research article; (2)
published between January 2009 and June 2017 (with an
updated search performed in November 2017); (3) proband
(if a case report) or the majority of probands (if more than 5
probands in study) less than 19 years of age at the time of
sequencing; (4) described/evaluated the clinical application of
a CGS for diagnostic purposes. Studies of patients who had a
clinical diagnosis of a condition with known genetic
heterogeneity, and thereby not determined to have a “specific”
diagnosis, were included. Studies of patients enrolled in a
research protocol performing CGS for a clinical purpose were
included regardless of how costs of sequencing were covered,
as the aim of sequencing was considered more important than
the funding arrangement. No restrictions were placed on
study design; clinical reports (individual cases and case series),
intervention studies (any methodology), and economic
evaluations (any methodology) were included.
Publications with a primary aim of genetic research were

excluded as were publications on population-based screening,
tumor genotyping, mitochondrial genome sequencing only
(without the nuclear genome), pharmacogenetic testing,
disease carrier testing, prenatal genetic testing, and targeted
exome sequencing (e.g., “clinical exome” or “Mendeliome”)
panels of thousands genes known to be associated with single-
gene disorders. While targeted exomes may be considered
more similar to a whole exome than targeted panel, multiple
permutations of such tests exist. Because there is incon-
sistency in covered genes, publications on targeted tests were
excluded for comparability of results and feasibility of this
review. Reports on patients who were sequenced postmortem
and those that indicated the initiation of sequencing but not
results were also excluded.
Because this scoping review included articles that employed

multiple methodologies and studied diverse patient
populations, results across studies were summarized and
narratively described rather than combined statistically in a
meta-analysis. Descriptive statistics were calculated on the
number of articles on each type of CGS, characteristics of
patients and institutions, clinical scenarios, and reported
outcome measures. Discussion of costs and economic
evidence was also summarized. The Consolidated Health
Economic Evaluation Reporting Standards (CHEERS) check-
list was used to assess the quality of reporting in articles with
an economic evaluation focus.22 Two authors (HSS and HVR)
assessed each article independently and arrived at a consensus
score.

Data collection process
We developed and pilot tested a data extraction form, and
then created two refined versions based on the two types of
analyses and reporting encountered. For the purpose of
collecting and presenting results in this review, studies of five
or fewer patients were considered “case reports” and studies
of more than five patients were considered “aggregate
analyses.” The cutoff number of five was determined based
on differences in article structure and information presenta-
tion according to the number of patients included. Thus, the
data collection form used for each type of study reflected the
way in which facts were reported.
Data items selected for abstraction from articles were

broadly based on parameters recommended for assessment in
evaluation of genetic tests.23 The data collection form for
aggregate analyses included the following items: study
objective, country, type of CGS, comparator, clinical setting,
study design, outcome measures, study population, inclusion
criteria, exclusion criteria, average age at test, percent of
probands younger than 19 years of age, percent of probands
who were male, diagnostic laboratory, sequencing platform,
whether a duo and/or trio approach was used, turnaround
time, molecular diagnostic yield, number of probands with a
change in medical management, discussion of insurance
coverage, discussion of costs or cost-effectiveness, and average
cost to diagnosis or cost of potentially replaced tests. For case
reports, the above information was collected on the individual
level as well as the gene implicated and diagnosis. For
economic studies, the perspective of the analysis, cost data
source, and incremental cost per outcome measure were
recorded. One author (HSS) abstracted data from all included
studies into a spreadsheet. Analysis was performed with Stata
IC 13 (College Station, TX).

RESULTS
Study selection
The study selection process is summarized as a PRISMA flow
diagram in Fig. 1. Database searches and a hand search
yielded 3039 records after duplicates were removed. After
review of abstracts, 359 records were selected for full-text
review. Following full-text review and resolution of discre-
pancies by consensus, 135 articles were included and 224
articles were excluded. The inter-rater reliability was high
(Cohen’s kappa= 0.81) for the 10% of articles receiving a full-
text review by two investigators, suggesting good agreement
on inclusion/exclusion decisions and unbiased selection of
articles for inclusion in this review. The search was updated in
November 2017, and an additional 36 articles were included.

Study characteristics
Of the 171 total included articles, 131 (76%) were case
reports19, 24–153 and 40 (24%) were aggregate analyses5, 6, 154–
191. Four studies had a primary objective of economic
evaluation and also reported primary effectiveness data153,
189–191. The number of included articles increased by
publication year. One article each year was included from
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2009–2011, 2 from 2012, 7 from 2013, 24 from 2014, 29 from
2015, 48 from 2016, and 58 from 2017. Most studies were
conducted in the United States (71) and the European Union
(28), followed by Japan (14), Canada (12), China (7), Australia
(6), and Korea (5). The first author (or co-first author) listed
had a clinical or commercial genetics affiliation for 97 (57%) of
articles. Of 24 items on the CHEERS checklist recommended
for reporting, the economic evaluation articles reported 7, 14,
18, and 17 items.

Syntheses of results
ES was used in 93% (159/171) of articles, GS in 6% (10/171),
and a combination of ES and GS in 1% (2/171). Of the
98 studies that reported the sequencing platform used, 88%
(86/98) were Illumina, 6% (6/98) were Life Technologies, and
3% (3/98) were Thermo Fisher. The majority (22/40) of
aggregate analyses reported sequence analysis of
proband–parent trios for at least some cases, 5 of which also
reported a duo of the proband and mother (or another first-
degree relative) in some cases. Turnaround time from test
order to result return was reported in 25% (10/40) of
aggregate analyses and only 2 case reports. The commercial
lab(s) in which sequence analysis was performed was stated in
19 aggregate analyses and 24 case reports, while 16 aggregate
analyses and 87 case reports stated that analysis was
performed in-house (some of which were College of

American Pathologists–accredited and Clinical Laboratory
Improvement Amendments–certified environments).
The 40 aggregate analyses included an average of 225

patients (median= 79; range: 6–2,000). Results from the 37
aggregate analyses that did not have a primary aim of
economic analysis are summarized in Table 1. Clinical setting
and patient population varied widely. Clinical settings
included genetics referral centers and hospital specialty clinics
(Genetics, Neurology, Epilepsy, Developmental, Dermatology,
Mitochondrial Disorders, Hemophilia Treatment), pediatrics
departments, and intensive care units. The most common
setting was Genetics/Individualized Medicine/Developmental
Clinic (12 articles), followed by nonspecific children’s
hospital/university medical center clinic (9 articles) and
Pediatric Neurology/Epilepsy/Intellectual Disability Clinic (6
articles). Clinical laboratory (4 articles) and neonatal/pediatric
intensive care unit (3 articles) were also reported settings.
Most large sample studies (33/37) were retrospective medical
record reviews to form a case series (12 of which were
sequential) of patients that met specific inclusion criteria for
CGS to be performed. All studies that used data from
diagnostic laboratories reported information for consecutively
obtained samples.
Phenotypic characteristics were used to delineate the types

of patients included in each study. All patients lacked a
molecular diagnosis at the time CGS was performed by virtue
of the inclusion criteria for this review. Phenotype categories
were either determined by the study authors, such as organ
system affected, severity of disease, or broad phenotypic class
(18 articles), or according to Human Phenotype Ontology
(HPO) terms (5 articles). Although the specific category
definition varied by study, neurologic phenotypes including
intellectual disability (ID)/developmental delay (DD) were a
commonly reported phenotypic group (22/37 articles).
Diagnostic yield for neurologic phenotypes is presented in
Table S1.
Each aggregate analysis reported diagnostic yield, and it was

the only consistently reported outcome measure. Where
defined, diagnostic criteria were consistent with American
College of Medical Genetics and Genomics (ACMG) guide-
lines.192 Patients were considered diagnosed if pathogenic or
likely pathogenic variant was detected in a disease gene
related to phenotype. Diagnostic yield varied by patient
population and type of test. Trio sequencing had a higher
yield than proband-only when the two were compared
(Table 1). Overall diagnostic yield ranged from 8.4 to 100%,
with a median of 33.2%. Other than 3 studies that reported
100% yield, the highest yield was 68.3%.178 Beyond diagnostic
yield, other health outcome measures of the downstream
effect of sequencing on medical management were listed5, 6,
165, 173–175, 178, 180, 182 or presented in a table154, 159, 172 in 30%
of large sample studies. Of the 12 studies that measured them,
8 studies5, 6, 172–175, 178, 182 provided a definition of outcomes,
including providing specific examples of the types of care
changes included in each category.

3,135 Records
identified through
database search

9 Additional records
identified through

hand search

3,039 Records
screened

3,039 Records after
duplicates removed

359 Full-text articles
assessed for eligibility

135 Studies included
after full-text review

171 Studies included
in qualitive synthesis

2,680 Records
excluded

224 Full-text articles
excluded
103 Publication type
37 Intervention type
1 Language
14 Outcome measures
35 Participants
34 Setting

36 Records included 
from updated search
27 Database
9 Hand search

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram of study selection
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Aggregate analyses typically included a summary and
discussion of molecular findings, and study authors chose
clinically interesting examples to highlight. By nature of the
report type, molecular findings dominated the discussion of
outcomes in case reports. Table S2 presents implicated genes
and the associated diagnoses made in case study patients.
Among the case studies, 68% (89/131) reported a diagnostic
finding, 19% (25/131) reported a variant considered by the
authors to be the most likely candidate for the patient’s
clinical presentation, and 9% (11/131) reported a finding that
prompted candidate gene association studies. Nondiagnostic
findings accompanied by a description of the clinical
presentation were reported in 5% (6/131) of case studies.
An expansion of the genetic spectrum or clinical phenotype
associated with a particular condition was reported in 45%
(59/131) case studies.
Overall, 46% (78/171) of articles discussed implications of

CGS results on the medical management of patients. Impact
on clinical care was more frequently discussed in aggregate
analyses (53%, 21/40) than in case reports (44%, 57/131).
Likewise, a discussion of economic impact of CGS on the
diagnostic workup was more frequently included in larger
studies (70%, 28/40) than case reports (15%, 19/131).
Even among the 37 aggregate analyses that did not have a

primary objective of economic evaluation, 23 referred to the
economic impact of CGS on the diagnostic workup. Several
articles specifically stated the need for economic evaluation of
such testing (5 articles),5, 6, 161, 174, 185 highlighted that CGS
may shorten the time and cost involved in the diagnostic
odyssey or sequential single-gene testing (6 articles),5, 156, 159,

162, 168, 170 or provided an illustrative example or summary
statistics on the number or cost of negative diagnostic tests
performed prior to CGS (10 articles),156, 162, 165, 168, 171, 172,
175, 182, 183, 185 which could have been averted if CGS had been
utilized as a first-line test. Table S3 summarizes findings from
articles that included quantitative results related to economic
impact of CGS but that did not have a primary economic
evaluation objective. Only 5 of 37 studies included a
comparison group, which was standard diagnostic investiga-
tion.6, 162, 174, 175, 183 Insurance coverage of CGS was discussed
in 8 large studies and 2 case reports. No formal health state,
quality of life, utility values, or specific instruments to
measure such outcomes were reported.
Results from economic evaluation studies are presented in

Table 2. Each analyzed single-study effectiveness data
reported in the same publication. In general, the results
suggest that ES can be cost-saving when performed as a first-
tier diagnostic test and thus replace serial performance of
single-gene, gene panel, and other tests. The incremental cost-
effectiveness ratio may be considered within acceptable limits
even if CGS is employed at later points in the diagnostic
trajectory. For example, one prospective analysis in which
standard diagnostics were performed in parallel with ES
found that first-tier ES was associated with an incremental
cost savings of US $1702 per additional diagnosis, and when
ES was performed after standard diagnostics, the incremental
cost per additional diagnosis was US $6327.190 Another study
estimated incremental savings of US $6840 per diagnosis
when ES was performed at the initial tertiary clinical visit and
incremental cost of US $4371 when ES was used after

Table 2 Summary of findings in economic evaluation articles

First author (year)

country/perspective

Type of economic

evaluation; type of CGS;

comparator

Clinical setting;

sample size

Cost of potentially replaced tests / incremental cost per

additional Dx by CGS (in USD)a

Joshi (2016)153 USA /

hospital (not stated)

Descriptive; trio ES;

standard diagnostics

Epilepsy center; n= 4

(including 2 siblings)

Total charges for standard diagnostics range $9,015–$35,483; charge

for trio ES $6,100 / not calculated

Monroe (2016)189

Netherlands / hospital

system

Scenario analysis; trio ES;

standard diagnostics

Specialty center for

intellectual disability; n

= 17

Average diagnostic odyssey 6.6 years; average cost of traditional

diagnostic pathway: $16,409. For patients who receive Dx, ES to

replace genetic tests would save $4,986 and to replace metabolic

tests would save $2,553, on average. For patients who did not receive

Dx, ES to replace genetic tests would save $5,669 on average. / not

calculated

Stark (2017)190 Australia

/ hospital system

CEA; proband ES; standard

diagnostics

NICU, PICU, other

inpatient, and

outpatient; n= 40

Avg. cost per Dx, traditional diagnostics: $21,099, ES: $3,937 / ES as a

first-tier diagnostic test: savings of $1,702; ES to replace some

diagnostic tests: $2,045; ES after all other diagnostic tests: $6,327

Tan (2017)191 Australia /

health care system (not

stated)

CEA; proband ES; standard

diagnostics

Ambulatory outpatient

clinics; n= 44

Avg. diagnostic odyssey 6 years, 19 tests, cost of $7,509. Cost per

patient of ES at initial genetics appointment $3,933. / ES at initial

tertiary clinical presentation: savings of $6,840; ES at initial genetics

consult: savings of $4,143; ES after standard diagnostics: $4,371
CGS clinical genomic sequencing, Dx diagnosis, ES exome sequencing, CEA cost-effectiveness analysis, NICU neonatal intensive care unit, PICU pediatric intensive care
unit
aAll costs reported.
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standard diagnostic investigations.191 These results underline
the role of timing and number of other nondiagnostic
investigations performed in whether incremental diagnoses
via ES lead to savings or come at an additional cost.

DISCUSSION
In this examination of the published reports of CGS in the
pediatric clinical setting, authors of included studies convey
enthusiasm about the availability of sequencing technology in
the clinic and its potential value as a diagnostic tool.
Investigators highlight instances of success in particularly
meaningful or puzzling clinical cases. Overall, the results show
diagnostic CGS’s broad application across clinical settings,
increased uptake since commercial availability as measured by
the number of publications each year, and high success rates
for identification of molecular cause of disease (Table 1).
Proliferation of publications appears to reflect diffusion of this
diagnostic technology across geographic areas and clinical
specialties. Findings of economic evaluations suggest that the
multiplex nature of CGS is important for generating value
because CGS is capable of replacing other diagnostic tools.
However, even if other nondiagnostic investigations are
performed prior to CGS, the cost to diagnose an additional
patient may still look favorable to decision makers.
Reviewed publications are predominantly retrospective case

reports or series across diverse clinical presentations. Among
aggregate analyses, 85% employed a retrospective design.
Reports to date can largely be classified as descriptive,
although quantitative analysis has improved with time and
sample size. While there is work to be done to improve the
analytical rigor of analyses, particularly in terms of outcome
measurement and economic evaluation, this is to be expected
in the assessment of a test with paradigm-shifting diagnostic
capability. Best practices should be established for measure-
ment and reporting of outcomes subsequent to sequencing.
Standardization would allow more robust analyses to
demonstrate clinical utility and cost-effectiveness of CGS.
This review suggests multiple candidate categories of out-
comes that could be quantified. For example, it may be
possible to measure major procedures, imaging studies, or
pharmacological intervention averted or initiated as a
consequence of GCS results. A framework of standardized
category definitions, including specification of procedures and
imaging studies considered, and means by which changes are
assessed would benefit future research.
Diagnostic yield is the most commonly reported outcome

and also the most feasible and straightforward to capture.
Results across studies suggest that patient–parent trio
sequencing has a higher diagnostic yield than sequencing
the proband only (Table 1). Investigators have begun to look
at the downstream consequences on patient care; however,
categories of clinical impact are not consistently defined or
measured. Reported medical management outcomes fall into
the following broadly defined categories: surveillance and
testing, change in prognosis/impression, subspecialty consult,
time to diagnosis, pharmacological intervention, procedure

change, imaging change, diet change, palliative care initiation,
facility transfer, clinical trial education, family planning,
familial genetic testing initiation, genetic counseling, end of
diagnostic workup, psychological, and personal/social. Spe-
cific wording of outcome categories was not consistent across
studies, and details on how assessments were made were
rarely provided. Lack of standardization makes comparison
across articles difficult. The discussion of care impact in
reviewed articles largely centered on a selected few illustrative
cases detailed by study authors.
Follow-up time presents another impediment to outcome

measurement. It may not be feasible to ascertain all effects of
CGS within the study timeframe. The follow-up period in
reported studies was not sufficient to measure potential
impacts over the course of the patient’s lifetime such as access
to school and social programs, disease surveillance, or
reproductive decision-making of the proband. Widespread
effects of CGS may extend many years after sequencing and to
multiple members of the proband’s family.
The retrospective nature of the majority of evaluations may

introduce selection bias due to preferential reporting and
patient inclusion criteria. For each article included in this
review, results are specific to the particular clinical population
studied. The majority of aggregate analyses employed specific
inclusion criteria, sometimes determined by a clinical
approval process for CGS specified by the institution. For
example, patients may have been required to have already
undergone a negative diagnostic workup or meet broadly
defined clinical criteria, such as ID/DD, to be eligible for
CGS. If clinicians selectively include patients whom they
have determined CGS would be most likely to yield a
diagnosis, the patient sample will not reflect the general
patient population. However, the findings will reflect
clinical practice and interpretation of results in light of
the inclusion criteria may be informative for clinical or
institutional policy-making.
There is a risk of publication bias across studies, particularly

for case reports and small case series. It is more likely that
instances in which CGS was successful in determining a
diagnosis for the patient will be published in a case report.
Nevertheless, looking across the clinical spectrum where CGS
has been successfully applied can indicate the scope of
sequencing as a diagnostic tool. It is possible that some
patients reported in case studies may also be included in the
cohort of patients reported by the treating institution, where
both types of publications exist.
Absence of uniformity in outcome categories and measure-

ment across studies may lead to ascertainment bias, or
systematic error based on how a particular researcher defines
and records a change in medical management. Similarly,
inconsistent methods for costs measurement and medical
record data abstraction may impact results of studies that
assess costs or the number of previous diagnostic tests
performed for each patient. Degree of transparent reporting
on cost collection and handling can reveal potential sources of
bias, such as how missing data, statistical uncertainty, and
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currency conversion and indexing were handled. One
indicator of this is the quality of reporting as measured by
number of items on CHEERS checklist described in the text,
which are intended to inform readers about important aspects
of how the analysis was conducted. For studies that include an
economic analysis, the level of reporting of economic evidence
was low, as approximately half of recommended items on the
CHEERS checklist were reported on average. Inconsistency
impedes comparison across published studies and makes it
difficult to draw conclusions. For example, the percentage of
patients for whom CGS results affected medical management
cannot be directly compared across studies because it depends
upon the types of clinical changes considered and reported in
each specific article. At the outcome level, this review is
limited by differences in how medical management change is
defined by the authors of each study.
Authors of reviewed studies note that the cost-effectiveness

of CGS deserves further and more rigorous study and that
economic evaluations are an important component of
translation to the clinic (Table S3). Discussion of insurance
coverage or economics may not have been considered relevant
by authors if sequencing was performed under a research
protocol. Very few studies have performed a thorough
assessment of costs in more than a few example patients.
More robust economic evaluation of CGS is needed to
quantify the cost effectiveness of testing and to guide
reimbursement policy. Of the 4 articles with a primary
economic evaluation aim, each limited the cost comparison to
the diagnostic odyssey. This may be because outcomes are not
clearly defined or because asking what it costs to determine a
diagnosis is the most appropriate question at the moment.
However, there are numerous cost-related questions that
should be explored in future research, such as the cost
consequences of earlier diagnosis that may lead to earlier
intervention or the decision to not perform medical
interventions.
Database searches for this review were limited to PubMed,

Embase, and Cochrane. It is possible that additional
publications exist outside this search. However, it would be
unlikely that relevant studies would not be indexed, and hand
searches of other resources supplemented the database
searches. This review is limited to articles published in the
English language. Inconsistent terminology is a hindrance to
systematic searching. ES applied as a clinical diagnostic tool is
sometimes abbreviated clinical exome sequencing (CES) or
diagnostic exome sequencing (DES). However, CES is also
used to refer to targeted exome sequencing of known disease
genes, rather than the entire exome. It was necessary to read
details of how the analysis was performed to determine
whether it covered the whole exome or only a portion.
Additionally, the terms “proband-only” and “singleton” are
used interchangeably to refer to sequencing only the patient,
and tests with expedited turnaround time are referred to as
both “rapid” and “critical.”

Conclusions
This review is the first to compile evidence on clinical utility
of diagnostic CGS for infant and pediatric patients. CGS
uptake, as measured by the number of published reports, has
substantially and steadily increased since its commercial debut
in 2011. It has been applied in a diverse array of clinical
settings and demonstrated ability to determine the molecular
basis of disease, even in patients who had previously
undergone numerous negative diagnostic investigations.
Information on diagnostic yield alone may not be ideal to

determine the value of GS and ES as diagnostic tools.
However, downstream outcomes were not consistently
defined or reported. While commonly reported information
on molecular findings, mode of inheritance, and zygosity are
informative for medical geneticists, they do not capture key
aspects of CGS relevant for implementation analysis and
development of clinical guidelines. Reflecting the dearth of
outcomes information, economic analyses have used diag-
nostic yield as the final health outcome. Lack of standardized
outcomes is an obstacle for evaluation of CGS from a health
services research perspective, including determination of cost-
effectiveness. Challenges for generating compelling real world
evidence of CGS include determination of best practices for
defining, measuring, and reporting patient health outcomes
subsequent to sequencing. Future studies should aim to reach
consensus among experts regarding which outcomes are
important and best practices for measurement and reporting.
Focus groups or other forms of structured deliberation among
stakeholders are potential means to advance this discussion.
As CGS moves toward standard-of-care, more robust

evidence of clinical utility and economic and implementation
research on CGS are needed. Consistency in outcome
assessment is essential for economic analysis input and as
part of the technology translation feedback loop. The power
of CGS as a diagnostic tool derives from—and must be
evaluated within—a dynamic environment that involves both
basic science and application in the clinic.
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