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Purpose: The etiology of 80% of patients with primary antibody
deficiency (PAD), the second most common type of human
immune system disorder after human immunodeficiency virus
infection, is yet unknown.

Methods: Clinical/immunological phenotyping and exome
sequencing of a cohort of 126 PAD patients (55.5% male, 95.2%
childhood onset) born to predominantly consanguineous parents
(82.5%) with unknown genetic defects were performed. The
American College of Medical Genetics and Genomics criteria were
used for validation of pathogenicity of the variants.

Results: This genetic approach and subsequent immunological
investigations identified potential disease-causing variants in 86
patients (68.2%); however, 27 of these patients (31.4%) carried
autosomal dominant (24.4%) and X-linked (7%) gene defects. This
genetic approach led to the identification of new phenotypes in 19

known genes (38 patients) and the discovery of a new genetic defect
(CD70 pathogenic variants in 2 patients). Medical implications of a
definite genetic diagnosis were reported in ~50% of the patients.

Conclusion: Due to misclassification of the conventional approach
for targeted sequencing, employing next-generation sequencing as a
preliminary step of molecular diagnostic approach to patients with
PAD is crucial for management and treatment of the patients and
their family members.
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INTRODUCTION
Primary antibody deficiency (PAD) is considered as the most
frequent form of primary immunodeficiency (PID), with a
prevalence of about 1 in 600 in the general population.1,2 The
clinical picture is highly variable (ranging from asymptomatic
to severe) and includes infection, autoimmunity, allergy,
lymphoproliferation, enteropathy, and malignancy. The wide
spectrum of immunological presentations of PAD constitutes
B-cell lymphopenia, agammaglobulinemia, hypogammaglo-
bulinemia, immunoglobulin (Ig) isotype deficiencies, hyper-
IgM phenotype (HIgM), specific antibody deficiency, as well
as a transient form of a humoral immunodeficiency.3,4 Several
pathogenic variants in PAD patients that play key roles in B-
cell activation, proliferation, differentiation, class-switch
recombination, somatic hypermutation, and apoptosis have
been identified; however, the etiology remains unknown in a
majority of the patients.5–7

Positive predictive values of clinical algorithms for identify-
ing PAD range from 19.1% in patients with hypogammaglo-
bulinemia to 33.3% in patients with a HIgM in the Medicaid
database,8 indicating the necessity of a correct genetic
diagnosis. Besides confirming the clinical diagnosis, a

molecular diagnosis also plays a pivotal role in the identifica-
tion of new genetic defects, presymptomatic diagnosis,
treatment decisions, prognosis prediction, and family coun-
seling.9 Moreover, the clinical presentation of pathogenic
variants in the known PID genes varies due to the severity of
pathogenic variant, the protein domain involved, and the
presence of modifying genes or environmental factors.10

Advances in next-generation sequencing (NGS) methods
allow an unbiased approach to obtain a correct diagnosis in
patients with PAD. Targeted NGS panels with several
hundreds of known PID genes may provide a first screening
step, thus improving the classical approach of the sequencing
of selected candidate genes.11 Nevertheless, this method is not
sufficiently efficient due to the heterogeneous nature of these
diseases, resulting in a clinical sensitivity of 15–40% in PID
patients.12–15 Moreover, the majority of previous studies have
only focused on patients with common variable immunode-
ficiency (CVID),16,17 and the molecular basis of a considerable
proportion of patients with other forms of PAD remains
unknown, particularly in high-frequency disorders such as
selective IgA deficiency (IgAD) and IgG subclass defi-
ciency.18–20 The aim of this study was to sequence the
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exomes of a substantial number of PAD patients with
unidentified genetic defects and to investigate its impact on
the clinical diagnosis and subsequent clinical management.

MATERIALS AND METHODS
Detailed methods, including study design, clinical/immuno-
logic phenotyping, exome sequencing and variant assessment,
and statistical approach are described in the Supplementary
Methods. Informed consent (including explanations about the
risks and benefits of research-based NGS) for the performed
evaluations was obtained from all diagnosed patients (Sup-
plementary Table S1) and their relatives, according to the
principles of the ethics committee of the Tehran University of
Medical Sciences. Data availability. Data for various analyses
are mentioned throughout the text and derived data
supporting the findings of this study are available from the
corresponding author upon request. Any other data asso-
ciated with this study are available in the Supplementary Data.

RESULTS
Demographic features of undefined PAD patients
Among all registered PAD patients (n= 545, 27.2% of PID
registry), molecular defects were found in 49 individuals with
agammaglobulinemia and 28 patients with HIgM using
conventional genetic methods whereas 342 patients were
deceased or unavailable for the molecular investigation during
the study period (Supplementary Table S2 and Fig. S1). The
126 remaining available patients (70 males, 56 females) from
109 unrelated kindreds were classified as undefined PAD and
enrolled for exome sequencing (ES, Table 1). Although the
national registry encompasses all age ranges of PAD patients,
most patients were children and adolescents at the time of the
study (52.3% were less than 18 years old) and parental
consanguinity was recorded in 82.5%. The median age of the
patients at onset of symptoms was 2 years (range 0.5–36 years;
early-onset manifestation in 95.2%) and the median diag-
nostic delay (the gap between onset of the symptoms and
diagnosis of PAD) was 4 years (range 0.25–39 years). Based
on the immunologic profile of the remaining undefined
patients they were classified as CVID in 81, HIgM in 14,
agammaglobulinemia in 11, IgAD in 11, specific antibody
deficiency in 5, IgG subclass deficiency in 3, and 1 patient was
diagnosed with IgM deficiency. Of note, 10 patients
progressed to a more severe form of PAD during the course
of the disease. All patients had undergone clinical and
immunologic phenotyping according to a standard classifica-
tion for manifestations of the diseases. A summary of the
results for all 126 patients is provided in Supplementary
Table S3.

Molecular diagnosis outcome
ES analysis and subsequent confirmatory sequencing among
the first-degree relatives of our patients resulted in a genetic
diagnosis in 86 of the 126 probands (68.2 %), where 2 patients
with variants newly implicated in disease were identified
(CD70), 37 patients with known PID genes with newly

identified phenotypes (19 unique genes), and 47 patients with
pathogenic variants leading to the expected phenotypes (15
unique genes, Table 2). Experimental data and the results of
functional assays on a selected group of this genetically
diagnosed cohort have been published previously.21–27 The
remaining 40 patients were classified as a group with
nondefinitive pathogenic genetic variants.
The majority of our patients were born in consanguineous

marriages and they would thus be expected to demonstrate an
autosomal (homozygous) recessive defect. However, the mode
of inheritance was judged to be recessive in only 23 of the 35
genes (65.7%) accounting for genetic inheritance in 58
patients (67.4%). Three genes were found to be X-linked
(8.5%) and 9 genes were assigned as autosomal dominant due
to loss of function (6 genes; 17.1%) or gain of function (3
genes; 8.5%, Table 3). All disease-causing variants were
pathogenic or likely pathogenic based on the American

Table 1 Clinical characteristics of 126 primary antibody
deficient patients

Characteristics Value

Sex

Male (%) 70 (55.5)

Female (%) 56 (44.5)

Median age

Age at the time of study, year (range) 18 (4–44)

Age of onset, year (range) 2 (0.5–36)

Age of clinical diagnosis, year (range) 8 (0.5–40)

Family structure

Nonconsanguineous kindreds

One affected child (%) 18 (16.5)

Two or more affected children (%) 2 (1.8)

Consanguineous kindreds

One affected child (%) 77 (70.6)

Two or more affected children (%) 12 (11.1)

Ethnicity based on Greater Middle Eastern genetic variation [40]

Persia and Pakistan (%) 106 (84.1)

Turkish Peninsula (%) 11 (8.7)

Arabian Peninsula (%) 9 (7.2)

Clinical phenotype

Infections only (%) 40 (31.7)

Autoimmunity (%) 45 (35.7)

Lymphoproliferation (%) 47 (37.3)

Enteropathy (%) 34 (26.9)

Malignancy (%) 7 (5.5)

Allergy (%) 15 (11.9)

Overlap phenotype 48 (38.0)

Immunodeficiency diagnosis

CVID 81 (64.3)

Unsolved agammaglobulinemia 11 (8.7)

Unsolved hyper IgM syndrome 14 (11.1)

IgA deficiency 11 (8.7)

Other types of primary antibody deficiency 9 (7.2)
CVID common variable immunodeficiency

ARTICLE ABOLHASSANI et al

12
34

56
78

9
0(
):,
;

244 Volume 21 | Number 1 | January 2019 | GENETICS in MEDICINE



College of Medical Genetics and Genomics standards and
were private or rare (Supplementary Methods). The type of all
pathogenic variants is illustrated in Table 2 and Supplemen-
tary Table S4. Of note, large deletions of coding regions were
identified in four patients carrying genetic defects within the
LRBA and DOCK8 genes. Detail of the genetic diagnosis of the
different types of PAD patients is summarized in Supple-
mentary Figure S2.

Genotypic and phenotypic correlation
We decided to evaluate the genotype–clinical phenotype
correlation in our cohort of PAD patients especially for
affected individuals within the same family. However, no
significant correlation was observed, indicating an effect of
environmental factors and/or other modifier genes on the
medical complications of the patients (Supplementary
Table S5).
Given the immunologic heterogeneity of undefined PAD

patients, we used the identified underlying gene defect to
correlate the potential immunopathologic mechanisms with
the point of arrest in B cell development using a B cell subset
analysis. The Euro classification is shown for available
patients in Supplementary Table S2 and the B cell pattern
classification is illustrated in Supplementary Figure S3. An
association between the affected gene and the pattern of
abnormalities in the size of the B cell subsets were identified,
mirroring the respective pathologic mechanism of the
damaged molecule. Based on the observed five distinct B cell
patterns, we could demonstrate that combined B cell
production and germinal center defects (low numbers of
transitional B cells and memory B cells) often represent DNA
repair/recombination gene defects, being associated with an
increased radiosensitivity and a mild form combined
immunodeficiency, involving the RAG1, DCLRE1C,
DNMT3B, and ZBTB24 genes. Early peripheral B cell
maturation or survival arrest (loss of naive mature, marginal
zone–like, and memory B cells) is associated with pathogenic
variants in TNFRSF13B and TNFRSF13C, which is in line with
impaired baseline constitutive activation and subsequently
impaired antiapoptotic signaling. Pathogenic variants in B cell
receptor (BCR) associated genes (e.g., BTK, BLNK, and
IGMH) show a phenotype of both B cell activation and

Table 2 Diagnostic yield and summary of exome sequencing
analysis in 126 primary antibody deficient patients

Variable Value

Diagnosis by means of exome

sequencing—number of

probands

Positive diagnosis (single

contributing gene)

86

No diagnosis 40

Gene category—number of

genes (gene name)

Not previously implicated in

typical primary antibody

deficiency

20

Newly identified gene 1 (CD70a)

Known gene with a novel

phenotypeb
19 (BTK,a BLNK, IGHM,a PGM3,

ZBTB24, DNMT3B, RAC2,a IL12RB1,

STAT3, STAT2, RAG1,a JAK3,a DKC1,

DCLRE1C,a PRKDC, DOCK8, PNP,a

TTC7A,a MVK)

Known gene with a known

phenotype

15 (LRBA,aCD27,a ICOS, TNFRSF13B,

TNFRSF13C, IKZF1, PLCG2, PIK3R1,

PIK3CD, CLEC16A, PRKCD, VAV1,

NFKB1, NFKB2, XIAP)

Type of variant—number

All variants 66

Single-nucleotide variant 45

Missense 38

Nonsense 7

Splice-site 8

Insertion or deletion 13

In-frame 2

Frameshift 8

Large deletion (copy-number

variation)

3

aPatient has been reported previously21–27
bThe novel phenotype were observed in defects within BTK, BLNK, and IGHM
manifesting as common variable immunodeficiency (CVID) (usually present with
agammaglobulinemia), in RAG1, JAK3, DCLRE1C, PRKDC, PNP, and TTC7A mani-
festing as primary antibody deficiency (PAD) (usually present with combined
immunodeficiency); in RAC2 manifesting as PAD (usually present with phagocytic
disorders); DOCK8 and PGM3 manifesting as PAD (usually present with hyper IgE
syndrome); ZBTB24 and DNMT3B manifesting as PAD (usually present with immu-
nodeficiency with centromeric instability and facial anomalies syndrome); MVK
manifesting as PAD (usually present with autoinflammatory disorders); STAT2
manifesting as PAD (usually present with innate immune disorders); STAT3 mani-
festing as PAD (usually present with immune dysregulation) and IL12RB1 mani-
festing as PAD (usually present with Mendelian susceptibility to mycobacterial
disease)

Table 3 Inheritance pattern of the 35 genes identified in
the study

Inheritance No. of

genes

affected

Gene ID

Autosomal recessive

Homozygous 23 CD70,a BLNK, IGHM,aPGM3, ZBTB24,

DNMT3B, RAC2,a IL12RB1, STAT2,

RAG1,a DCLRE1C,a DOCK8, PNP,a

TTC7A,a MVK, LRBA,a CD27,a ICOS,

TNFRSF13C, VAV1, PRKCD, PRKDC,

JAK3a

X-linked

Recessive 3 BTK,aXIAP, DKC1

Autosomal dominant

Gain-of-

function

3 PIK3CD, STAT3, PLCG2

Loss-of-

function

6 PIK3R1, TNFRSF13B, IKZF1, NFKB1,

NFKB2, CLEC16A
aPatient has been reported previously21–27
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proliferation defects (combined reduction of marginal
zone–like and memory B cells). Isolated germinal center
blockage (exclusive decrease in the number of memory B cells
associated with a normal or high level of IgM) suggests gene
defects in costimulatory molecules for T-dependent immunity
(e.g., CD27, CD70, and ICOS), which modify signaling for
class-switch recombination and somatic hypermutation.
Finally, the pattern of postgerminal center impairment
(defects in terminal plasma-cell maturation, survival, or
homing), leading to an isolated reduction of long-term
plasma cells, might be compatible with LRBA and XIAP
deficiencies (Supplementary Table S3).

Clinical and immunological features of solved versus
unsolved patients
In the 86 PAD patients with a genetic diagnosis, defects in
genes that encode proteins involved in the postgerminal
center survival pathway accounted for 19.7% of the total
disease-causing etiologies while proteins involved in DNA
repair and recombination pathways defects accounted for
17.4% of genetic defects. Defects in B cell receptor signaling
(in 13.9% of patients) and in the PI3K signaling pathway (in
11.6% of patients) were also other frequently observed defects.
The lowest diagnostic yield was obtained in patients with

agammaglobulinemia (2 of 11 tested; 18.1%). We performed
stratification on the patients who underwent sequencing to
determine the parameters associated with a diagnosis. Of
note, consanguinity and the severity of clinical presentation
were similar between those who had a molecular defect
identified (n= 86) and those who did not (n= 40). However
the clinical diagnosis of agammaglobulinemia (p < 0.001), a
late age of presentation (onset of disease >10 y; p= 0.03), and
the absence of multiple affected family members (p= 0.01)
were significantly more frequent in the patients who had no
genetic defect identified. Genetic defect was identified in 90%
of patients with a progressive form of PAD suggesting a
higher rate of diagnostic yield in this subgroup of patients
compared with other patients (p= 0.01). Among the 40
patients with nondefinitive pathogenic genetic variants,
immunologic phenotypes were mainly compatible with a
pattern of postgerminal center impairment (p= 0.03).

Clinical implications of molecular diagnosis
Our therapeutic approach was changed in 26 patients (20.6%)
from Ig replacement to hematopoietic stem cell transplanta-
tion (HSCT) in a selected group with atypical combined
immunodeficiency (LRBA, DCLRE1C, RAG1, PRKCD, JAK3,
PNP, CD27, and CD70 pathogenic variants). Regular screen-
ing for cancer and avoidance of malignancy triggers were
added to a routine management of 15 patients (11.9%) with
defects in their DNA repair system. More mechanistically
precise treatment, such as supplementation of rapamycin in
patients with PI3KR1, PI3KCD, and LRBA deficiencies, was
initiated in 22 patients. The results of ES aided 49 families
(38.8%) in family counseling, leading to the performance of
the prenatal diagnosis in 25 families (19.8%). In total, a

correct genetic diagnosis affected the clinical treatment and
management of 48.4% of probands in whom a pathogenic or
probably pathogenic variant was identified.

DISCUSSION
PAD is a group of clinically and genetically heterogeneous
disorders, necessitating a wide molecular approach for a
definitive diagnosis.28 Although it is not yet a consensus,
recent genetic diagnostic studies on undefined PAD patients
have tried to include all known PID genes in this subgroup of
PID patients using NGS.
The success rate of this approach was reported to be 23.5%

in 34 UK CVID patients,17 30% in a US CVID cohort of 50
patients,16 and 41.6% in 36 patients in a multinational
antibody deficiency cohort29 (Supplementary Table S5). The
diagnostic yield in these three NGS investigations was close to
the results of targeted gene panel testing (15–40%, with a
lower time consumption and cost for the latter)12–15 due to
inadequate computational analysis for copy-number variation
(CNV), and lack of utilization of the gene discovery power of
NGS. Moreover, the rate of consanguinity of these three NGS
studies was less than 10%.16,17 Because the majority of PID
genes are autosomal recessive diseases, the high percentage of
consanguineous marriages (82.5% in the current study)
simplifies the analysis of the NGS data by increasing the
likelihood that the disease-causing variants are homozygous
pathogenic variants and a genetic defect was identified in 68%
of the patients in our cohort, which represents the highest
published diagnostic yield to date. The pattern of inheritance
was also autosomal recessive in two thirds of the patients
(mainly due to LRBA, DNMT3B, and ZBTB24 deficiencies),
in contrast to less consanguineous, well-known PAD cohorts
in Western countries with high frequency of autosomal
dominant diseases, e.g., Germany (Center for Chronic
Immunodeficiency, 25% solved mainly due to NFKB2,
CTLA4 and NFKB1 deficiencies, personal communication
with Dr. Bodo Grimbacher, 2017) or UK (UKPID Registry,
27% solved mainly due to TACI, PI3KCD, and PI3KR1
deficiencies, personal communication with Dr. Sinisa Savic,
2017). The male excess in our baseline population shows that
X-linked disorders contribute approximately 7% of the
patients. Taken together with an increased trend toward the
discovery of autosomal dominant genes in PID genes during
recent years,30 documenting 24.4% of our highly consangui-
neous cohort with autosomal dominant defects underscores a
cautionary note in considering different Mendelian patterns
of inheritance. Furthermore, we have reported five male
patients with X-linked disorders reported as having con-
sanguineous parents. Intriguingly, among the undiagnosed 40
patients, 29 (72.5%) had parental consanguinity.
We would not have been able to find the disease-causing

variant in 40% of currently solved patients if we had used
targeted sequencing alone, utilizing a list of known genes
associated with PAD.18 Therefore, a high-throughput geno-
mic approach should be performed as a first screening step for
patients with PAD due to the overlap of clinical phenotypes
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derived from distinct genotypes. In line with this notion, our
investigation resulted in an expansion of the clinical spectrum
of pathogenic variants in 19 genes. We identified the late age
of onset, the absence of affected family members, having
unsolved agammaglobulinemia, and in immunologic profile
of postgerminal center impairment as four factors associated
with a lower yield of identified genetic variants. The yield for
molecular diagnosis was highest in the progressive forms of
PAD.
Of note, BTK, BLNK, and µ heavy chain deficient patients

with atypical presentations of hypogammaglobulinemia and
normal peripheral B cell counts, mimicking a CVID-like
phenotype, indicates the potential problem using a conven-
tional genetic approach, which is based on the Ig profile and
lymphocyte counts. Although several efforts have been made
during the past decade to classify PAD based on different
clinical phenotypes and Ig profiles, our results complement
other studies suggesting an early and comprehensive genetic
strategy for all PAD patients. Reduced penetrance or variable
expressivity was observed in our patients with LRBA
deficiency (presenting as agammaglobulinemia, HIgM and
CVID-like phenotypes) and PI3KR1 deficiency (presenting as
HIgM and CVID), indicating an extension of the PID
phenotype spectrum. Moreover, there is considerable immu-
nologic heterogeneity in individuals with exactly the same
gene defect within families. This finding is consistent with
progression of different forms of PAD as we identified the
causative genetic defect in four cases with progression of
IgAD to CVID (P8, P35, P67, P68), two patients with
progression of HIgM to agammaglobulinemia (P32, P43), two
patients with progression of IgG subclass deficiency to CVID
(P84, P85), and one patient with progression of CVID to
agammaglobulinemia (P34). Nonetheless, in contrast to the Ig
profile, the B cell developmental pattern showed a robust
association with the disease associated genes. This general
observation emphasizes the importance of filtering
variants in collaboration with the treating clinicians and
immunologists.
On the other hand, patients with hypomorphic pathogenic

variants in severe combined immunodeficiency associated
genes (e.g., RAG1, JAK3, PRKDC, and DCLRE1C) and
incomplete and atypical presentation of syndromic disorders
(e.g., associated with ZBTB24, DNMT3B, DKC1, and TTC7A
pathogenic variants) illustrates the need for careful assessment
of PAD patients to provide a reliable prognosis and to initiate
appropriate treatment. Among the atypical patients, there was
an IgA deficiency patient with a PNP pathogenic variant,
whose clinical and immunologic profile has been described
previously.23 Recently, another study has reported a 13-year-
old patient with a homozygous missense pathogenic variant
with a late-onset PNP deficiency (p.A117T) diagnosed with
hypogammaglobulinemia at the age of 10,31 suggesting that
residual PNP activity in patients with hypomorphic patho-
genic variants can show atypical presentation like in
adenosine deaminase deficiency, another enzyme important
for purine degradation and salvage.32

Of note, a subgroup of patients presented with pathogenic
variants in genes associated with the hyper IgE syndrome
(HIES). A large deletion in DOCK8 was identified in a 7-year-
old female with early-onset upper respiratory tract infection
and mild eczema/food allergy and an immunologic phenotype
resembling hypo IgM with low marginal zone and low
memory B cell pattern. Due to the importance of DOCK8 in
controlling both actin cytoskeleton-dependent and -indepen-
dent immune responses, several humoral immune abnorm-
alities have been reported in these patients including elevated,
normal, or decreased levels of IgG and IgA, but nearly always
IgE levels are elevated and IgM levels are reduced.33 The
serum level of IgE was not compatible with HIES (between 87
and 150 IU/ml) in our patient, similar to another case with
large exons 1–2 deletion of DOCK8.34 Three patients with
different forms of PAD also carried PGM3 pathogenic
variants. Deleterious defects in PGM3 affect glycosylation
with a broad spectrum of clinical features. However,
hypomorphic pathogenic variants with a residual function
can only affect cell–cell recognition and immune signaling
partially. Similar to our findings, among approximately 40
reported PGM3 deficient patients, the absence of B cells (p.
G340del in 3 patients35,36) and hypo IgM phenotype (p.
D502Y, in 1 patient35) have also been reported previously as
well as normal levels of IgE in several patients.37 Of note,
recent glycoproteomic studies have shown that PGM3
pathogenic variants do not affect the IgE molecule directly.
However, tri-/tetra-antennary glycans of B cells of patients
show significant biochemical changes. Therefore, elevated IgE,
as well as other humoral immune dysregulation may be
caused by decreased specific glycans on other glycoproteins
that are involved in Ig production or receptor recognition.38

Establishing a correct differential diagnosis list for PAD
including a more broad panel of PID genes is also suggested by
our results, as pathogenic variants in RAC2 (congenital defects
of phagocyte genes with defects of neutrophils motility),
NLRP12, andMVK (autoinflammatory disorders genes affecting
the inflammasome), STAT2 (gene involved in intrinsic and
innate immunity), and STAT3 (known gene involved in
immune dysregulation) could manifest with an aberrant Ig
profile. Among these patients, P28 with an IL12RB1 pathogenic
variants was a male receiving bacillus Calmette–Guérin (BCG)
vaccination at birth without any complications and presented
hepatomegaly, autoimmune enteropathy, and transient oral
candidiasis at the age of 6 months. At 2 years of age, he was
diagnosed with IgG2 subclass deficiency when Klebsiella
pneumoniae infection in the upper respiratory tract was
detected. Lymphocyte transformation test and IFN-γ produc-
tion after IL-12 stimulation showed a low normal result
compared with age-matched healthy controls. These findings,
and previous genetic causes reported to underlie antibody
deficiency in other studies, urge us to expand the expected
genetic candidate of PAD.
As demonstrated in our workup chart (Fig. 1), a stepwise

clinical and molecular diagnosis in patients with different
types of PAD is suggested. In a mixed group of PAD patients,
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Clinical suspicion

Complementary work-up

Measuring of lg levels in patients with recurrent infections
especially bacterial infections in the respiratory and gastrointestinal tracts

Screening of lg levels in relatives of dysgammaglobulinemia patients*
Screening of lg levels in patients with autoimmunity, allergy, enteropathy,

lymphoproliferation and malignancy
Ruling out secondary causes**

Screening of relatives and pedigree evaluation
Full medical records

Complete lg profile (including lgG subclasses)
Complete blood count (lymphocytes, complete B***- and T-subsets)

Specific antibody levels (including T-dependent and T-independent antigens)
Follow-up visits every 6-12 months and re-testing of lg levels

Chromosomal abnormalities and cytogenetic defects****
Next generation sequencing (filtering step for PID genes,

computational CNV analysis, searching for new genetic defects)

Multigenic disorders and/or caused by modifer genes
HLA haplotype association (e.g. HLA-A1, B8 and DR3 and DQ2)

Epigenetic alteration (e.g. DNA methylation)
Environmental factors (e.g. Herpesviridae family infections)

*  T-cell receptor excision circles (TRECs) and kappa-deleting recombination excision circles (KREC) assay in newborn relatives.
** Drug induced, malignancy, nephrosis, lymphangiectasia, protein-losing enteropathy, other systemic disorders.
*** Based on four suggested classifications: Freiburg, Paris, EUROclass and B-cell patterns.
**** 4p monosomy, 5q syndrome, trisomy 8, trisomy 10p, translocation of 10q to 4p, 14q32 deletion, 15q24.2 deletion,
     17p11.2 deletions, 18q-syndrome, ring 18, 19p13.3 deletion, ring 21, trisomy 21, monosomy 22, 22q11.2 deletion syndrome.
*****Hematopoietic stem cell transplantation, metabolite change or supplementation, new targeted medication and gene therapy.

Other etiologies

Genetic work-up and molecular diagnosis (see Figure 2)

Clinical/immunologic
phenotyping

Confirmation of the clinical diagnosis and pattern of inheritance
Distinguishing the genetic forms from acquired disorders, prognosis estimation

Pre-symptomatic diagnosis, screening of at-risk relatives, population based screening
Identifying novel or atypical phenotypes of a known gene defect

Family counseling, prenatal diagnosis, pre-implantation genetic diagnosis
Adjustment of treatment based on the molecular diagnosis*****

Primary
dysgammaglobulinemia

Idiopathic
dysgammaglobulinemia

Fig. 1 Clinical, immunological and genetic approach for a molecular diagnosis of primary antibody deficiency. CNV copy-number variant, PID
primary immunodeficiency, HLA Human leukocyte antigen.
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patients with gene defects that are associated with other forms
of PID should be detected by NGS. However, such patients
are likely to exhibit several abnormal immune parameters in
addition to a perturbed Ig profile (Fig. 2, Supplementary
Fig. S4). In our suggested decision tree for the diagnostic
workup, probable pathogenesis, and appropriate treatment
choices, it is recommended to start with clinical/immune
parameters (particularly the B cell subset pattern) whereupon
it is possible to distinguish other or additional defects and, in
some cases, a genetically defined defect. What is left from the
cohort will be a group of idiopathic PAD patients that should
be investigated for other probable etiologies, including
modifier genes; defects in enhancer, promoter, and intronic
regions or other structural abnormalities; low-grade mosai-
cism; epigenetic markers; and environmental susceptibility
factors. Another potential factor that should be considered is
inadequate coverage of the gene of interest (variants that have
low quality or reads support less than 4 are usually filtered
during the analysis process).

The main pathways involved in our PAD patients were the
postgerminal center survival pathway and DNA repair
signaling. We calculated and plotted the network of all 189
known PID-causing genes related to PAD using the human
genome connectome-predicted direct biological distance
between human genes. We found that PAD-related genes
tend to be the central hub of the B cell activation and antigen
receptor–mediated signaling pathways (Supplementary Fig. S5
and Table S7). The fitness of the newly identified gene, CD70,
was tested and shown functionally close to previously known
antibody deficiency related genes, mainly CD27, its unique
ligand (Supplementary Fig. S6 and Table S8). The CD70
deficient proband (P11) manifested with an Epstein–Barr
virus (EBV)-related lymphoproliferative disorder, a pheno-
type resembling three patients with CD27 deficiency (P7 with
nodular sclerosis classical Hodgkin lymphoma, P8 with
Hodgkin lymphoma, and P9 with disseminated infectious
mononucleosis). As summarized in Supplementary
Table S5, several families showed different types of antibody
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Fig. 2 Candidate gene defects and pathological mechanisms in patients with primary antibody deficiency based on clinical and immunological
phenotyping and their appropriate treatment modalities. AH50 50% alternative hemolytic complement activity, KREC kappa-deleting recombination
excision circle, CARD caspase recruitment domain, EBV Epstein–Barr virus, CH50 50% hemolytic complement activity, FFP fresh frozen plasma, G-CSF
granulocyte-colony stimulating factor, HSCT hematopoietic stem cell transplantation, iNKT invariant NK-T cells, IgR immunoglobulin replacement therapy,
IFN-γ interferon gamma, LPD lymphoproliferative disorder, TLR Toll-like receptors, TNF tumor necrosis factor, TREC T-cell receptor excision circle. References
reviewed for compiling the gene list underlying dysgammaglobulinemia were refs.5,7,16,17,20,23
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deficiencies with a similar pathogenic variant, possibly due to
genetic or environmental modifying factors. Of note, another
CD70 deficient patient (P10) showed only a severe viral
infection in childhood and was seropositive for EBV.
According to our previous observation that only 60% of
patients with defects in CD27-CD70 signaling present
hypogammaglobulinemia requiring Ig replacement ther-
apy,22,25 P10 and P7 presented only specific antibody
deficiency, indicating that complete humoral immune tests
should be investigated in first-degree relatives of a PAD
proband.
Additional capabilities of NGS on in silico analysis of CNVs

provide further support for this approach as the first step in
the genetic diagnosis of PAD. Lack of identification of
disease-causing CNVs, particularly in compound heterozy-
gous forms in cohorts with a large proportion of nonconsan-
guineous patients, could be a potential explanation for
differences in diagnostic yield between our survey (4.6% of
the solved cases harbored large homozygous deletions mainly
within genes with a high level content of transposable
elements39) and other studies.16,17 The effect of severe clinical
phenotype, use of homozygosity mapping, and even parental
consanguinity could not explain the level of diagnostic yield
between 40 unsolved and 86 solved patients. However,
familial segregation analysis in multiple case families could
increase the discovery rate, a fact that seems to be consistent
among different studies with different settings.16,17,29

Genome sequencing enables an advanced CNV detection
(in the case of polymerase chain reaction free library
preparation), and targeting all arbitrary exomes, deep
intronic, regulatory domains, and structural intragenic
regions (due to the absence of capture step and reference
biases). For the time being, however, ES seems to be the most
cost-effective approach for PAD patients with unknown
etiology due to our current cognition about monogenic
disorders (enriched in the coding exome, the most conserved
region of the genome across metazoans), and less analysis
complexity and risk of secondary findings.10

Our follow-up on patients with a molecular diagnosis using
NGS provided valuable guidance for the treating physicians
toward appropriate clinical management, prenatal diagnosis,
and targeted therapy (utilization of rapamycin, abatacept, and
tocilizumab as new modalities in the treatment of PAD17).
Prenatal diagnosis in childhood-onset patients has an
important significance apart from decreasing the burden of
diseases, because the parents and also the first-degree relatives
of patients are still at childbearing age and may thus need
genetic counseling for their next pregnancy. Furthermore, a
selected group of patients with symptoms suggesting a
combined immunodeficiency could potentially benefit
from HSCT. Despite obvious advantages of a molecular
diagnosis, it should be realized that the identified genetic
pathogenic variant needs to be evaluated together with the
clinical and immunological phenotypes of affected patients
before making a decision on clinical management and medical
implication.

We suggest that NGS could replace a conventional multi-
step genetic approach because it can be expanded to cover all
known PID associated genes and potentially detect CNVs and
new genes associated with PID. More efforts should be spent
on improving the NGS processing timeframe and gene-
capture coverage to integrate it in a rapid molecular
diagnostic pipeline, including the confirmation of a positive
newborn screening test. PAD, particularly CVID, is likely to
be a collection of several genetically distinct disorders.
Although all the patients in our cohort could not be shown
to suffer from a monogenic disorder, these patients should be
further investigated for additional, nongenetic susceptibility
factors.
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